Saturn Approach: Cassini
Radio and Plasma Wave Science

W. Kurth, D. A. Gurnett, G. B. Hospodarsky,
P. Zarka, A. Lecacheux, B. Cecconi, A. Roux,
P. Canu, N. Cornilleau-Wehrlin, P. Galopeau,
R. Bostrom, G. Gustafsson, J.-E. Wahlund,
H. O. Rucker, G. Fischer, H. Alleyne, M. Kaiser,
M. Desch, W. Farrell, C. C. Harvey, P. Louarn,
P. Kellogg, A. Pedersen, and S. Bolton

16 April 2004
Titan: From Discovery to Encounter
ESTEC, 13 – 17 April 2004
Outline

• Titan Objectives
• Approach Science
 – Trajectory
 – Saturn kilometric radiation fine structure
 – Saturn kilometric radiation periodicity
 – Solar wind – SKR correlations
 – Saturn electrostatic discharges
 – Upstream waves
 – Escaping continuum radiation
• Conclusions
Cassini RPWS Titan Objectives

- Establish the spectrum and types of plasma waves associated with gaseous emissions from Titan.
- Determine the role of plasma waves in the interaction of Saturn’s magnetospheric plasma (and the solar wind) with the ionosphere of Titan.
- Determine the spatial and temporal distribution of the electron density and temperature in Titan’s ionosphere.
- Characterize the escape of thermal plasma from Titan’s ionosphere in the downstream wake region.
- Carry out a definitive search for lightning in Titan’s atmosphere during the numerous close flybys of Titan.
Trajectory
Cassini
Saturn Approach Trajectory

Saturn Orbit Insertion
1 Jul. 2004

Initial SKR Detection

Sun

30-Day tics

22 Dec. 2003

27 Dec. 2002

1 Jan. 2002
Saturn Kilometric Radiation
Fine Structure
Saturn Kilometric Radiation Periodicity
Ulysses analysis update + Cassini

![Graph showing changes in SKR period over years from 1993 to 2003. The x-axis represents years from 1993 to 2003, and the y-axis represents SKR period in units of SLS period, with values ranging from 0.99 to 1.03.]
Cassini: $10.76 \pm 0.015 \text{ Hours}$

Voyager: $10.66 \pm 0.0018 \text{ Hours}$
Solar Wind – SKR Correlations
High Density Plasma Detected at Cassini
Irfe Lfdr ExEw, Mfdr ExEw, Mfr 13ExEw, Hfr ABC12EuEvEx

2003-11-10 (314) 00:00:00 SCET 2003-11-18 (322) 00:00:00

<table>
<thead>
<tr>
<th>Date</th>
<th>Rs</th>
<th>Lon</th>
<th>Lat</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 10</td>
<td>1844.03</td>
<td>33.85</td>
<td>-16.37</td>
<td>7.67</td>
</tr>
<tr>
<td>Nov 12</td>
<td>1828.93</td>
<td>215.47</td>
<td>-16.37</td>
<td>7.67</td>
</tr>
<tr>
<td>Nov 14</td>
<td>1813.83</td>
<td>37.09</td>
<td>-16.37</td>
<td>7.66</td>
</tr>
<tr>
<td>Nov 16</td>
<td>1798.72</td>
<td>218.70</td>
<td>-16.37</td>
<td>7.65</td>
</tr>
<tr>
<td>Nov 18</td>
<td>1783.61</td>
<td>40.32</td>
<td>-16.37</td>
<td>7.65</td>
</tr>
</tbody>
</table>
Saturn Kilometric Radiation
Integrated Power
(Scaled to 100 R_S)

40 - 300 kHz
Saturn Electrostatic Discharges
First SED Detection?

2003-07-22 (203) 19:00:00 SCET 2003-07-22 (203) 21:00:00

2.5
2.0
1.5
1.0
0.5

dB above background

SCET 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00
R_s 2672.09 2672.01 2671.93 2671.86 2671.78 2671.70 2671.62 2671.54 2671.47
Lon 315.80 324.25 332.69 341.14 349.58 358.03 6.48 14.92 23.37
SED Power Spectrum

Day 200 - 210

10 hr 05 mn - 10 hr 10 mn
VGR: 10:05
Upstream Waves
Cassini RPWS
March 22, Day 082, 2004

![Graph showing frequency vs. time with labels for Langmuir Waves and Ion Acoustic Waves.](image)

- Frequency (kHz)
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7

- Spectral Density (V/m² Hz)
 - 10^{-17}
 - 10^{-16}
 - 10^{-15}
 - 10^{-14}
 - 10^{-13}

- Time (SCET)
 - 21:40:00
 - 21:40:10
 - 21:40:20
 - 21:40:30
 - 21:40:40
 - 21:40:50

- Distance from Saturn (R_s)
 - 825.18
Conclusions

- RPWS has a number of exciting Titan objectives involving the ionospheric electron density and temperature, the role of plasma waves in the Titan-magnetosphere interaction, the loss of Titan’s atmosphere to Saturn’s magnetosphere, and a much improved search for atmospheric lightning.
- The Approach Science phase has been ongoing for RPWS
 - Beginning with the first observations Cassini has provided unprecedented detail of the fine structure of Saturn kilometric radiation
 - Saturn kilometric radiation displays a periodicity which varies by order 1%. This may mask the true rotation period of Saturn and presents an interesting problem.
 - Voyager demonstrated correlations between the solar wind and SKR intensity; we hope to refine these to use as a proxy for solar wind input during the tour.
 - Despite a very early detection of Saturn electrostatic discharges (lightning), none have been observed until just recently. This suggests temporally variable storm intensity.
 - Upstream waves in the form of Langmuir waves and ion acoustic waves have been seen at distances of more than 800 Rs, indicating that Cassini will spend a long, fruitful time in Saturn’s foreshock region.
 - The lowest frequency radio emission from Saturn, escaping continuum radiation, has just recently been observed.