
MODELLING CRATER SHAPES WITH GAUSSIAN RANDOM SPHERES 
 

Tatjana Tchumatchenko(1) (2), Karri Muinonen(3) , SMART1 AMIE Science Team 
 

                 (1) TU Darmstadt, Institute for Applied Physics, Schlossgartenstr. 7, 64289 Darmstadt, Germany 
                                                                            Email:  tatjana.tchumatchenko@physik.tu-darmstadt.de

                (2) Observatory, P.O. Box 14, FI-00014, University of Helsinki, Finland, Email:tchumat@astro.helsinki.fi 
               (3) Observatory, P.O. Box 14, FI-00014, University of Helsinki, Finland, Email: muinonen@cc.helsinki.fi 
 

 
ABSTRACT 
 
Impact cratering is an important geological process 
which affects the majority of the terrestrial planets, 
moons and asteroids. The size and shape of the craters 
are determined by the velocity of the impactor and the 
soil conditions of the target material. The conditions 
present at the moment of the impact as well as the 
surface properties can be therefore estimated from the 
crater shape. Simple crater shapes were modeled so far 
with hemispheres, or are fitted with polynomials [1].  
In this paper we present a novel statistical two- 
parameter model, which allows both symmetrical and 
asymmetrical shapes.  

1. INTRODUCTION 
 
We take a statistical approach, assuming that each 
crater is a representation of a Gaussian random 
hemisphere. This is motivated by the fact that the 
majority of simple craters on planetary bodies resemble 
hemispheres. So hemispheres are a good first-order 
approximation [6], but they do not take into account 
the irregularities of the craters. We therefore take the 
hemispheres as a starting point and introduce a 
Gaussian distortion.  
 
Each shape is unique, but the craters resulting from 
similar impact events should have similar statistical 
parameters. We therefore assume that craters which 
were formed during approximately the same time 
period in the same region of a planetary body should 
have similar statistical parameters. In this paper we 
introduce a way of estimating the statistical parameters 
of craters from the form of the rim.  
 
We begin this paper by introducing the mathematical 
formalism of Gaussian random spheres and by showing 
how it can be used to model crater shapes. We then 
describe the method we used to extract the rim profile 
from the nadir viewing images and how the statistical  
 
 
 
 
 
 

 
 
parameters can be estimated from the parameterized 
rim profile. We then give an outlook on the application 
of this method to study light scattering inside craters 
with potential implications for clinometry, and how the 
crater shapes on different planetary bodies can be 
statistically compared. 
 

2. GAUSSIAN RANDOM SPHERES 
 
The Gaussian random sphere given by the radial 
distance ),( ϕθr  introduced in [2] and [8] is a 
lognormally distributed isotropic random field defined 
on the unit sphere. It can be described by the mean 
radial distance and the covariance function of the 
logarithmic radial distance.  
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The radius as given by Eq. 1 is determined by the 
spherical harmonics coefficients of the logradius. 
 
The quantity ),( ϕθs  is called "logradius" and has zero 
mean and a standard deviation β . The radius ),( ϕθr  
has the mean value a  and the standard deviation 
σ determined by the Eq. (3):  
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The coefficients  of the spherical harmonics  
have to fulfill several requirements: Their mean value 
must be zero and they have to be independent variables 
with the variances given as by Eq. 5 and Eq. 6: 
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0mδ  denotes the Kronecker delta function and  the 

Legendre coefficients of the correlation function.  
lC

The covariance function for an isotropic random field 
defined on a unit sphere is given in the Eq. 7: 
 

                      (7) ∑
∞

=

=⋅=
0

2 ))(cos()()(
l

llss PCCk γγβγ

 
The angle γ  is the difference between two solid angles 
on the unit sphere. The coefficients  of the 
covariance function for the unit sphere have to fulfill 
the  Eq. 8. 
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The covariance function for an isotropic random field 
defined on the unit circle is given in Eq. 9: 
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Starting with the Legendre expansion one can define 
the correlation angle  as  Γ
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sC  is the second derivative of the correlation 
function )(γsC  taken at the position .  0
The correlation angle and the radial standard deviation 
are important quantities of a random sphere. 
For the numerical generation of sample surfaces, one 
starts with a correlation function )(γsC .  
 
Typically, one chooses )(γsC  to follow a power law 
or a Gaussian. The correlation function determines the 
variances of the spherical-harmonics coefficients and 
allows to calculate the two characteristic quantities σ  
and .  The spherical harmonics coefficients are 
generated using random variables, which have the 
variances as defined by the correlation function in  

Γ

Eq. 5 and Eq. 6.  
 
Sample spheres generated by a power law correlation 
function are shown in Fig. 1. These sample shapes 
show that lower power-law index weights the spectrum 

towards higher-degree spherical harmonics and the 
shapes have more hills per solid angle. The increase in 
variance enhances the hills radially. 
 
The Gaussian shapes were already used to model the 
forms of asteroids [2] and in this paper we want to 
apply this formalism to crater shapes. 

 

 
Fig. 1.These sample shapes are generated using a 
power law correlation function; the standard deviation 
of radius σ and the power law index ν are given. 

3. GAUSSIAN HEMISPHERES 
 
According to [3], the diameter-to-depth ratio of simple 
lunar craters is 5, therefore we model the craters with a 
hemisphere which is cut by a plane, in the way that the 
diameter-to-depth ratio is matched. For lunar craters it 
corresponds to the height value  for unit 
sphere. This value fulfills Eq. 11. 
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Fig. 2. shows sample crater shapes with the diameter-
to-depth ratio =5 which are generated using a power- 
law correlation function. 
 

 
Fig. 2. The nadir view of the sample crater is shown in 
the right; in the left are the craters as seen from the 
side. The standard deviation of radius σ and the 
power-law index ν for each crater are given. 
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4. RIM PROFILE EXTRACTION 
 
To extract the rim profiles, we used nadir view images 
and extracted the rim form using active contours.  
These are curves that are defined within an image and 
can move under the influence of internal and external 
forces. The forces are defined in such a way, that the 
active contour will conform to an object boundary. 
There are different ways of defining the external and 
internal forces of the active contours; the most popular 
is GVF (Gradient Vector Flow) which is described in 
[4].  
On a given image  an edge map  is 
defined. Starting with one iterates Eq. 12 to 
find the equilibrium solution.  
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The equilibrium solution V is then used to determine 
the shape of the active contour. This is done by 
iterating Eq. 13. The right hand side of Eq. 13 is zero 
for the stationary solution. This solution is typically 
reached after 120 steps. 
 
              Vtsxtsxtsxt +−= ),(''''),(''),( βα            (13) 
 
The contour is given as a function of s and t . ]1,0[∈s  
is the parameterisation of the contour curve and t  is 
the time parameter indicating the iteration step.  is 
the derivative with respect to 

'x
s .  

 

 
Fig. 3: A sample crater as determined by the active 
contour method.  

 
The sample crater image shown in Fig. 3 was delivered 
by the AMIE camera on board of SMART1 satellite.  
We successfully extrapolated the shapes of craters in 
the mare and highland region of the Moon. All crater 
shapes which had more than 150 pixel diameter were 
extrapolated using the same parameters βα ,  etc., 
which determine the convergence of the active contour. 
 
 
 
 
 

5. EXTRACTION OF STATISTICAL 
PARAMETERS 

 
To estimate the radial standard deviation σ  and the 
power law coefficient ν , the rim profile as determined 
by the active contour fitting needs to be equidistantly 
gridded in the angular direction.  The estimation of the 
statistical parameters is then done by comparing the set  
of the rim profiles belonging to the same group to the 
sample sets of shapes with known power law 
coefficient and known standard deviation.  
 
The quality of the agreement between the retrieved 
shapes and the sample shapes is characterized by 
comparing the  value, the agreement is the better 

the lower .  

2
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To compute the , we define a rotationally invariant 
azimuth angle by equidistantly dividing the length of 
the curve into a given number of cells. We then 
compute the angles of the normals of two points along 
the curve which are an angular distance 

2
redχ

ϕ  apart and 
then move along the curve an angle further and 
calculate the normals again. This procedure is repeated 
for each of the sample curves times, the agreement 
of both sample sets is tested with  [5].  

Φ

n
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The sample shapes can be compared either to a set of  
Gaussian circles or to Gaussian spheres, the correlation 
function is the given by Eq. 9 and  Eq. 7 respectively.  
 
When estimating the parameters of the corresponding 
random Gaussian sphere, one needs to take into 
account that the extrapolated rim circle corresponds to 
a cross-section at a given height value of the random 
sphere, which is not the equator of the random sphere. 
 

6. LIGHT SCATTERING INSIDE CRATERS 

 
We implemented a ray tracing procedure to study the 
light scattering inside the sample Gaussian shapes. We 
assumed the Lommel Seeliger scattering law as given 
in Eq. 14 
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In this equation, ϖ  is the single scattering albedo, 

)(αp is the single particle phase function and the 
angles inθ  and outθ  are the angle of incidence and the 
angle of emergence respectively. 
The irradiance  received by a cell with an area 

 from direct radiation is given by the Eq. 15 
directL
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We assume a unidirectional incident flux of 21
m
W . 

As there is no compact mathematical relationship to 
find out whether a cell is directly illuminated or not, 
we determined this by tracing a ray from the cell center 
in the inverse direction of the incident illumination, 
and determined whether the ray would escape the 
crater. If this was the case, the cell was considered to 
be directly illuminated.  
 
Though the local incidence and emergence angles 
change, the phase angle remains the same for all cells 
for fixed viewing conditions. We therefore used a 
constant to approximate the phase function 

constp =⋅ )(αϖ . This is a multiplicative constant, 
which varies depending on the angle of emergence and 
incidence. Varying this constant does not change the 
spatial scattering distribution; this distribution is only 
determined by the local angle of incidence. 
 
We did not consider second level scattering, because 
the effect resulted in a deviation of less then 1% of the 
emitted radiance values and was found to be much 
more CPU time consuming. 
 
Using Eq. 14 with the assumptions above, we could 
determine the radiance emitted by each cell in the 
viewing direction. To determine, whether the emitted 
ray could escape the crater, we used the same method 
as for determining whether or not a cell is illuminated. 
The results of this study are shown in Fig. 4.. it shows 
the spatial light distribution inside a sample crater with 
a diameter-to-depth ratio of 5, %6=σ  and 3=ν . The 
light enters the crater along the x-axis (red) with an 
inclination of and the observer is looking parallel 
to the incoming light. To generate the plot in Fig. 4 we 
used 

o45

03.0)( =⋅ αϖ p . The maximum value emitted by 

a cell in this example is  Watt, the minimum 
is zero due to the shadowed regions. 
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Fig. 4: Colour-coded emitted radiance in the direction 
of the observer. The maximum values are denoted in 
red, the minimum values in blue. 
 

7. RESULTS AND DISCUSSION 
 
The two parameter statistical model presented in this 
paper has the advantage of offering a compact 
description for a variety of crater shapes. The 
advantage of the two statistical parameters compared to 
a fit with Zernike polynomials [7] is the low number of 
parameters and the direct physical interpretation of 
them.   
 
Using our method, we studied the crater shapes of the 
mare and highland regions on the Moon, and found that 
the radial deviation σ is typically 3 to 5 %, and the 
power law coefficient ν  is approximately 3 to 4. The 
number of the extrapolated sample crater rims was 24 
in this study. We plan to extend this to higher number 
of sample shapes and to study the statistical parameters 
of different regions. 
 
The first results suggest that the total integrated 
brightness of more deformed craters can be up to 5% 
higher or lower compared to the integrated brightness 
of a homogenous sphere with the same diameter-to-
depth ratio.   
 

8. OUTLOOK 
 
The compact two parameter statistical model is a 
powerful tool for characterizing the crater shapes as 
well as the crater rim profiles. Several questions are 
interesting: Do the statistical parameters depend on the 
planetary body, the soil material and the angle of 
impact? How can we qualitatively and quantitatively 
access this dependence? How much influence does the 
shape have on the integrated brightness of the crater? 
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