

Canadian Robotic Technologies For Lunar Surface Exploration

Frank Teti MDA

A New Exploration Era

20th Century Exploration

Low-earth Orbit Human Space infrastructure

End of Shuttle Program...

De-emphasis on Human exploration of LEO... Deeper Space Infrastructure

Planetary surface exploration

Increased Human / robotic collaboration

International Cooperation

International Human Exploration

21st Century Exploration

Mobility - Locomotion

- Rapid chassis design & evaluation
- Representative rover chassis prototyping
 - RCP, ExoMars Ph. B1 BB
- Controlled-environment field validation

Mobility - Autonomous Navigation

Increased rover autonomy

- Terrain assessment & global path planning
- Obstacle avoidance & local path planning
- Visual Motion Estimation & localization (slip mitigation)
- "Visual odometry" field demonstrations

Credit: MDA

Autonomous Vehicles

 MDA has successfully developed a software and controls solution for an underground autonomous vehicle to improve safety and productivity

Mobility - Field test sites

- CSA Mars Yard
- All-season rover mobility test facility
 - Mars Dome
- Analogue sites
 - Mojave desert
 - Canadian Arctic Analogue Research Network

Advanced Vision - Camera Based

- Vision-based scene modeling
 - Rapid in-situ photo-real scene modeling
- Handheld & vehicle-mounted options
- Technologies being applied in mining, forensic & security industries
 - Autonomous site characterization & prospecting
 - Survey & contextual imaging (tele-op geology)
 - 3D sample acquisition monitoring (e.g. drilling)
 - Cost mapping for autonomous navigation
 - Data-storage & bandwidth efficiency

Advanced Vision - Laser based

Optech

- Lidar-based scene modeling
 - Ultra-high accuracy
 - Range independent
 - Lighting and contrast independent
- Applications
 - Lunar shadowed region scene modelling
 - Lunar shadowed region rover navigation
 - Geological sample classification
- Optech lidar recently utilized at Haughton Crater with NASA Ames Human-Robot Site Survey Project

Credit: Optech

Credit: UNB / Optech

Credit: Optech

Credit: Optech / NASA

Inspection & servicing

- Laser & Camera based visual inspections
 - Shuttle & ISS safety & logistics
 - Orbital Express satellite inspection
- Autonomous vehicle docking & servicing
 - XSS-11, Orbital Express

Deployment & assembly

- 25 yrs of robotic deployment & assembly of large-scale human space infrastructure on Shuttle & ISS
 - Heavy cargo transport & deployment
 - Infrastructure assembly & configuration
 - Infrastructure inspection & maintenance
 - Vehicle docking & berthing

Human-robot interface

- 25 years heritage in manned space robotics
 - Safety-criticality & ultra-reliability
 - Physical & operational interfaces
 - Control interfaces & variable autonomy
- 82% EVAs employ shuttle robotics for astronaut transport & monitoring

Prospecting & advance scouting

- Remote / advance prospecting, mapping and resource assessment
 - Autonomous field geologist
 - Surface & subsurface
- Pre-EVA tele-op / autonomous scout
 - Site survey (laser + camera)
 - Operations planning
 - Hazard assessment
 - Time, risk conservation

Astronaut Field Assistance

- Increased EVA efficiency
 - Mundane, repetitive or potentially hazardous tasks
 - High-strength, dexterity & mobility tasks
- Potential robotic surface EVA tasks:
 - Pre-EVA Site Survey (prospector dual role)
 - Astronaut "Caddie" & on-site data management
 - Instrument platform & payload deployment (MULE)
- Crucial experience from last 25 years astronautrobotic partnership in orbit
 - Ultra-high reliability, safety criticality

MDA Infrastructure Assembly & Maintenance

- Shuttle and ISS assembly heritage supporting manned assembly
 - Heavy lift capability
 - Deployment & transport
 - Construction & configuration
 - Safety inspection
 - Astronaut transport / elevation for servicing
- Remote, or pre/post human deployment

Computer Assisted Surgical Interface (CASI)

- Robotics systems have supported sustainable human space exploration infrastructure for 30 yrs
- Scouts, field-scientists and prospectors for planetary have been provided by robotic systems
- 21st Century space exploration will see a convergence between planetary exploration and human spaceflight
- Expertise & heritage from both will be crucial to the new era of human lunar surface infrastructure
- Many key technologies exist now that will form the basis of the early human-robotic activities on the lunar surface