Particle Acceleration in SNRs

Yasunobu Uchiyama (ISAS/JAXA)

with
Felix Aharonian (DIAS,MPIK)
Takaaki Tanaka (SLAC)
Tadayuki Takahashi (ISAS/JAXA)
Collisionless Shock

Shocks do exist. No doubt.

But, Coulomb collisions do not occur on this scale.

At shocks, energy transfer is mediated by some MHD/plasma waves.

"collisionless shock"

Cosmic ray production

Tycho’s SNR (exploded in AD 1572)

Chandra X-ray image

Diameter: 8 arcmin
Introduction

Collisionless Shock

Classical View of “collisionless shock”

Thermal ions
- Maxwellian distribution: kT_i

Thermal electrons
- Maxwellian distribution: kT_e

\Rightarrow ?

Fermi Acceleration
- (e.g. Bell, Blandford)

Cosmic Rays
- Power law distribution:
 - total energy
 - max/min energy
 - number index

$kT_i > kT_e$

in young SNRs
Modern View of “collisionless shock”

Thermal ions
- Maxwellian distribution: \(kT_i \)
- \(kT_i > kT_e \) in young SNRs

Thermal electrons
- Maxwellian distribution: \(kT_e \)

Fermi Acceleration
- (e.g. Bell, Blandford)
- CR back pressure (?) (e.g. Ellision)

Cosmic Rays
- Power law distribution:
 - total energy
 - max/min energy
 - number index

Introduction

Collisionless Shock
Indirect Arguments for CR-modified Dynamics

Tycho’s SNR

Very thin layer of shocked ISM (7% of the radius) indicates a large compression factor.

CR-modified dynamics? Warren+05

SNR E0102-72 (in SMC)

* Expansion velocity 6000 km/s predicts $kTi \sim 45$ keV (RH relation)
* Measured $kTe \sim 0.7$ keV predicts $kTi < 45$ keV (Coulomb heating)

CR-modified dynamics? (CRs lowered kTi) Hughes+00
Indirect Arguments for CR-modified Dynamics

XEUS will provide a “direct” test by measuring thermal Doppler broadening, thus ... kT_i

Combined with expansion measurements (V), and kT_e.

XEUS specifications:

* EA: OK!
* spectral resolution: OK!
* angular resolution: 2” preferable

SNR E0102-72 (in SMC)

- Expansion velocity 6000 km/s predicts $kT_i \sim 45$ keV (RH relation)
- Measured $kT_e \sim 0.7$ keV predicts $kT_i < 45$ keV (Coulomb heating)

CR-modified dynamics?

(CRs lowered kT_i)

Hughes+00
Modern View of “collisionless shock”

Thermal ions
Maxwellian distribution: \(kT_i \)

Thermal electrons
Maxwellian distribution: \(kT_e \)

\(kT_i > kT_e \) in young SNRs

Fermi Acceleration
(e.g. Bell, Blandford)

Cosmic Rays
Power law distribution:
- total energy
- max/min energy
- number index

CR back pressure (e.g. Ellision)
Introduction

Collisionless Shock

Post-Chandra View of “collisionless shock”

Thermal ions
Maxwellian distribution: kT_i

Thermal electrons
Maxwellian distribution: kT_e

$kT_i > kT_e$
in young SNRs

Fermi Acceleration
(e.g. Bell, Blandford)
CR back pressure (?)
(e.g. Ellision)

Cosmic Rays
Power law distribution:
total energy
max/min energy
number index

Bell hypothesis

Magnetic Fields
total energy
max/min scale
index (e.g. Kolmogolov)

Calculation from “first principle”: not available
We need Experiments/Observations!!
Case Study (1)

SNR RX J1713.7-3946 (age 1600 yr)

The brightest diffuse TeV emitter in the sky
RX J1713.7-3946 (age 1600 yr)

SNR RX J1713.7-3946

HESS (color)
ASCA (contours)

10-100 TeV electrons

TeV gamma-ray imaging by HESS

Direct evidence of 10-100 TeV particles

Origin of TeV gamma-rays:
hadronic (pion-decay) or leptonic (IC) ?
RX J1713.7-3946

Our Chandra Monitoring Observations

Most filaments (spatially extended) are variable in time!!

Timescale ~ 1 year

Decaying

X-ray spectra:
a power law with photon index ~ 2

Brightening and Decaying

Chandra (color)
HESS (contours)

Witnessing Acceleration of Cosmic Rays!!

Uchiyama et al. (2007)
RX J1713.7-3946

Variability Timescales

Light crossing time

\[t_{lc} \sim 0.1 \left(\frac{\theta}{6 \text{ arcsec}} \right) \text{ year} \]

variability timescale \[\Delta t_{\text{var}} \sim 10 \times t_{lc} \]: impossible for non-relativistic plasma waves/motion

Decaying = Synchrotron Cooling

\[t_{\text{sync}} \sim 1.5 \left(\frac{B}{\text{mG}} \right)^{-1.5} \left(\frac{\epsilon}{\text{keV}} \right)^{-0.5} \text{ year} \rightarrow B \sim 1 \text{ mG} \]

Brightening = Acceleration of Fresh Electrons

\[t_{\text{acc}} \sim 1 \eta \left(\frac{B}{\text{mG}} \right)^{-1.5} \left(\frac{\epsilon}{\text{keV}} \right)^{0.5} \left(\frac{V_s}{3000 \text{ km s}^{-1}} \right)^{-2} \text{ years} \rightarrow B \sim 1 \text{ mG} \]

\[\eta \sim 1 \]

Consistent with Suzaku

Diffusive shock acceleration \[\eta \equiv \left(\frac{\delta B}{B} \right)^2 \]

“gyro-factor”
Why B-field so Strong?

Shock compression of ISM: B ~ 5 uG is not enough.

- **Magnetic field generation at shocks**
 - Non-linear amplification of B-field by CRs themselves
 - "Bell-Lucek hypothesis"
 - Bell & Lucek 2001
 - Bell 2004

 Amplification factor of ~ 100

- **Other evidence for strong B-fields in SNRs**
 1. Thin X-ray filaments (Vink & Laming 2003; Bamba+03,05): > 0.1 mG
 2. Absence of TeV gamma-rays in SN 1006: > 0.1 mG
 3. Cas A SED: > 0.4 mG (Atoyan+ 2000) (note: RT instability)
RX J1713.7-3946

Wide-band X-ray Spectroscopy with Suzaku

Southwest rim

Tanaka PhD thesis 2007
Uchiyama et al. 2007
Takahashi et al. 2008

- Spectral cutoff (we see it for the first time in SNRs)

Fermi acceleration theory: \(\varepsilon_{\text{cutoff}} \sim 2 \left(\frac{V}{2000 \text{ km s}^{-1}} \right)^2 \eta^{-1} \text{ keV} \)

- Shock acceleration in the Bohm regime! \(\eta \sim 1 \)
Hadronic Origin of Gamma-rays

Average field of \(B \sim 0.2 \) mG \(\rightarrow \) IC (leptonic) unlikely

TeV has hadronic origin:

- Total proton energy: \(W_p \sim 3 \times 10^{50} n^{-1} \) ergs
- Proton roll off: \(E_p \sim 200 \) TeV
- Electron cutoff: \(E_e \sim 20 \) TeV

GLAST will determine proton index

\(W_p \sim 3 \times 10^{50} n^{-1} \) ergs

\(E_p \sim 200 \) TeV

\(E_e \sim 20 \) TeV
Hadronic Origin of Gamma-rays

Average field of B ≈ 0.2 mG; IC (hadronic) unlikely

Suzaku wide band: TeV has hadronic origin:

\[W_p \sim 3 \times 10^{50} \, n^{-1} \, \text{ergs} \]

GLAST will determine proton index

proton roll off \[E_p \sim 200 \, \text{TeV} \]

\[E_p > \text{electron cutoff} \]

\[E_e \sim 20 \, \text{TeV} \]
• **Maximum Energy of CRs:** Lagage-Cesarsky limit

$$E_{\text{max}} \sim 1.2 \left(\frac{R}{9 \text{ pc}} \right) \left(\frac{V}{3000 \text{ km s}^{-1}} \right) \left(\frac{B}{0.1 \text{mG}} \right) \eta^{-1} \text{ PeV}$$

HESS spectrum of RXJ1713.7-3946

$$E_p \sim 200 \text{ TeV} : \text{CR-modified shock?}$$

(see Ellison+08)
Case Study (2)

SNR Cassiopeia A (age 340 yr)

The youngest Galactic SNR
Cassiopeia A (age 330 yr)

Chandra X-ray
- Shock-heated ejecta
 - $kT_e \sim 1-2$ keV
- Shock-accelerated electrons
 - If $B \sim 0.1$ mG, $E \sim 10$ TeV (both forward/reverse shocks)

Spitzer 3.6um
- Accelerated electrons in ejecta
 - If $B \sim 1$ mG, $E \sim$ GeV (radio), TeV (IR)

VLA Radio

Ennis et al. 2007

MAGIC
- TeV gamma-rays

Accelerated particles
- $E \sim 10$ TeV
(1) line emissions from ionized heavy ions
ionization degrees: kTe & nt (density x elapsed time)

(2) thermal bremsstrahlung from shock-heated electrons
$kTe \ll kTi$ non-equilibrium temperature

(3) synchrotron radiation by shock-accelerated electrons
$E = 10$ TeV in $B = 1$ mG radiates X-rays
Cassiopeia A the Movie

Si line (1.7-2.2 keV)
thermal X-ray emission from shock-heated ejecta
(1) SE quadrant: large-scale dimming by 2%/yr
(2) A few compact knots brightening

4 yr interval (age 330 yr)
Uchiyama & Aharonian
submitted to ApJL

(see also Patnaude & Fesen 2007)
Cassiopeia A the Movie

Continuum (4-6 keV)
- thermal bremsstrahlung from shock-heated ejecta
- + synchrotron component
- many knots/filaments brightening/decaying 10%/yr

4 yr interval (age 330 yr)

Uchiyama & Aharonian
submitted to ApJL
Cassiopeia A

Year-scale Variability in Synchrotron Radiation

2000, 2002, 2004 data have almost identical ACIS settings: aim point, roll angle, etc.

Hwang et al. (2004)

Time evolution over 4 yrs brightening and decaying

4 - 6 keV images
Cassiopeia A

Spectra of Variable Filaments

Flux changes

Index changes

brightening accompanies hardening

X-ray spectra are consistent with a synchrotron model

\[\Gamma \approx 2.3 \]
Cassiopeia A

Variability Timescales

- **X-ray Variability**

 decaying = synchrotron cooling
 brightening = CR acceleration (and B-field amplification)

 - Evidence of synchrotron x-ray emission at internal shocks
 - Evidence of shock-acceleration at internal shocks

Decaying = Synchrotron Cooling

\[t_{\text{sync}} \sim 1.5 \left(\frac{B}{\text{mG}} \right)^{-1.5} \left(\frac{\epsilon}{\text{keV}} \right)^{-0.5} \text{ year} \quad \rightarrow \quad B \sim 1 \text{ mG} \]

Brightening = Acceleration of Fresh Electrons

\[t_{\text{acc}} \sim 1 \eta \left(\frac{B}{\text{mG}} \right)^{-1.5} \left(\frac{\epsilon}{\text{keV}} \right)^{0.5} \left(\frac{V_s}{3000 \text{ km s}^{-1}} \right)^{-2} \text{ years} \quad \rightarrow \quad B \sim 1 \text{ mG} \quad \eta \sim 1 \]

Diffusive shock acceleration
\[\eta \equiv \left(\frac{\delta B}{B} \right)^2 \]

“gyro-factor”

Consistent with Atoyan’s Model
GLAST will measure the shape of CR hadron spectrum:
(1) proton-proton collisions in forward shocked regions, or
(2) oxygen-oxygen collisions in reverse shocked regions.

(Future NeXT mission will detect nonthermal bremsstrahlung.)
<table>
<thead>
<tr>
<th></th>
<th>Cas A reverse shock</th>
<th>RXJ1713 forward shock</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal</td>
<td>50</td>
<td>N/A</td>
<td>10^{49} erg</td>
</tr>
<tr>
<td>CR p</td>
<td>1 (pp)</td>
<td>30/n</td>
<td>10^{49} erg</td>
</tr>
<tr>
<td>CR e</td>
<td>0.2</td>
<td>0.003</td>
<td>10^{49} erg</td>
</tr>
<tr>
<td>B</td>
<td>0.7</td>
<td>2</td>
<td>10^{49} erg</td>
</tr>
<tr>
<td>Emax (p)</td>
<td>>100</td>
<td>200</td>
<td>TeV</td>
</tr>
<tr>
<td>Emax (e)</td>
<td>20</td>
<td>20</td>
<td>TeV</td>
</tr>
</tbody>
</table>
XEUS Specifications in light of this talk

* EA of m^2-scale: fine!
* spectral resolution of a few eV: fine!
* FoV of arcmin^2: acceptable
* angular resolution: 2” preferable
* mission life time: > 5 yr preferable (for monitoring)
* wide-band spectroscopy: up to 40 keV preferable
* polarimeter: very welcome
End Remarks

Summary

• **Presence of X-ray Variability**
 decaying = synchrotron cooling
 brightening = CR acceleration (and B-field amplification)

• **Evidence for synchrotron origin of X-ray emission**
 synchrotron origin of X-ray emission is verified

• **Evidence for B-field amplification**
 B ≈ 1 mG amplified by CR themselves (in forward and reverse shocks)

• **Evidence for Hadronic origin of TeV gamma-rays**
 TeV gamma-rays are hadronic

• **PeV acceleration**
 CRs can be accelerated to PeV energies, given B≈mG and gyro-factor≈1.