Electric fields at the magnetopause

A. Vaivads, Y. Khotyaintsev, M. André
Swedish Institute of Space Physics, Uppsala
Outline

We encourage the use of electric field data!

Plasma = charged particles, B, E

✔ Chapman – Ferraro current
✔ Magnetic reconnection
✔ Flux transfer events (FTEs)
✔ Plasma waves
✔ Anomalous collisions
Micro scales ← Macro scales

- Langmuir e- holes
- LHDI double layers
- Whistlers
- Kinetic Alfvén
- Alfvén
- KH FTEs

Debye length e- scale H+ scale

E≠-vxB E≈-vxB

Cluster separation

[km]

0.1 1 10 100 1000 10,000 1RE
Chapman-Ferraro current

\[\Delta \Phi \sim kV \]
Plasma waves

Steep density gradients seen in satellite potential

Cluster

Magnetopause current layer

\[\Delta \Phi \sim kV \]

\[\delta E \]

\[n \]

[De Keyser et al, 2005]
Magnetic reconnection

Generalized Ohms law and Cluster

\[E = -v \times B + \frac{1}{ne} (j \times B) - \frac{1}{ne} \nabla p_e + \frac{m}{ne^2} d_j + \eta j \]

\[E_{\parallel} = -\frac{1}{ne} \nabla p_e + \frac{m}{ne^2} d_j + \eta j \]

At spin resolution
- \(B \) 3D[FGM], \(E \) [EFW,EDI], \(n \) [CIS, PEACE, WHISPER], \(p_e \) [PEACE], \(v \) [CIS], \(j \) [PEACE+CIS, curlometer]

At high time resolution (5 S/s and higher)
- \(B \) 3D[FGM,STAFF], \(E \) [EFW,EDI], sometimes \(n \) [WBD]
- \(n \) satellite potential [EFW]
- \(j \) [curlometer, planar current sheet assumption]
- \(T_e \)
- \(v \)
Flux Transfer events (FTEs)

Poster today!

andris@irfu.se ESTEC 2005
FTE, E field structure

- L \leq ion gyroradius
- Strong E. E/B $\sim V_A$
- Strong j$_{||}$ $\sim 0.3 \mu$A/m2
- Density gradient
- Large potential jump
- dt < 1s

Cluster 2 BM (blue) and EFW i-burst (green)

2.5 kV
Wave-particle interaction often through electrostatic waves

- E.g., lower hybrid, ion/electron acoustic, solitary waves
- Using internal burst one can estimate the phase speed of waves for which $\omega/k < 400\text{km/s}$
- Example – drift lower hybrid waves
- $k\rho_e \sim 1$
- low coherence

[Vaivads et al, 2004]
Anomalous collisions

Momentum equation derived from the Vlasov equation separating AC and DC scales

\[nm(\partial_t u + u \nabla u) - nq(E + u \times B) + \nabla \cdot p = q\left(\frac{\delta n \delta E}{\eta_j} + \frac{\delta j \times \delta B}{\eta_j} \right) \]

Anomalous collision frequency

\[\nu_y^{\text{eff}} = \frac{q}{nm\nu_y} \left(\frac{\delta n \delta E_y}{|y|} + \frac{\delta j \times \delta B}{|y|} \right) \]

The first (and second?) term can be measured experimentally in space!

Lower hybrid drift waves lead to the thinning of the current sheet and onset of the reconnection.

[Scholer et al., 2004]
Anomalous resistivity, Cluster observations

Current sheet

Density gradient

LHD waves

Anomalous resistivity $\nu \sim f_{\text{LH}}$

[Sillin et al., 2005]
Summary

We encourage the use of electric field data!

Plasma = charged particles, B, E

✔ Chapman – Ferraro current
 Strong E fields, potential jump, density gradient within 1s

✔ Magnetic reconnection
 Generalized Ohms Law

✔ Flux transfer events (FTEs)
 Strong E fields, potential jump 2.5kV, density gradient within 1s

✔ Plasma waves
 Wave-particle interaction often through electrostatic waves.
 e.g. Lower hybrid waves. Can measure phase velocities < 400 km/s.

✔ Anomalous collisions