Ozone retrieval from SPICAM UV and near IR measurements :

a first global view of ozone on Mars

Séverine Perrier⁽¹⁾, J.L. Bertaux⁽¹⁾, A. Fedorova⁽²⁾, F. Lefèvre⁽¹⁾, S. Lebonnois⁽³⁾, E. Quemerais⁽¹⁾, O.Korablev⁽²⁾

(1) Service d'Aéronomie, IPSL, Verrières le Buisson, France
 (2) IKI, Moscow, Russia
 (3) Laboratoire de Météorologie Dynamique, IPSL, Paris, France

Ozone detection with SPICAM spectrometers

- 4 ways of detection
 - UV stellar occultations
 - UV solar occultations

Ozone vertical distribution

- UV nadir viewing : ozone total column density
- $O_2(1\Delta)$ emission at 1.27 μ m : contribution of ozone at high altitudes. Access to ozone column density above 20 km.
- Ozone column densities and vertical profiles are now retrieved for different latitudes, longitudes, local time and seasons (L_s =330 to 140°)
 - Around 240 profiles determined by stellar occultations
 - Around 260 nadirs already analysed

1st method : ozone by stellar occultations

GLOBAL VIEW OF OZONE ON MARS – 1st MEX CONFERENCE – ESTEC – 21-25 feb 2005

1st method : ozone by stellar occultations

Comparison to LMD MGCM (S. Lebonnois, F.Lefèvre)

orbit 398, Ls=330°, 13°S

orbit 899, Ls=95°, 34°S

Cf. poster of Sébastien Lebonnois for detailed results

Ozone by nadirs viewings

0.

- 10

20

- 30

- 40

- 50

- 60

70

80

90

2d method : ozone by UV absorption Computation of ozone column density

- Relatives data (no need of the detector efficient area)
- Reference spectrum : orbit 37, above Olympus Mons, where no ozone is detected (confirmed by GCM modele)
- About 50 spectra averaged
- Retrieval of total ozone column density from the broad band at 250 nm

Latitude -50 LS No3 (μm−atm)

OZONE column density with SPICAM measurements

O2 emission = good tracor for ozone at high latitudes (above 20 km)

3d method : ozone by IR emission

1 MR=10¹²/(4π) photons.cm⁻²s⁻¹sr⁻¹

GLOBAL VIEW OF OZONE ON MA

Comparison O_3 absorption vs O_2 emission

Total column density

- Agreement is globally good between the two ways of detection
- Differences give information about the ozone vertical distribution : at the surface or at high altitude

Comparison O3 absorption - O2 emission

Orbit 231, Ls = 8.7

Comparison SPICAM O3 data - GCM model predictions

- Good general agreement between
 Spicam data and GCM model
- differences exist

Ozone column map (diurnal average) from GCM model (F.Lefevre et al, JGR 109, 2004)

LS = 330-360° (NH late winter)

- the GCM at high latitudes during NH late winter

LS = 330-360° (NH late winter/SH late summer)

	Spicam measurements	GCM prediction	Previous measurements
50N-75N	8-12 µm-atm	10-35 µm-atm	5-40 μm-atm (Traub et al, 1979)
Equator	no O3	no O3	no O3 (Barth et al, 1973) (Novak et al, 2003)
505-755	0 at Ls=340 2.5µm at LS=350	0 at Ls=330 3µm at Ls=360	3µm at Ls=330 10µm at Ls=360 (Barth et al, 1973)

- At equator and high latitudes of SH : good agreement with GCM model
- Possible interannual variability in the onset of the late summer
 O3 increase in the SH

LS = 0-90° (NH spring / SH fall)

Latitude

Ozone SPICAM data at LS = 10-20°

- Strong latitudinal gradient of high latitude O3, quite constant in geographic position (above 40°N)
- Sharp variability in intensity (different surface elevation and/or dynamical effects)

LS = 0-90° (NH spring/SH fall)

	Spicam measurements	GCM prediction	Previous measurements
50N-75N	5-15 µm-atm	10-35 µm-atm	8 μm-atm at Ls=10 4 μm-atm at Ls=61 (Clancy at al., 1999)
Equator	less than 1 $\mu\text{m-atm}$	1-2 µm-atm	2 μm-atm at Ls=10 4 μm-atm at Ls=61 (Clancy at al., 1999)
50S-75S	6-10 μm at 60°N, increases with Ls	5-20 µm-atm	

LS = 90-180° (NH summer/SH winter)

No ozone detection around Ls=110° The model predicts less than 2 $\mu\text{m}\text{-}a\text{tm}$ from 40S to 60N...

Correlation ozone - water vapor

- Ozone is destroyed by odd hydrogen species (HOx)
- HOx are produced by the photolysis of water vapor
- \Rightarrow Expected anti-correlation between ozone and water vapor
- Water vapour is measured with IR AOTF spectrometer (see Anna Fedorova poster and presentation).
- + H_2O column density deduced from the water band at 1.38 $\mu m.$

Comparison O_3 / H_2O for different LS

Anticorrelation well measured by SPICAM from Ls=330 to 90.

A few conclusions about ozone on Mars

- Most complete ozone climatology on Mars, using complementary measurements
 - first ozone altitude profiles during the night
 - Ozone column density (total and above 20 km)
- High variability of ozone
 - with season, latitude and local time
- Comparison with GCM model
 - Good agreement for global ozone variations
 - Discrepancies in the quantities : less ozone detected than predicted by the model at some seasons and latitudes
- Comparison with water vapor
 - Anticorrelation confirmed by observations

O2 emission at 1,27 mm

$$I(MR) = \frac{1}{r^2} \frac{10^{-12}}{4\pi} \int \frac{J[O_3]}{1+\tau k [CO_2]} dz$$

If k=0,
$$I(MR) = \frac{1}{r^2} \frac{10^{-12}}{4\pi} J. N_{o3}$$

With J~0.0079 at 1 UA (Krasnopolsky 2004), computation of ozone column density at high latitudes From O2 emission at 1.27 μ m

GLOBAL VIEW OF OZONE ON MARS – 1st MEX CONFERENCE – ESTEC – 21-25 feb 2005

$Ozone/H_2O$ correlation - Orbite 0022

LS = 330-360° (NH late winter)

Ozone/H₂O correlation - Orbite 0022

• model at high latitudes of NH

- Good agreement at equator and southern hemisphere
- Possible interannual • variability in the onset of the late summer O3 increase in the SH.

$Ozone/H_2O$ correlation - Orbite 0232

Comparison SPICAM data vs GCM model

Comparison O3 absorption - O2 emission for different LS

