The Early Universe

John Peacock

ESA Cosmic Vision

Paris, Sept 2004

The history of modern cosmology

- 1917 Static via cosmological constant? (Einstein)
- 1917 Expansion (Slipher)
- 1952 "Big Bang" criticism (Hoyle)
- 1965 Microwave Background (Penzias/Wilson)
- 1970s Primordial Nucleosynthesis: 25% He
 Hot Big Bang is observed to T = 10¹⁰ K
- 1980 Inflation
- 1990s 'Standard model' dominated by vacuum energy and cold dark matter
- 2020 ???

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

Evading the singularity

- Quantum gravity limit:
 - GR invalid before t = 10^{-43} s (E = 10^{19} GeV)
- 1980: Inflation
 - Use effective high vacuum density at GUT era (E = 10^{15} GeV, density = 10^{80} kg m⁻³)
 - Vacuum 'antigravity' drives exponential expansion

The History of the vacuum?

size of subnuclear 1 cm today

variable vacuum from a new scalar field?

History of the expansion in inflation

Alternative: colliding branes

Steinhardt, Turok et al. : 'Ekpyrotic' or cyclic universe motivated by extra dimensions in string theory

What do we observe?

- Expanding universe scale factor R(t)
- Hubble: v = H D (h = H / 100 km s⁻¹ Mpc⁻¹)
- Redshift: 1 + z = R_{now} / R_{then}
- most distant quasars z = 6.4
- X
- microwave background z = 1100

- Ω = density / critical for flat
- $\Omega_{\rm m} = \Omega_{\rm baryons} + \Omega_{\rm dark}$ (= 0.25 ± 15%)
- Inflation \Rightarrow flat $\Rightarrow \Omega_m + \Omega_{vacuum} = 1$

Relics of early / initial phases?

- Baryon asymmetry
- Dark Matter
- Vacuum energy
- Cosmic structure
 - CMB
 - Large-scale clustering
 - Galaxy Formation

Dark Matter

- Seen in spiral rotation curves
- In clusters, gravitational lensing gives total mass and X-rays from IGM gives baryon mass

Vacuum energy

- A: antigravity from negative pressure (P = $-\rho c^2$): seen with Supernovae $\Rightarrow \Omega_m' 0.3 \Omega_v' 0.7$ if flat $\nabla^2 \Phi = 4\pi G(\rho + 3P/c^2)$
- 'Dark Energy': generalize to P = w ρ c²: degeneracy between w & Ω_m . w = -1 ± 15% with CMB/LSS

- In combination, standard model for cosmology:
 - Flat: $\Omega_{\rm m} + \Omega_{\rm v} = 1 \pm 0.02$
 - $\Omega_{\rm m} = 0.25 \pm 15\%$; h = 0.73 ± 5%

Weighing the universe with horizons

Growth of structure is affected by pressure on small scales

⇒ Horizon scale c_{sound} t / c t = D_H leaves imprint in late-time structure

Three key eras:

- (1) Matter-radiation equality (z=23,900 Ω_m h²): D_H = 16 (Ω_m h²)⁻¹ Mpc
- (2) Last scattering (z=1100): $D_H = 184 (\Omega_m h^2)^{-1/2} Mpc$
- (3) Today (z=0): $D_{H} = 6000 \Omega_{m}^{-0.4} h^{-1} Mpc$
- 100-Mpc 'break' in LSS from (1)
- 1-degree scale on CMB sky from (2) / (3)

Galaxy power spectrum

Principal Questions

- Dark Matter is it a WIMP?
 - Detect in accelerators (new) underground (relics)
 - Or via free-streaming scale in LSS for non-standard mass
- Vacuum is it Λ or dynamical?
 - measure w = P / ρ c² and evolution with z
- Is there evidence for inflation (or an alternative such as extra dimensions) ?
- Can we connect initial conditions to galaxy formation?
 - Combine large-scale structure & CMB

Tools

- SNe: use sqrt(n) [but need type and extinction]
- CMB
 - Temperature maps
 - Polarization
- Structure formation
 - Large-scale clustering and evolution
 - Observing formation of galaxies
- Gravitational lensing
 - See DM directly and relation to light

CMB: signatures of inflation

CMB Outlook

Planck will measure T fluctuations perfectly to multipole ~3000, where nonlinear foregrounds enter

E-mode (energy density fluctuations)

B-mode (gravitational waves)

Detection of tensors will require detailed measurements of CMB polarization

→ Puget

– or direct detection of gravity-wave background?

Numerical structure formation

European leadership: 10¹⁰ particles from Virgo Consortium's 'Millennium Run'

Galaxy forms in a DM halo as hot gas cools to make@sk

Galaxy formation

Hot gas cools onto central galaxy Galaxy becomes a satellite Loses its hot gas halo Satellite may eventually merge with central galaxy Galaxy loses mass by tidal effects and gravitational heating Benson, Frenk, Baugh, Cole, Lacey '02

Testing the models

z=3

z=2

z=1

Must observe key ingredient of mergingdriven star formation

→ Griffin

More directly:

observe the predicted evolution of DM clustering

(comoving view)

redshift z=3 (1/4 present size)

redshift z=1 (1/2 present size)

Redshift z=0 (today)

Gravitational lensing

Large-area surveys of weak shear can measure the dark matter with similar precision to the CMB. CMB + lensing will be a key tool

Outlook for cosmology in 2020

- What can we hope for?
 - Direct detection of SUSY WIMP DM
 - Detection of tilt & tensors, or limits |n 1| < 0.005, r < 10^{-5}
 - Proof that dark energy is not Λ , or |w + 1| < 0.05
 - Understand star formation in galaxies and its evolution

Every prospect of answers to main current questions in cosmology – and starting new fields.

But the field is moving fast: need for timely action