Asset Publisher

The Cluster Mission: Space Plasma in Three Dimensions

The Cluster Mission: Space Plasma in Three Dimensions

Publication date: 04 December 2009

Authors: Taylor, M.G.G.T. et al.

Page: 309-330
Year: 2009

Copyright: Springer

In the book "The Cluster Active Archive - Studying the Earth's Space Plasma Environment", Astrophysics and Space Science Proceedings, H. Laakso et al. (eds.), ISBN 978-90-481-3498-4 (Print) 978-90-481-3499-1 (Online), Springer, 2010

Part of original abstract follows:
At the time of writing, Cluster is approaching 8 years of successful operation and continues to fulfill, if not exceed its scientific objectives. After a nominal mission lifetime of 2 years Cluster currently in its extended mission phase, up to June 2009, with a further extension request submitted for a further 3.5 years. The primary goals of the Cluster mission include three-dimensional studies of small-scale plasma structures and turbulence in the key plasma regions in the Earth's environment: solar wind and bow shock, magnetopause, polar cusps, magnetotail, and auroral zone. During the course of the mission, the relative distance between the four spacecraft is being varied to form a nearly perfect tetrahedral configuration at 100, 250, 600, 2,000, 5,000 and 10,000 km inter-spacecraft separation targeted to study scientifically interesting regions at different scales. In the last few years, the constellation strategy has moved towards a multi-scale concept, enabling two scale sizes to be investigated at the same time. In these cases, three spacecraft are separated by 10,000 km with the last spacecraft separated from this plane by varying distances from 16 km up to several 1,000 km. In this paper, we provide a brief overview of the mission concept and implementation and highlight a number of Cluster's latest science results, which include: the first observation of three dimensional (3-D) surface waves on the bow shock, the first 3-D analysis of turbulence in the magnetosheath, the discovery of magnetosonic waves accelerating electrons to MeV energies in the radiation belts, along with a number of discoveries involving magnetic reconnection.

Link to publication
Last Update: Sep 1, 2019 8:09:27 AM
29-Mar-2024 11:46 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/W3kKeeW

Images And Videos

Related Publications

Related Links

Documentation