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observe the cusp for a few hours would usually observe 
signatures of bursty reconnection. However, by the end 
of the 80s, a few bursty reconnection events or FTEs 
were observed by low-altitude spacecraft. Basinska et 
al. [2] presented one event for which the electric field 
data were consistent with Southwood’s FTE model [3]. 
Lockwood and Smith [4] showed that low altitude 
signatures of the cusp observed by DE-2 could be well 
explained by FTEs.  
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The application of that model to a DMSP pass showed 
that three bursts of reconnection, with the reconnection 
rate going to zero in between, could explain the 
observations. On the other hand, Newell and Meng [11] 
using 21 DMSP crossings, showed that reconnection 
would rarely stop for more than one minute. Later, 
Lockwood et al. [12] demonstrated that precipitating 
and mirroring ions can be well modeled by a series of 
reconnection pulses lasting 0.5-2.5 min. separated with 
1-3 min. of slow reconnection.  
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We use the Cluster string of pearl configurat
mid-altitude polar cusp to investigate 
variations of ion precipitation in the polar cu
Aug. 2004, Cluster 4 was moving poleward thr
Northern cusp, followed by Cluster 1 about 3 m
Cluster 2 about 9 min. later and finally Cluste
18 min. later. The ACE spacecraft detected a S
IMF turning before the cusp crossings and
stayed negative throughout. Cluster 4 ob
staircase ion dispersion with 2 steps, a high en
around 1 keV at low latitude and a low ener
higher latitude. C1 around 3 min. later did no

n the 
poral 
On 7 
h the 

 later, 
about 
ward 
F-Bz 
ed a 

The typical signature of reconnection
is the smooth change in energy of the 
called dispersion, which is observed
crossing the cusp. This signature is 
filter effect produced by the 
reconnected field lines moving 
reconnection site. High energy i
magnetosheath are observed close to
re

ne at 
serve 
rsion 
ut 18 
a few 
ed in 
 field 
ward 

vents 
l. [1] 
n the 
nally, 
eans 

ecraft 
ould 

ection 
t can 

from it [5]. Ion dispersion provides a
the reconnection process: a contin
produces a smooth energy dispersi
intermittent reconnection produc
dispersion [6].   

Newell and Meng [7] reported the fi
energy steps in ion dispersions. Ste
about 10% of the DMSP cusp c
explained by acceleration processes 
region rather than by intermittent reco
other hand, Escoubet et al. [8] analyz
the ion dispersion was marked by th
steps which they explained by the cross
successive FTEs, in agreement 
developed by Cowley et al. [9]. Lo
[6, 10] showed that the low-energy i
information about the history of the r
burst of reconnection is characteri
energy cut-off (step) while a 
reconnection is

min. later, C3 obser
keV down to around 50 eV. This event is disc
terms of temporal evolution of newly reconne
lines on the equatorward side of the cusp for s
IMF. 
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Fig 04 from 
the ACE spacecraft. A shift of 69 min was applied to the 
data to take into account from the propagation to the 
front of the magnetosphere. 
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Figure 2: Cluster orbit in GSE XZ plane at 02:10 (top) 
and projection of orbit track in ILAT-MLT diagram 
(bottom). The colours of the spacecraft are the usual 
Cluster colours (C1, black, C2 red, C3, green and C4 
magenta). The time delays and the separations of the 
spacecraft in latitude are dt41=4 min, dt42=9 min, 
dt43=18min and dlat41=0.5o, dlat42=1.2 o, dlat43=2.5o 
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2.2 Cluster observations 
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-0.16o ILAT/min between C2 and C3.  
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Figure 3: Omnidirectionnal ion and downgoing electron 
spectrograms on C4 (panels a, b), C1 (panels c, d), C2 
(panel e), and C3 (panels f, g). Open-Closed Boundary 
is indicated by the dotted line on the electron 
spectrograms. The ion energy steps and dispersions are 
marked from 1 to 3.     
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Poleward of the step the 1 keV electrons disappeared 
and the flux of electron below 100 eV increased 
significantly.  

 

Figure 4: Omnidirectionnal ion s
function of invariant latitude for C4
and C3 (bottom).OCB is marked by a
and the boundary between the ener
and the main cusp is marked by a dot
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 (top), C1 (middle) 
 solid vertical line 
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To easily compare the ion step observed by each 
spacecraft we have plotted the 3 spacecraft ion 
spectrograms as a function of invariant latitude (Figure 
4).  We can clearly see the motion of the OCB (solid 
vertical line) to lower latitudes between C4, C1 and C3. 
The boundary between the energy step/dispersion and 
the main cusp (dotted vertical line) is also moving 
equatorward but at a slower rate (-0.03o ILAT/min) than 
the OCB. The energy step observed by C4 (top panel) 
shows a decreasing energy of the low energy cut-off 
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The first spacecraft (C4) to enter the cusp observed an 
energy step with a decreasing low-energy cut-off from 2 
keV to 300 eV and a width around 0.5o ILAT.  The 
second one (C1) observed a wider step, around 0.8o 
ILAT, and the low energy cut-off decreasing from 2 
keV down to 100 eV. Finally C3 observed a full 
dispersion extending over 1.5o ILAT and with a low 
energy cut-off from 2 keV down to 50 eV. 
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Figure 5: Ion spectrograms and flow
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