Erosion by Flowing Martian Lava: Insights from Modeling Constrained by *Mars Express* and MER Data

David A. Williams¹, Ronald Greeley¹, Ernst Hauber², Klaus Gwinner², Gerhard Neukum³ & the HRSC Co-I Team

¹Dept. Geological Sciences, Arizona State University, Tempe, Arizona USA;

²DLR (German Aerospace Center), Berlin, Germany;

³Frei Universität, Berlin, Germany
Background and objectives: Why study erosion by flowing lava?

Data from MER Spirit: Compositional data on Martian lavas

Data from MEx HRSC: Slopes, flow heights, channel depths

Description of analytical-numerical model

Results
Background: Erosion by Flowing Lava

- **Components**
 - Thermal Erosion
 - Mechanical Erosion
 - Combination of both

- **Why Important?**
 - Formation of terrestrial magmatic Fe-Ni-Cu-(PGE) sulfide ore deposits
 - Formation of some extra-terrestrial lava channels

- **Evidence**
 - Terrestrial field studies
 - Computer modeling
 - Analog experiments

Evidence
- Terrestrial field studies
- Computer modeling
- Analog experiments

Why Important?
- Formation of terrestrial magmatic Fe-Ni-Cu-(PGE) sulfide ore deposits
- Formation of some extra-terrestrial lava channels

Components
- Thermal Erosion
- Mechanical Erosion
- Combination of both
Why Study on Mars Now?

- New data from current missions provide additional constraints for modeling
 - MEx HRSC provides high-resolution stereo data on slopes (DTMs), lava flow thicknesses, and channel depths
 - MER provides *in situ* measurements of volcanic rock compositions

- Inspiration: Some channels on Hecates Tholus (Orbit 32)
 - Most channels likely fluvial in origin: *Fassett & Head, 2004*
 - Some resemble collapsed lava tubes or sinuous rilles
From MER *Spirit*: Basaltic Compositions at Gusev

<table>
<thead>
<tr>
<th></th>
<th>Earth Komatiite</th>
<th>Io U-mafic</th>
<th>Moon Mare Bas</th>
<th>Earth Kom. Basalt</th>
<th>Mars* Basalt</th>
<th>Earth Thol. Basalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45.0</td>
<td>49.8</td>
<td>47.9</td>
<td>46.9</td>
<td>45.4</td>
<td>50.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.3</td>
<td>0.1</td>
<td>2.6</td>
<td>0.6</td>
<td>0.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.6</td>
<td>7.9</td>
<td>7.9</td>
<td>9.8</td>
<td>10.9</td>
<td>14.6</td>
</tr>
<tr>
<td>FeO₉½</td>
<td>10.6</td>
<td>5.3</td>
<td>21.7</td>
<td>14.4</td>
<td>18.2</td>
<td>14.6</td>
</tr>
<tr>
<td>MgO</td>
<td>32.0</td>
<td>30.9</td>
<td>14.9</td>
<td>18.9</td>
<td>12.8</td>
<td>4.8</td>
</tr>
<tr>
<td>CaO</td>
<td>5.3</td>
<td>5.2</td>
<td>8.3</td>
<td>8.6</td>
<td>7.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>T_{liq} (°C)</td>
<td>1640</td>
<td>1610</td>
<td>1440</td>
<td>1420</td>
<td>1270</td>
<td>1160</td>
</tr>
<tr>
<td>ρ (kg/m³)</td>
<td>2770</td>
<td>2680</td>
<td>2900</td>
<td>2800</td>
<td>2820</td>
<td>2750</td>
</tr>
<tr>
<td>μ (Pa s)</td>
<td>0.08</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>2.3</td>
<td>90</td>
</tr>
<tr>
<td>Re (-)</td>
<td>1.7E+06</td>
<td>5.7E+5</td>
<td>3.1E+5</td>
<td>1.4E+5</td>
<td>2.3E+5</td>
<td>5.5E+2</td>
</tr>
</tbody>
</table>

- Mars basalts could have been emplaced as *turbulent flows*
- * Extrapolated from RAT-abraded APXS data, MER *Spirit, McSween et al.*, 2004
Determine underlying slopes using existing 100 m HRSC DTM:

- Slope at caldera = 2.4°
- 3-5° on upper flanks
- 5-6° on lower flanks
- >8° at base of shield

- Average slope near vent = 3.4°
- Overall average slope = 4.8°

Average slope (1st 20 km) = 3.4°
Ave. slope (full length) = 4.8°
Total length = 66.1 km
From HRSC: Estimate Channel Depth

- **Method 1: Shadow Measurements**
 - MOC-NA coverage not good, no useful shadows
 - Use HRSC Level 3 nadir image
 - Depths: ~100 m neat caldera wall,
 ~30 m at ~20 km downstream,
 average ~40-60 m in channel

- **Method 2: Stereo comparator:**
 Consistent Results

- **Estimate flow lobe thicknesses**
 - Shadow measurements off of HRSC image
 - Thicknesses: ~20-60 m
Numerical Modeling of Erosion by Lava

- Types of questions we can address:
 - How erosive are Martian lavas?
 - Are Martian lavas capable of eroding channels of given size?

- Nature of model: Simulates thermal - fluid dynamic - geochemical evolution of lava

- Input parameters
 - Lava and substrate major oxide composition, lava liquidus, solidus, and eruption temperatures, substrate melting temperature
 - Initial flow thickness (flow rate), slope of ground, fraction of ice in ground, ambient temperature & pressure, environment of emplacement (vacuum, subaerial, or submarine)

Constrained by MER Spirit
Constrained by HRSC on Mars Express
Radiative Heat Transfer to Thin Mars Atmosphere induces Crustal Growth

Convective Heat Transfer from Lava induces Thermal Erosion

Conduction through growing Crust

Melted Substrate T_{mg}

Solid Substrate T_a

Thermal Erosion $y = 0$

Vent $x = 0$

Flow Thickness h

Flow Velocity u

$y = d_m(x,t)$

h

w

$T(x)$

T_0

Flow Velocity u
Cooling-Limited Lava Emplacement

Conservation of Energy: Heat gains = heat losses

\[
\rho_l c_l h u \frac{dT}{dx} = -2h_T(T - T_{mg}) + h_T(T_{sol} - T_{mg}) - \frac{\rho_l c_l h_T(T - T_{mg})^2}{EMG}
\]

\[
\tilde{h}_T = \frac{h_T}{L_l x'(T)}
\]

Heat Transfer w/Latent Heat, turbulent pipe flows:

\[
h_T = 0.027k_{eff}Re^{0.8}Pr^{0.33}\left(\frac{\mu_1}{\mu_g}\right)^{0.14}
\]

Energy to Remove Ice & Rock Substrate:

\[
EMG = (1-f_i)\{\rho_g[(T_{mg} - T_a) + L_g]\} + f_i\{\rho_i[c_i(T_{mi} - T_a) + L_i]\}
\]
Erosion and Assimilation

Substrate Melting Rate:

\[u_m = \frac{h_T(T - T_{mg})}{EMG} \]

Erosion Depth after Elapsed Time \(t \):

\[d_m = u_m t \]

Amount of Assimilated Substrate as Volume Fraction of Lava:

\[S = 1 - \frac{Q_0}{Q_0 + \int_0^x u_m \, dx} \]

- Lava temp > ground melting temp => Thermal Erosion
- Thermal erosion measured in laminarly-flowing lavas in Hawaii (<10 cm/day: basalt over basalt: Kauahikaua et al., 1998)
Model Lava Physical Properties

- Vary with temperature and composition
 - Lava/Substrate Density (*Bottinga & Weill*, 1970)
 - Lava Viscosity (*Shaw*, 1972)
 - Lava Thermal Conductivity (*Snyder et al.*, 1994)
 - Lava Reynolds Number (assuming specific flow rate)
 - Lava Convective Heat Transfer Coefficient (*Kakaç et al.*, 1987)
 - Lava Thermal Erosion Rate
Results I

Question: How erosive are Martian lavas compared to other planets?

Assumptions: Initially 10 m thick flow, erupted at liquidus, slope = 0.1°, dry substrate same composition as lava (except Earth: komatiite over basalt)

Answer: As expected, Martian lavas are the least mafic and thus least turbulent (all else equal). Erosion rate less on the Moon due to higher heat transfer rate to ground on Mars (higher Prandtl number due to higher dynamic viscosity).
Results II

Question: Could Martian lavas have eroded the large channel on Hecates Tholus?

Assumptions: Initially 7.5 m thick flow, erupted at liquidus, slope = 3.1°, substrate same composition as lava (with & without ice), ambient T = -59°C

Answer: Yes, if sustained flow (weeks to months) occurred. Maximum erosion rates ~70-90 cm/day for 7.5 & 15 m thick flows, respectively. Erodability of substrate enhanced if fragmental & contains ice (~150-190 cm/day). This does not include the mechanical force of the now liquid water.
Conclusions

- **Current Mars missions are providing excellent basic information on Mars for various modeling studies**
 - MER: Compositions of rocks and soils, rock textures from MI, aeolian & atmospheric measurements from cameras
 - MEx: Regional coverage at high resolutions, color, & stereo (HRSC); high-res data on surface relief (DTMs); VNIR spectroscopy (OMEGA)

- **These data enable a more rigorous investigation of the role of erosion by lava in the genesis of Martian channels**
 - Hecates channel first candidate for modeling
 - Other candidates should be studied

- **Assuming Hecates lavas similar in composition to Gusev lavas, then they could have eroded channels or formed tubes on Hecates Tholus**
 - Erosion enhanced if substrate is pyroclastic material, or contains large fraction of ice
 - Erosional channels could have been deepened by later fluvial activity ala Fassett and Head (2004)