

Martian morning atmosphere during Northern spring from the Planetary Fourier Spectrometer (PFS) measurements

D. Grassi⁽¹⁾, C. Fiorenza ^(1,2), N.I. Ignatiev^(3,1), L.V. Zasova^(3,1), A. Maturilli^(5,1,4), V. Formisano⁽¹⁾, M. Giuranna^(1,6) and the *PFS team*

¹INAF-IFSI, Rome, Italy, ²Univ. of L'Aquila, Italy, ³IKI-RSSI, Moscow, Russia, ⁴"Federico II" Univ., Naples, Italy ⁵DLR, Berlin, Germany, ⁶CISAS, Univ. of Padua, Italy

1st Mars Express Science Conference, (ESTEC) Noordwijk, The Netherlands, February 23rd, 2005

Summary

Introduction ✓ The PFS experiment ✓ Physics of PFS data Rationale for morning observations The morning atmosphere in N spring ✓ Dataset characteristics ✓ PFS-derived T(z) fields ✓ Aerosols contents Conclusions

The PFS experiment

IR spectrometer, two main channels (LWC & SWC)
 Very wide range: [250-2000] cm⁻¹ + [2000-8200] cm⁻¹
 High spectral resolution: 2.0 cm⁻¹ (sampling: 1.0 cm⁻¹)
 No imaging capability

Physics of PFS Data

Radiative transfer (RT) equation

$$\begin{split} I_{\nu}(\tau_{\nu,total},\mu,\phi) &= \\ A. \quad \varepsilon_{\nu}B_{\nu}(T_{surf})e^{-\tau_{\nu,total}(\mu)} + \\ B. \quad \frac{1}{\mu}\int_{0}^{\tau_{\nu,total}}(1-\varpi_{o,\nu}(\tau_{\nu}=\tau_{\nu}'))e^{-(\tau_{\nu,total}-\tau'_{\nu})^{\prime}\mu}B_{\nu}(\tau_{\nu}=\tau_{\nu}')d\tau_{\nu} + \\ C. \quad \frac{1}{4\pi\mu}\int_{0}^{\tau_{\nu,total}}\int_{0}^{2\pi}\int_{0}^{1}e^{-(\tau_{\nu,total}-\tau'_{\nu})^{\prime}\mu}e^{-\tau'_{\nu}^{\prime}\mu'}\tilde{p}_{\nu}(\tau_{\nu}=\tau_{\nu}',\mu,\phi,\mu',\phi')I_{\nu}(\tau_{\nu}=0,\mu',\phi')d\mu'd\phi'd\tau_{\nu}' + \\ D. \quad \frac{1}{4\pi\mu}\int_{0}^{\tau_{\nu,total}}\int_{0}^{2\pi}\int_{-1}^{1}e^{-(\tau_{\nu,total}-\tau'_{\nu})^{\prime}\mu}\tilde{p}_{\nu}(\tau_{\nu}=\tau_{\nu}',\mu,\phi,\mu',\phi')I_{\nu}(\tau_{\nu}=\tau_{\nu}',\mu',\phi')d\mu'd\phi'd\tau_{\nu}' + \\ E. \quad \frac{F_{\nu,0}}{4\pi}\int_{0}^{\tau_{\nu,total}}\tilde{p}_{\nu}(\tau_{\nu}=\tau_{\nu}',\mu,\phi,\mu_{0},\phi_{0})e^{-(\tau_{\nu,total}-\tau'_{\nu})^{\prime}\mu}e^{-(\tau_{\nu,total}-\tau'_{\nu})^{\prime}\mu}d\tau_{\nu}' \end{split}$$

Inversion may provide T(z) and aerosol loads!

Rationale for morning atmosphere observations

The transition from dark to illuminated conditions may trigger a series of short-time scale transients:
 ✓ Air heating
 ✓ Sublimation of volatile species

✓ Local dynamics of the air masses

Observational possibilities

MEX orbit is not Sun-synchronous

- Longitude of the ascending node wrt subsolar longitude varies slowly along the mission
- Several local times can be explored by Nadir viewing instruments
- Complex local time L_s Longitude correlations in our dataset

Specific PFS possibilities

Correlations in our dataset can be considerably reduced by: ✓Usage of PFS autonomous scanner Observations during downlink sessions PFS can usefully integrate the huge dataset returned by MGS-TES (Sunsynchronous orbit) at different LTs

Observation characteristics

Observation characteristics

Observation characteristics

T(z) fields

Comparison with model expectation (EMCD 3.1) is the basic tool to catch unexpected phenomena.

Issues:

 ✓ Moderate spatial resolution ⇒ discrepancies near sharp topographic features (Vallis Marineris and Tharsis calderas)

 Interpolation on season in the pre-computed distribution

T(z) fields

Orbit are classified in three LT bins according the observational conditions near the equator

	LT	Sun Elev.
Early	6.30-8	<25°
Middle	8-9	<45°
Late	9-10	<65°

Orbit 446 (L_s 39.1)

Difference

Orbit 467 (L_s 41.7)

Orbit 475 (L_s 42.7)

Early morning T(z) fields

In general sense, excellent agreement between PFS data and model expectations is observed

Colder air temperatures at middle latitudes
 Very similar or warmer close at southern latitudes
 Possible interpretation
 Enhanced global circulation
 An effect of model interpolation on season

Orbit 482 (L_s 43.6)

Orbit 493 (L_s 45.0)

Difference

Middle morning T(z) fields

- Deviations between observed and measured temperature fields are stronger and latitudinally more extended than in the previous case
- Differences tend to vanish in the not illuminated regions

Possible interpretation:

Latter point suggest a possible role by a short time scale phenomenon: the atmosphere has an higher time response to solar heating, possibly due to:

- × differences in dust loading
- ✓ differences in aerosol optical properties
- ✓ sublimation processes

Dynamical effects?

Orbit 430 (L_s 37.1)

Difference

Orbit 449 (L_s 39.5)

Difference

"Late" morning T(z) fields

Trends in the are very similar to the ones observed in the previous local time bin

Atmosphere tends to remain colder than model expectations

T(z) fields: synopsis

 Main features in expected T(z) fields are confirmed by PFS observations
 Discrepancies show different systematic patterns at different local times ⇒ phenomena at different time scales

Dust content vs. local time

Dust content vs. local time

Dust loads at 9LT are basically identical to the values assumed by EMCD in MGS dust scenario Despite retrievals errors, data point toward a decrease in dust content with local time Possible interpretations: ✓ Discrepancies between dust and gas scale heights \checkmark Water ice coating on dust grains ✓ Peculiar dynamic (which one?) This behavior confirms the previous study by

Formisano et al., (2001) based on IRIS data

Ice content vs. local time

Ice content vs. local time

 PFS data suggest an increase in the early hours followed by a rapid fall around 9.30 PM
 Possible interpretation:

- Sun heating triggers the release of water from a surface source or directly dust grains (more effective thermal IR absorbers)
- In later hours, warmer air leads to ice sublimation
 Later phenomenon is less effective at lower latitudes

Conclusions

Observations still lack qualitative modeling! But..

 Morning observations highlight phenomena in the Martian atmosphere not fully encompassed by EMCD 3.1
 Discrepancies are of moderate magnitude
 Condensation processes may possibly play an important role

Future work

Quantitative simulation of condensation processes is mandatory

- Assessment of role in short-time atmospheric energy balance
- Important constraints from PFS-derived water vapor content

 Extensive comparison with EMCD 4.0
 Statistic is expected to be improved by further PFS observations acquired in the same period

Acknowledgments

Rainer Haus & Dmitri V. Titov
 Andrea Mattana & Federico Nespoli
 Gianandrea Bianchini and CISAS

Background image: ESA/HRSC team

Observational possibilities

