ExoHab Phase 0: 2 pilots [June-Dec 08] B.H. Foing et al

1. ExoGeoLab [Pilot 1]

(payload technology, science and robotics): Field test w/ telescopes & environment station Surface instruments (geophysical, geochemical and astrobiological) Demo of tele-operations.

2. Habitat Lab [Pilot 2]

(human spaceflight and surface operations) : Habitat for 4 "crew" with support facilities and life-support

system units, demo of operations of instruments.

3. Design Support Office: [support function]

- Pre-Design Desk
- Support desk to definition of ESTEC 2 facilities
- Ground Control Desk for remote experiments
- Ground Control Desk for crew simulations
- Open user desk for demonstration and "marketing"

Specific goals and experimental method: integrated ExoGeoLab

- low mass imaging systems from aerial view, panoramic context, 3D stereo, close-up and microscopic imaging,
- atmospheric, ionospheric, meteo, UV radiation, space weather monitors
- geophysical study of the surface and subsurface using seismometry
- geochemistry package to measure elemental and mineral composition from lander and rover
- robotic mobility with instrumented regional rover, mole, arm and local nanorover
- sub-surface water and volatiles detection and characterisation system
- sample extraction, handling and analysis systems

ExoGeoLab Pre-pilot phase 0 (May- Dec 08, ongoing)

- Exo pre-pilot installation of ExoGeoLab logistics and habitat lab (co- funded by D-TEC)
- installation of cameras, equipment and data handling
- research utilisation of instruments available
- adaptation of 3 telescopes (BHF research) equipped with cameras and filters (imaging of terrestrial scenes, the Moon, the Sun in H alpha, astronomical targets)

Sun in $H\alpha$

Moon-Earth tests

Monitoring of environmental parameters

- CO2 concentration
- O2 concentration
- Air / Ground Temperature
- Air / Ground Humidity
- Light intensity
- UV intensity
- Fire, toxicity

	Short term	Mid term 09							
	Definition	Design for phase 1	Design for phase 2						
	DESIGN OFFICE								
CDF	Mini-CDF on laptop	Pilot pre-design studies Ground control experiments	Design studies + breadboarding	g					
PSA, Geomatics	Mapping, data systems, Plann	ing tools							
	GEO-PLANETARY LAB								
Instruments	Pilot lab	Geophysical lab facility	Exploitation						
Robotics lab	Hand-held drill	Robotic Drill							
	Manual sample	Robotic Sample collection							
	Sample analysis (minerals, or	ganics)	New instruments/investigations	s					
	Astrobiology studies								
	Telescope	Remote operations							
	Context geological studies								
	HABITAT								
ISS, Columbus Melissa	Definition/procurement	Habitat crewed operations Recycling							
		Water cycle	Atmospheric control	Closed loop					
	Mini green house	Food production							
		fe science lab +racks	New instruments/investigations (racks)						
		fe-support							
	Crew communications								
		Inflatable structures							
	Batteries	solar pannels	Sustainable Energy Resource utilisation						
	EARTH AND TECHNOLO	GY APPLICATIONS							
Communications	5	In-situ validation of Earth obser Sustainable energy	rvations						
		Miniaturization technology	Nanosat & microsat breadboard	1					

			/: WS1 15:30Jun	30Ju-15Jul		30Jul-15Aug	15-30Aug	30 Aug-15Sept	15-30Sept	30Se-150c	15-300ct	300ct-15Nov		
VPO		Overall man				1		1		1				1
/P0 /P1	_	Procurement	-							-				
/P1 /P2			i ities for ExoGe					1				-	-	
192	_		ICIES TOP EXOLE	-	-			1 .		1 8		1	2 16	
		Lay-out	of instruments	-			1			-				
	2.2	Audptation I	or instruments	-			1	1		1			8	
P3		Operation Pr	ities for Habit					<u></u>				1		
43		Lay-out	ILLES TOT HADIL					_		1				
-			of instruments	-				_	-		_			27
-		Operation Pr						_		-	_	-		
P4			implementatio				<u> </u>					-		
P4			ExoGeoLab e							T		1		<u>г г</u>
			ExoGeoLab par		-	-	-	<u> </u>		-			2	
		Operation of				-	_	-		<u> </u>				
		ExoGeoLab r		-			1	1	-	-		1		
-			demo preparat									-		1 I I
IP5			B implementat					-						I
170			Habitat equip			-		-				1		
			Habitat partne					-				-	2	
		Operation of					<u> </u>							
		Habitat repo					<u> </u>					1	1	
			o preparation					-				1		1
/P6			ExoGeoLab-Ha											I
IP7			eoLab-Habitat										14	
/P8			ta and tools					1						
			te and testa											
						EXO	НАВ	PLANN	ING 2	2008 F	PHASE	ΞO		

B.H. Foing (SRE), M. Guglielmi (TEC), M. Freire
WP0 Management, organisation of activities, requirements document, reporting, part time technical support (50 KEu)
WP1 2 months CDF (75 KEu) Conceptual design for minimum Moon/Mars habitat (4 crew)
- requirements for for minimum Moon/Mars habitat
- functional and preliminary architecture analysis
- identification and assessment of key subsystems (core habitat, energy, life support, resources, green house /food production, integrated instruments packages inside and outside habitat, communications, operations, crew mobility)
- utilisation of modular cargo elements
- evolution towards long duration and permanent base
- Analysis of terrestrial applications and spin-off technologies
WP2 2 month CDF (75 KEu) Conceptual Design for Habitat testbench
- Definition of requirements for habitat testbed (in relation of WP1 minimum Moon/Mars habitat)
- Preliminary architecture design
-assessment of key demo subsystems for procurement (core habitat, energy, life support, resources, green house /food production, integrated instruments packages inside and outside habitat, communications, operations, crew mobility)
- definition of scenarios for demo operations
WP3 2 months (50 Keu) Habitat testbench Design validation test
- Design validation Tests using ESTEC demo Phase 0 habitat (6 crew caravan procured Aug 08, and partly equipped)
- Simulation and operations of activities
· Veoification campaign for design, operations, human/instruments protocol and planning tools
WP4.3 months (2 contracts 50 kEu) Analysis and simulated operations of two critical technologies
WP4.1- Design of test bench for habitat recycling (water, air, environment control, organics) and energy sustainability (collection, storage, conversion, utilisation, distribution)
WP4.2- Design of distributed system package for habitat testbench support of human communications, EVA and mobility, power distribution, physiology/science/exploration/environment monitoring instruments,
WP5 2 months (contract 50 kEu) ESA habitat testbed infrastructure and project planning
WP5.1 - Definition and planning of technical infrastructure at ESA sites for habitat test bed development and operations.
WP5.2 - preparation of field campaign activities in extreme and isolated terrestrial environment supporting Earth observation yaltdation, regional geophysical research and human/robotic exploration simulation

Short term plan 2008 Ongoing Procurement: Equipment and support units in habitat Instruments on mid-size rover and station Communications/control systems Multi cameras and sensor systems Integration personnel and students from partners institutions Co-funding master/ PhD students (Delft, Amsterdam, U. Wales, ENSAM, Cranfield, ISU, SEEDS) Personnel • Consolidate J. Page: few work days so far YGT request RF candidate Establish integrated team for january 2009 Consolidate roadmap with programmes TRP, GSP Support ExoMars., link Moon-NEXT, Mars NEXT, Cosmic vision Preparation for Techno demo lander mission HSF habitat activities, European Moon-Mars station (1 M\$)

Manpower & Equipment need for Skunkwork at ESTEC

Skills & Manpower 1. Permanent core team

1 skunkwork manager

- 1 staff responsible CDF
- 1 staff responsible for rapid prototyping/breadboarding
- 1 system engineer
- 1 logistic support
- 1 administrative support

2. Ad-hoc minipool team

4 to 6 people FTE with different expertise depending on needs

Equipment

- Multipurpose laboratories
- Concurrent Design and Bread boarding Facility (CDBF)
- Mobile Field Facilities (MFF)
- Multipurpose offices
- Social area
- => Complementary to ESTEC with extension of facilities accessible to partners

Phase 0 & 1- Internal & external support and users

Objective: Develop collaborative research

ESA/ESTEC Internal support identified:

TEC M. Guglielmi, A. Tobias= Technology strategy

P. Perol, JL Gerner, M. Tossaint = certification of navigation, applications

C. Lasseur= Habitats and life-support for Aurora,

C.Paille= Green house and food production

G. Visentin: robotics aspects

RSSD B.H. Foing and researchers = supervision of research incubator definition, stagiaires and students, contacts with partners

ESI incubator: A. de Clercq, F. Salzberger, S. Davies

CDF M. Bandecchi= expertise and access to CDF tools

SF S. Hovland= human systems and life support, link Aurora, surface ops.

M. Heppener= human physiology payload

EXR-EDU R. Walker: education hands-on projects

External SME partners

• E.g. NLR, Logica, Delft U. ,TomTom (navigation), MST Aerospace (clean energy), etc..

Skunk works concept

- Definition: fast-track activities for problem solving, design studies from concept to rapid prototyping and bread boarding, advanced design training and light R&D in interaction with students, industries and academies.
- **Focus:** Integrated engineering process, optimization, partner integration and knowledge exchange in support of European Space activities

4 generic functions:

- 1- Design studies: from concept to rapid prototyping
- 2- Design training: for students and industrials to new design processes/approaches
- 3- Tiger team: aggressive team of experts working non-stop on pb solving
- 4- Light R&D: support to ESA campaign, e.g. field campaign

Possible identified themes to start with:

- Design
- Science and robotics laboratory
- Human habitat
- Earth and Technology application demonstrations

ExoGeoLab Lander and Rover Instruments: Demo &Research RSSD research proposal

- Lead Scientist: B.H. Foing
- **Co-Investigators:** J.P. Lebreton (10%), T. Zegers,
- Scientific advice: A. Chicarro, D. Koschny, J. Vago, H.Svedhem, M. Fridlund
- Technical collaboration: G. Visentin (TEC), M. Guglielmi, M. Freire (TEC), J. Page (TEC), R. Walker (LEX-EDU), M. Sabbatini (HSF-Erasmus)
- Students at ESTEC in 2009: S. Peters, E. Monaghan, L. Boche-Sauvan, R. Ernst, J. Oosthoek, P. Mahaputra, F. Rulli, P. Batenburg, A. Noroozi, & Delft rover design team

Data analysis, demonstration towards to future planetary landers

- To continue current data analysis and interpretation of remote sensing data (MEX, SMART-1, VEX, Cassini-Huygens) and in-situ (Huygens, MER), and merging of multi-scale data sets
- Procurement and integration of geophysical, geochemical and astrobiological breadboard instruments in an surface station and rover (ExoGeoLab)
- Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations (Moon, Mars, NEO, Titan)
- Contribution to the exploitation of surface lander results (MER, Phenix, MSL, preparation Exomars)
- Scientific simulation of planetary surfaces using laboratory and modelling tools
- Support research for definition and design of science surface packages on the Moon, Mars, NEO, Titan
- Research support to community preparation of payload for surface lander opportunities

Scientific background, rationale and specific goals

- Characterising samples in –situ
- Surface science for Mars, Moon, Titan or planetary missions
- From global mapping via specific studies of localised regions until microscopic scales
- Studies of rocks and soil in situ, or with sample return missions
- Systematic multi-instruments protocols, characterisation diagnostics,
- Merging of data from various techniques (photogeology and mineralogical wide scale mapping have been performed to some extent previously so significant new surface science results may only come from co-ordinated multi-instrument operations operating from the surface.
- Constraints on the environmental conditions (chemistry, mineralogy, and morphology).
- Moon laboratory for geophysics
- Mars various processes controlling the distribution history of water
- Titan, validation of future compositional investigations of the solid surface or lakes, and their relation with the global atmospheric system.

Expected products and measure of excellence

- **Research and publications:** report and papers on concepts, methods, instruments, experimental results, science exploitation, research results from field campaigns at sites of geological interest (21 refereed papers and some 65 proceedings since 2005)
- Hardware instruments products: instruments demo suite
 Software and operational tools benefits: data handling, mapping, data merging, data analysis and planning surface instruments, remote control instruments operations
- Previous related research:
- Moon/Mars data analysis of SMART-1/Mars Express and other missions data
- production and analysis of samples for Interplanetary/space exposure (exposure of organics in space, Biopan2005, Expose –R 2008) & ground simulation
- exploitation of simulation chambers for Mars conditions (mineral and organic diagnostics)
- studies and characterisation of possible landing sites for Moon or Mars missions
- Benefits to ESA space missions:
- science and measurements preparation and validation for planetary lander missions
- (ExoMars, Cosmic Vision, Exploration Moon-Mars landers) merging between orbiter data and ground truth landers
- <u>merging</u> between orbiter data and ground it
- collaboration in science exploitation
- Training of young researchers: the ExogeoLab pilot facility is already being used with academic research collaborators

Benefit to community

- Feed back for definition, design, science operations and joint data analysis of surface packages of instruments for future Cosmic Vision studies or ESA Robotic Exploration (link ExoMars mission and Moon/Mars lander demos)
- Previous collaborations and publications with external institutes:
- Leiden U., DLR planetary institute and Free U. Berlin, VU Amsterdam, Utrecht Univ., Delft U., IPG Paris, U Wales Kent University, Kiev U., Brown U., NASA Ames, JPL, ASU, Florida Tech, GSFC
- Ongoing collaborations with ESTEC colleagues: ESTEC skunks pilot support, robotics section, Thermal Life support Div., ESA HSF human /machine performance, ESA education

Benefit to department(s), including cross-department/discipline potential:

- ESA space science Cosmic Vision 2015-2025, and new ESA exploration programme
- Moon, Mars, Titan, planetary Moons and solar system bodies.
- Accessible research facility and science environment for hands-on research for SRE scientists, in collaboration with other ESA researchers.
- It can be used from all RSSD sites via teleoperations and data analysis, and also for specific investigations campaigns in-situ.
- RSSD proposers : BHF developed ground work, and financial and administrative support from ESTEC and ESTEC skunks pilot project (+ integrated partners)
- Hands on research for study and project scientists,
- Synergies with ESAC planetary scientists, and SRE-PA

	ExoGeoLab pilot phase 1 B
	(Jan- Dec 2010, 160 kEu)
	science exploitation of ExoGeoLab pilot by RSSD/ external partners procurement and installation of new instruments developed with partners, system test at
	ESTEC Adaptation, material cost, installation, technical support for 7 partners equipments packages (7x20 kEu)
•	CAM-1: low mass imaging systems for panoramic context, highres imaging, and monitoring
•	ROVER-1 upgrade of ExoGeoRover instrumentation package
•	PHYS-1: geophysics package (seismometer, heat flow)
	CHEM-1: geochemistry package breadboard for small lunar and planetary landers SUBWATER-1: sub-surface water detection system: permittivity, radar
	DRILL-1: robotic drills (drill, mobile elements, analysis systems)
•	BIO-1: organics and biological sensors package
•	Arctic field test (Devon Island or Svalbard) with portable ExoGeoLab facility (20 kEu)

ExoGeoLab activities phase 2 (Jan 2011 – Dec 2011, 125 kEu)

Science exploitation autonomous portable ExoGeoLab facility : 20 kEu Use as facility in ESTEC ; Use in Field tests with partners; Science validation and exploitation of techniques

 Support to design enhancement and development of robust integrated breadboards (3x30 kEu):
 GEOPHYS-2: geophysics autonomous package heat flow, seismometers
 DLR

 Berlin/IPGP
 DLR
 DLR

- <u>GEOCHEM-2</u>: package application to small lunar and planetary landers
- ROVER- 2: breadboard rover with arm, mole and micro-instruments
- TU/open U

Possible integration of additional instruments being developed by partners or SRE-PA (15 kEu) neutron sensors: application to ice detection on Moon-Mars

Delft

low mass X-rays: X-ray fluorescence diagnostics of elemental composition

 Possible follow up 2010+ (funded by community): Development of surface instruments for lander opportunities

