The host galaxy properties of powerful radio sources across cosmic time

Bob Fosbury (ST-ECF) on behalf of the z2p5 & SHzRGS teams

Sperello di Serego Alighieri (Arcetri) Daniel Stern - PI, Peter Eisenhardt (JPL) Carlos De Breuck - Co-PI, Joël Vernet, Alessandro Rettura (ESO) Andrea Cimatti (Bologna) Bob Fosbury (ST-ECF) Montse Villar-Martín (Granada) Andrew Zirm (STSCI) Joël Vernet (ESO) Brigitte Rocca-Volmerange (IAP) Marshall Cohen (Caltech) Nick Seymour, Mark Lacy, Harry Teplitz (SSC) Bob Goodrich (Caltech) Arjun Dey, Mark Dickinson (NOAO) Bob Fosbury (ST-ECF) Wil van Breugel, Adam Stanford (UCLLNL) Andrew Humphrey (UNAM) George Miley, Huub Röttgering (Leiden) Ilse van Bemmel (Leiden) Partick McCarthy (OCIW) Dave Alexander (IoA)

Audrey Galametz (Strasbourg, ESO, SSC)

What are they?

- First extragalactic radio sources identified with optical counterparts in 1949
- Centaurus A and Virgo A soon followed by Cygnus A in 1951
- Bright radio -> faint optical hard to accept.
- Followed by the discovery/identification of the quasars in the early `60s

Cygnus A

VLA Chandra HST/Keck

Cygnus A

VLA Chandra HST/Keck

Cygnus A

VLA Chandra HST/Keck

- Massive 'elliptical' galaxies containing a currently active nucleus powered by accretion onto a (spinning) supermassive black hole
- Desire to study host galaxies leads to study or radio galaxies rather than quasars
- Orientation-based unification allows exploitation of `natural coronograph'

Stills from animation in presentation

Cosmic context

- The RG were the first galaxies to be found above redshifts of 1, 2, 3 and 4 – enabling a leap to the high z universe
- They mark the most massive galaxies at each epoch
 - probability of being a powerful radio source a strong function of stellar (and black-hole) mass - but still only a few % of them are radio loud at any one time
- They mark the positions of the first protoclusters (Venemans et al. 2007)

- The juxtaposition of powerful sources of radiation from nucleosynthesis (stars) and from gravitational collapse (AGN)
- The sites of feedback* in action...

• * negative and/or positive??

Their component

parts

The Host + AGN catalogue of parts

- Two programmes:
 - The z2p5 spectroscopic/polarimetric study of z ~ 2.5 radio galaxies
 - High quality spectra from Lya to [S II] and restframe UV polarimetry
 - The SHzRGS Spitzer survey of 69 radio galaxies 1 < z < 5.2</p>
 - Separate the stellar and AGN contributions to the SED
 - Construct the restframe H-band Hubble diagram and determine stellar masses
 - Examine the RG environment with multi-band data
 - Both programmes founded upon extensive archival HST data for optical/NIR photometry and morphology

- Keck LRISp observations of 9 RG
 - high radio power sources from USS survey (Röttgering 1995) 2.2 < z < 3.6
 - long slit spectopolarimetry 3900-9000Å with R~600
 - typical exposure 20ks
 - slit along radio axis
- VLT ISAAC observations of 9 RG
 - from USS survey 2.2 < z < 2.6
 - 3 in common with above
 - long slit spectroscopy in J, H and K with R ~ 500
 - typical exposure 3-10ks in each band
 - slit along radio axis (congruent for sources in common)

•Vernet et al. (2001)

•ISAAC spectroscopy in J, H and K

•Humphrey et al. (2007)

Continuum fitting using`clumpy-scattering' model

Stills from animation in presentation (left to right, top to bottom)

Emission line fitting, [O III] and H-alpha

1138-262

4C+10.48 Aperture 1

2104-242 Aperture 1

2104-242 Aperture 1

0529-549

Principal results

- Continuum
 - The restframe UV continuum in these powerful sources is generally dominated by 'grey' dust scattering of the obscured AGN from a clumpy medium
 - The fractional linear polarization P_{ctm} (1250-1400Å) ranges from a few to 20%
 - but note that the narrow emission lines are unpolarized and some objects show a scattered BLR
 - E-vector more closely perp. to UV elongation than to radio axis
 - P_{ctm} correlates with NV/CIV and anticorrelates with Lya/CIV
 - Sources with high emission line Av show high polarization

Principal results

Continuum

Continuum

high polarization

Continuum

high polarization

Emission lines

- Lines from wide range of ionization
- Predominantly AGN photoionized with a range in ionization parameter U but some evidence for shock contributions
- New, sensitive, measures of T_e from UV/optical line ratios – particularly [O III] 1660/5007 – giving an average of 14,000K
- Kinematics divide into perturbed (>1000km/s) regions – associated with the radio jets – and quiescent (<250km/s) halos
- Large Lya halos (>100kpc, L_{La} ~ 10⁴³⁻⁴⁴ erg/s) seen in other lines, eg. CIV, HeII, [O III], Ha => they are ionized and not neutral scatterers

Emission lines (ctd)

- Photoionization modelling shows that the metallicity Z (and N/H) are close to Solar with variations of < x2</p>
- This is similar to the result at low redshift by Robinson et al. (1987)

- Light from a young stellar population?
 - Hard to detect unambiguously, though we believe it dilutes the linear polarization below the 'pure' scattering values
 - UV from massive stars may produce the large Lya/CIV ratios (LAE objects) seen predominantly in HzRG with z > 3
 - Villar-Martin et al. (2007)
 - The cool dust emission (sub-mm) from HzRG is more likely to arise from stellar than AGN - heated dust

•The dust scattering model (Vernet et al. 2001)

A comprehensive Spitzer survey of HzRGs: the most massive galaxies at every epoch

- 28.3 hr of Spitzer Cycle 1 GO observations
- 69 HzRGs at 1 < z < 5.2 ($L_{3GHz} > 10^{26}$ W Hz⁻¹)
- 3 camera imaging to measure the SEDs of stellar populations and the dust properties
- Supporting data in other bands (including HST archival data) to characterise the AGN contributions
- Observations between Nov 2004 and Nov 2006
- And hopefully more data from a GTO Cycle 4 proposal!

• To appear in ApJS (astro-ph/0703224)

С 0

- RG are gE and cD galaxies in the local universe
- ∎ r^{1/4} light profiles in distant sources (NICMOS)
- HzRG reside in (proto-)cluster environments
- Large, luminous Lya halos
- sub-mm detections => high star formation rates
- NIR Hubble diagram (K-z; Rocca-Volmerange et al. 2004)

Correlation of stellar bulge and BH masses

- Decompose SED into AGN and stellar parts using X-ray - radio observations
- Characterise environments using optical, NIR and MIR imaging

•The sample

•Circles HzRGs in our Spitzer sample with IRAC/IRS imaging

•Squares MIPS observations as well, i.e. low Galactic background

•*Plusses* parent sample of 225 HzRG from which our sample was drawn

• Stern et al. 2005, Lacy et al. 2004/6

These diagrams find (almost) equally type 1 (unobscured) and type 2 (obscured) AGN - why?

SHZRGS Modelling the restframe NIR SED

- Using only IRAC bands + 16µm + 24µm (26 sources)
- Fit elliptical templates of varying age from PEGASE 2 (assuming z_{form}=10, Eyles et al. 2007)
- Use 3 black-body components of dust at different temperatures: 60K and 250K, both fixed, and 600-1500K hot AGN-heated dust
- Use formal Ξ^2 fitting for results

•Sources with MIPS data

•Stellar fraction of restframe H-band light

Restframe H-band stellar luminosity vs. redshift from the SED-fitting

•Solid points for sources with MIPS data

•Red + are sub-mm sources from Borys et al. (2005) derived in the same fashion

•Green dashed lines
are luminosities of
elliptical galaxies
with z_{form} = 10, from
PÉGASE.2 models
(assuming Kroupa
2001 IMF) normalised
to 10¹¹ and 10¹² Msun

log[L_{3GHz} (W/Hz)]

•Marginally significant correlation of stellar mass with radio luminosity that would imply that the more massive galaxies host more powerful AGN

Both MIR and Radio emission trace AGN power – but possibly with a time-delay (Ogle et al. 2006)

- The hosts of powerful radio galaxies comprise a homogeneous population with stellar masses between 10¹¹ and 12¹² M_{sun}
- The powerful RG have similar MIR colours to the unobscured AGN
 - Most would be classified as LIRG or ULIRG
- Marginal evidence for higher mass galaxies to have higher radio (AGN) power

The parts

- A massive, old stellar population
- A radio loud AGN with axial symmetry and a mixture of isotropic and anisotropic emissions
- Active star formation (at least at z > 2-3) largely obscured by dust
- Hot and warm halos enriched by outflows

ToDo/In Progress

- Better SED fitting using shorter wavelength data and estimated of stellar population age (eg. from 4000Å break)
- Obtain MIPS data for more of the sample
- Decomposition of the stellar and AGN bolometric luminosities
- Study of the environments using optical, NIR and MIR imaging