

Introduction

What is SAMOSA?

- Sample return mission to a main belt comet (MBC)
- Return a sample of ~50g
- In-situ investigation and remote sensing

Why?

- MBC are fragments of a former planet
- MBC contain volatiles
- They may give us information about
 - -Planet formation
 - -Planet and solar system evolution
 - -Origin of life

Why a sample return?

What are MBC's?

What are Main-Belt Comets (1)?

 In 2006, a population of objects was discovered in the Main Belt showing cometary activity
 → Main-Belt Comets (MBC)

Currently three such objects are known:
 133P/ Elst-Pizarro
 176P/ LINEAR
 P/2005 U1 Read

- For EP the activity is definitely driven by sublimation of volatiles on the surface:
- Activity was observed at the same orbital position in 3 consecutive apparitions (1996, 2002, 2008), inactivity at other parts

Inactive

day side

 \odot

What are Main-Belt Comets (2)?

Active

- Water is not stable at the surface in the Main Belt over longer time

- \rightarrow It must have been stored below the surface since the some 10⁹ a
- \rightarrow An impact must have exposed it to sunlight recently
- \rightarrow The crater surface is young (<10³ a?)
- \rightarrow There is no regolith in the crater area
- The MBC are members of the Themis Family of asteroids:
 - Dynamically it fits
 - They have the BVRI colours of C-type asteroids, but not of comet nuclei and TNOs
 - TNOs
 It is dynamically unlikely to insert a comet
 - There are indications that water ice is present on the surface of 24 Themis, too

→ The MBC were parts of the former Themis Family parent body

What to do?

What to do at the MBC?

- Aquire a sample of volatile and non-volatile material from one MBC \rightarrow go in the crater
- Get a sample that includes sub-surface material (>1cm) \rightarrow drilling
- Determine the morphologicy and mineralogy of the MBC \rightarrow global mapping
- Return some tens of grams of the sample to Earth \rightarrow re-entry
- Determine the physical microstructure in situ -> microscopic investigation

What to do on the way to the laboratory?

- Keep the sample below 0°C at all times → avoid aqueous alteration
- Monitor the temperature continuously → trace the sample environment
- Ensure high level of cleaness to minimize contermination with terrestrial material
 → avoid analysis of terrestrial organics
- Ensure high density of the sample container \rightarrow avoid loss of volatiles in space

Sample Analysis

Why return a sample?

Planet Formation \rightarrow Dating \rightarrow Isotopic composition
Planet Formation \rightarrow Cooling rate \rightarrow Elemental composition on microscale
Origins of Life \rightarrow Organic composition \rightarrow high precision & sensitivity
Planet Formation, Protoplanetary disk → Microscopic mineral composition
high spatial resolution
Origins of Life \rightarrow Isotopic ratios in minor volatile species \rightarrow high accuracy and
This implies:
 Complex sample preparation
Sample decisions
 Analysis adaptability
Instrumentation

Mission Target & Objectives

- Target: 133P/Elst-Pizarro
 - Main Belt Comet and member of Themis Family
 - has activities driven by sublimation of volatiles
 - located around a 3.2 AU, with low inclinations and relatively high eccentricities

Objectives:

- Find a link between meteorite collection on earth and astronomical objects
- Constrain conditions in the pre-planetary disk
- Search for the origins of emergence life
- ✓ Search for information about stellar evolution and planet formation
- How to achive these objectives?
 - Need to return a sample back to earth

Payload Requirements

What to do at the MBC?

- Retur

- Deter

- Aquire a sample of volatile and non-volatile material from one MBC

- Get a sample that includes sub-surface material (>1cm)
 - → Drilling Core Extraction Device
- Determine the morphological and mineralogic context on the MBC

→ Optical Cameras (HR, WA, stereo)	(Orbiter)	
→ Laser Altimeter + Radio Science	(Orbiter)	
→ Visible-Near-IR spectrometer	(Orbiter)	
→ Mid-IR spectrometer	(Oribter)	
→ Alpha Partice X-ray Spectrometer	(Lander)	
n some tens of grams of the sample to Earth		
\rightarrow Re-entry capsule		
mine the physical microstructure in situ		
→ Microscopic Imager	(Lander)	

(Lander)

Approach and Sampling

Approach

- Orbit of 1 km around the target for remote sensing measurements
- Selection of suitable landing site
- Deployment of lander at an altitude of 500 m
- Descent time: ~ 40 min
- AOCS with monopropellant hydrazine

Sampling

- Anchoring lander by harpoons to prevent rebound during sampling
- Storage of max. 150g sample in container
- · Deployment of container with a spring loaded separation device
- Orbiter will capture canister at altitude 50m
- Storage of canister in re-entry capsule
- · Landers remains on surface for in-situ measurements

Sample transfer mechanism

- The corer is secured in the sample container and the table is rotated to apply the explosive seal
- The sample container is then transferred into the passive cooling mechanism through the sample transfer tube via a reel mechanism
- The return canister is rotated and sealed and ready for deployment to the return capsule

		Mass		budaet		
Lander Mass Budget			Return M	odule Mass B	udget	
Subsystem	Mass [kg]	Mass incl. 20% Margin [kg]		Subsystem	Mass [kg]	Margin [k
AOCS	21.89	26.27		AOCS	65.49	78.59
OBDH	3.0	3.6		OBDH	19.0	22.8
Comm. (UHF)	5.0	6.0		Comm. (UHF)	58.4	70.08
Payloads	2.16	2.59		Payloads	12.36	14.83
Sampling System	16.2	19.44		EPS	246.0	295.2
EPS	82.5	99.0		Thermal	6.96	8.35
Thermal	8.0	9.6		Propulsion (SEP)	209.9	251.8
Structure	37.2	44.64		Propulsion (Chem.)	364.5	437.4
Mechanism	13.92	16.7		Structure	246.0	295.2
Harness	12.72	15.26		Mechanism	31.9	38.3
Total drv mass	202.59	243		Harness	49.2	59.0
Propellant (Hydrazine	e)*	6		Return Capsule	54.2	65.1
Total wet mass	- /	249.1		Total dry mass	1363.9	1636.7
				Propellant (SEP)		243.2
Orbiter M	ass Budget (T	otal)		Propellant (Chem.)		78.9
System	Mass [kg] incl. Margin		Total wet mass		1958.3
Lander Module wet	mass	249.1				
Return Modul wet n	nass	1 <u>958</u> .3				
Total dry mass		2207.4		* The hydrazine is used	in the lander AO	US system
Propellant (SEP)		616.8				
Propellant (Chem.)		1548.5			Alter and a second	
Total wet mass	(4372.7		A A		
	lle		AR			

Orbiter Power budget		Lander Power Budget				
Subs.	Power (W)		power	in	power	in
Electrical Propulsion	10000	Subs.	light	(۷۷)	night	(vv)
AOCS	129	AOCS		0		0
OBDH	10	OBDH		5		5
Comm.	70	Comm		5		5
Payloads	35.3	Payloads		(
Sampling mech.	10	Sampling Mech.		0		0
EPS	5	Thermal		0		20
Thermal	100	EPS		0		0
Power without margin	10359.3	Power required		17		37
Margin (%)	20	Margin (%)		20		20
Total	12431.16	Total*	\subset	20.4	$> \subset$	44.4
		* The power sampling mech batteries and co	required anism are onsidered	by e prov l as pu	AOCS ided by ulse loa	and the ds

Conclusions

- SAMOSA will provide unique information on planet formation and the origin of life
- SAMOSA is a feasible mission using existing techniques
- SAMOSA is a mission which will be completed within 10 years that will provide fundamental answers and will raise new questions

