ROAD MAP

Beyond General Relativity Towards Quantum Gravity

MCW Sandford - FPAG

STEP - Satellite Test of the Equivalence Principle

- Pairs of concentric test masses are in free-fall in a polar orbit...
- within a drag-free spacecraft an ultra-quiet environment
- Full acceleration due to gravity of Earth is used
- Any differential acceleration along the sensitive (z-) axis between a pair of masses is sensed using a SQUID detector
- Test masses are kept in UHV at a temperature of 2K, so...
- exceptionally high degree of magnetic shielding (> 10¹⁰), and mechanical stability
- Persistent supercurrents create an exceptionally stable detection system
- EP signal is at orbital frequency ± spacecraft rotation-frequency

STEP - Satellite Test of the Equivalence Principle

Mission Design Overview

Main Mission Design Features

- Sun synchronous Orbit (I=97°)
- Altitute: 550 Km
- Eccentricity < 2%
- Mass: 819 kg
- Power: 301 W
- Rockot Launch Vehicle; from Plesetsk, Russia
- Operational life: 6 months
- Data Analysis: 6 months concurrent with operation, 12 months after completion.

DFC Reference accelerometer	Systematic com	ponent at signal frequency		
Disturbance	m/sec^2			Comment
SQUID noise	2.73E-18		acceleration equivalent to intrinsic noise	
SQUID temp. drift	1.03E-18		regulation of SQUID carriers	
Thermal expansion	6.79E-19		gradient along DAC structure	
Differential Thermal expansion	3.95E-23		Radial gradient in DAC structure	
Nyquist Noise	1.12E-18		RMS acceleration equivalent	
Gas Streaming	5.05E-19		decaying Gas flow, outgassing	
Radiometer Effect	8.64E-19		gradient along DAC structure	
Thermal radiation on mass	1.58E-22		Radiation pressure, gradient	
Var. Discharge uv light	3.34E-19		unstable sou	rce, opposite angles on masses
Earth field leakage to SQUID	1.57E-18		estimate for signal frequency component	
Earth Field force	9.60E-22		estimate for signal frequency component	
Penetration depth change	3.50E-20		longitudinal gradient	
Electric Charge	8.56E-21		Assumptions	about rate
Electric Potential	2.78E-18		variations in r	measurement voltage
Sense voltage offset	1.59E-19		bias offset	
Drag free residual in diff. Mode	1.08E-21		estimated fro	m squid noise
Viscous coupling	3.83E-25		gas drag + d	amping
Cosmic ray momentum	3.20E-21		mostly direct	ed downward
Proton radiation momentum	2.70E-18		unidirectional	l, downward
dγnamic CM offset	1.83E-19		vibration about setpoint, converted	
static CM offset limit	4.36E-22		A/D saturation by 2nd harmonic gg	
Trapped flux drift acceleration	7.08E-23		actual force f	rom Internal field stabilitγ
Trapped flux changes in squid	7.65E-20		apparent mot	ion from internal field stability
S/C gradient + CM offset	7.67E-36		gravity gradie	ent coupling to DFC residual of S/C
rotation stability	4.01E-23		centrifugal for	rce variation + offset from axis
Eccentricity subharmonic.	4.19E-20		real part at s	signal frequency
Helium Tide	7.00E-19		placeholder	
position sensor gap, mm	1.00		550000	Orbit height
common mode period	1398		0.0086	Sensor current, A
differential mode period	1091		4.1E-12	CM distance, m
S/C rotation per orbit	-2.30E+00	RMS error	5.38E-18	m/sec^2
Total error	1.48E-17	m/sec/2	5.48E-19	η

Equivalence Principle Proposals

- Breakthrough in FP
 - Follow on to Microscope
- Ultra High Precision EP
 - Follow on to STEP aims at < 1 in 10^{21}

- Test of Gravity Matter Coupling....
 - Clocks
- Exploring Gravity in the Quantum Domain...
 - atom interferometer

Add to Atom Interferometer Mission

Atom Interferometers and Quantum Gravity

Diffusion of the wave function.

- How can an atom interferometer measure physics on the Planck scale?
- Einstein's (1905) Brownian motion work of inferred properties of atoms by observing stochastic motion of macrostructure's
- Space time fluctuations on the Planck scale produce stochastic phase shifts.

Produces decoherence in an atom interferometer

 Possible to measure space-time fluctuation Amplitude A_{planck}

$$\mathbf{A}_{\text{planck}} \approx \Gamma \left(\frac{\Delta_{decoherence}}{M_{atom}^2 T} \right)^{\frac{1}{7}}$$

(Powers & Percival 1999, Ellis 1990))

Atom Interferometers and Quantum Gravity

Physics of Decoherence

• Difficult to avoid interaction with environment.

Natural Vibrations of the system. ¹ Collisions with ambient particles. Interaction with its own components. Black body radiation.

Spacetime time quantum fluctuations.

- Granulation of space-time Universe no longer four dimensional, higher number of dimensions are required.
 e.g. Superstring theory - 10 dimensions
- Length scale below which granulation is important $\ell_{cut-off} = \lambda \ell_{planck}$
- This is an effective cut-off for Quantum gravity theories determined by the amplitude of zero point gravitational fluctuations

$$A_{o} \approx \omega_{M}^{2} t_{planck}^{2} \approx \lambda^{-2}$$

$$\omega_{M} \text{ is the cut-off frequency, and } \lambda = \left(\sqrt{\frac{1}{2}\pi} \frac{M^{2}c^{4}t_{planck}T}{\hbar^{2}(\delta\rho / \rho(0))}\right)^{\frac{1}{7}}$$

• From theoretical considerations λ is in range 10² - 10⁶

where

- Current experiments using atom Interferometers by Peters *et al.*, 1997 set a lower bound of $\lambda > 18$.
- Improvements on experimental sensitivity can raise this value.

Quantum fluctuations of space

- Believed to exist at some level
- Possible evidence: round-trip time τ of a light pulse exhibits shot-to-shot fluctuations $\delta \tau$

- Magnitude unknown; models proposed e.g. by Amelino-Camelia (2001), Ng, ...
- Earth-based searches:
 - with gravitational-wave interferometers (but seismics imposes f > 100 Hz)
 - with rigid optical cavities (f < 1 mHz possible, but masses are not free)

Spectral density of differential length fluctuations

Schiller et al., Phys. Rev. D 69, 027504 (2004)

 $S < 6 \cdot 10^{-30} f^{-1}$, $S < 3 \cdot 10^{-35} \text{ Hz} f^{-2}$

- **10**⁻²¹ Spectral density of strain [Hz⁻¹] **10**⁻²³ setup B **10**⁻²⁵ setup A 10-27 **10**⁻²⁹ 10⁻⁶ 10⁻⁵ 10-4 0.001 0.01 0.1 Frequency [Hz]
- Used cryogenic optical resonators

• First limits in the sub-Hz regime:

Implementation in space

- Michelson-type interferometer measures differential fluctuations in orthogonal space directions
- Free flying proof masses inside drag-free satellite
 Measurements at very low frequency possible
- Low noise high sensitivity
- Interferometer can use matter waves (cold atoms) or optical (laser) waves, or both (for differential measurement)

Vacuum Fluctuations of EM Field Casimir Force

The Casimir effect was introduced in the middle of the past century by H. B. G. Casimir who showed that neutral perfectly conducting parallel plates placed in the vacuum attract each other. The attractive force was then considered as a manifestation of the zero-point energy of the quantized electromagnetic field.

Casimir Force Measurements

- CASIMIR force measured by torsion pendulum and Atomic Force Microscope (1997-2000)
- 1% accuracy at 1 micron separation
- Limitation is accuracy of surfaces and disturbances in laboratory
- Studies for STEP have shown that 10⁵ improvement can be obtained in a gravitationally quiet drag-free satellite

Laser Interferometric Test of Relativity

Determine λ to 1 in 10⁸

Observation of the Gravitomagnetic Clock-Effect

Compare clocks in counter rotating orbits to 10^{-7} s

Add to satellite to GPS/Galileo constellations

Testing General Relativity by Mapping the Latitudinal Dependence of the Lense-Thirring effect

Studied in the Hyper Mission

Sagnac Atom Interfometers and reference startracker

Search for an Anomalous Coupling of the Elementary Particle Spin to Gravity

Ramsey atom interferometer using spin flips Needs superconducting magnetic shield

Testing General Relativity with Long-Term Satellite Tracking

Uses laser ranging to calibrate DC drag free satellite over 10 years Lens Thirring; Gravito electric perigee advance; Search for Yukawa part of gravitational potential

Pioneer Anomaly

Fore/Aft Symmetric Spacecraft

Pioneer Anomaly – Small Class Mission

Antenna sun/earth pointing during transmit mode (few hours)

Pioneer Anomaly – Formation Flying

