International Symposium Marco Polo Paris, May 19th, 2009

A primordial xenolith with unaltered organic matter in the chondrite Isheyevo: memory from the solar nebula

G. Briani^{1,4}, M. Gounelle¹, Y. Marrocchi¹, A. Meibom¹, S. Mostefaoui¹, H. Leroux², E. Quirico³

¹Laboratoire de Minéralogie et Cosmochimie du Muséum, CNRS UMR7202, MNHN, Paris, France
 ²Laboratoire de Structure et Propriétés de l'Etat Solide, UST, Lille, France
 ³Laboratoire de Planétologie de Grenoble, Université Joseph Fourier, CNRS/INSU, Grenoble, France
 ⁴Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Italy

Mezo Madaras (L3.7)

The carbonaceous chondrite Isheyevo

The carbonaceous chondrite Isheyevo

— 1 mm

2 sections, ~ 10×20 mm² each, more than 100 xenoliths

Primordial Xenolith #18

TEM sections preparation by Focused Ion Beam

No phyllosilicates detected

Primordial, unaltered mineralogy

similar to anhydrous CP IDPs and Wild2 samples

 $2\,\mu m$

NanoSIMS measurements

First session 5 Isheyevo xenoliths $^{1}\mathrm{H}^{-}$ $\rightarrow D/H$ ²H-Second session 4 Isheyevo xenoliths $^{12}C^{-} \longrightarrow ^{13}C$ 13**C**- ${}^{12}C^{14}N^{-1}$ $12C^{15}N^{-12}$

Primary beam: Cs⁺ ~ 4 pA for 40×40 μm images ~ 1 pA for 10×10 μm images

Spatial resolution: $\sim 100 - 200 \text{ nm}$

Mass resolution: ~ 2000 for D/H ~7500 – 8000 for C and N

Standards: kerogene type III

```
256x256 pixels images
```


¹⁵N enrichments in PX-18

$$\delta^{15}N = \left(\frac{{}^{15}N/{}^{14}N}{\left({}^{15}N/{}^{14}N\right)_{AIR}}\right) \times 1000$$

Areas with $\delta^{15}N < 0 \%$

What are hotspots ?

What is the ¹⁵N enrichments carrier phase?

- Hotspots larger than mineral phases they correspond.
- No single phases common to all hotspots.
- Large areas with diffuse ¹⁵N enrichments.

¹⁵N enrichments are probably carried by macromolecular organic matter

cf Aléon et al 2003; Busemann et al 2006; Floss et al 2006.

Organic Matter in PX-18

Organic Matter in PX-18

D-diagram: low thermal metamorphism

Organic Matter in PX-18

G-diagram: disordered carbon

Fractionation of light elements

Isheyevo xenolith 18: extreme N fractionation, no D enrichment

N fractionation

Low temperature ion-molecule reactions in dense cloud cores

Rodgers & Charnley 2008

 $\delta^{15}N \geq 3000\%$

 $n_{H_2} \sim 10^6 \text{ cm}^{-3}$ T = 7 K CO depletion

 $D/H \ge 0.3$ (Roberts et al 2003)

N fractionation by self-shielding in the solar nebula?

Conclusion

Isheyevo xenolith #18:

<u>2</u>0 µm

- 1. Unaltered mineralogy: a giant IDP? Related to Wild2-type material?
- 2. The widest range for N isotopic composition measured in Solar System matter (max $\delta^{15}N = 4900 \pm 300\%$). No D enrichment.
- 3. Diffuse organic matter that suffered low thermal metamorphism: the ¹⁵N enrichment carrier phase?

PX-18 is a sample with unique properties, probably a new type of extraterrestrial material, coming from a parent body different from known meteorites parent bodies.

> EHT = 15.00 kV WD = 9 mm

PLUS

- Wild2 grains (Zolensky et al 2006 and 2008) CP IDPs (Bradley 2004) have no phyllosilicates.
- En and Fo are the most common silicate in CP IDPs (Bradley et al 2004)

¹⁵N variations in PX-18

	$\delta^{19}N$					
<u>5μm</u>	2500	40×40 μm ² image	area (µm ²)	$\delta^{15}N_{mean}$ (‰)	$\delta^{15}N > 250\%$ (% area)	hotspots
	2000	g_31	394.6	140 ± 13	34.26	3
	1500	g_32	541.2	630 ± 20	92.63	10
	1000	g_33	507.6	700 ± 17	95.76	2
	500	g_41	1218.9	220 ± 9	35.89	7
	500	g_42	1082.1	640 ± 11	89.67	16
	0	g_48	888.6	110 ± 20	23.48	7
	-500	g_49	601.4	30 ± 22	28.78	0
	_1000	g_53	995.8	80 ± 17	28.26	1
	-1000					

$40{\times}40\ \mu\text{m}^2\ \text{image}$	area (µm ²)	$\delta^{15} N_{mean}$ (‰)	$\delta^{15}{ m N}{<}0$ ‰ (% area)
g_31	394.6	140 ± 13	27.42
g_32	541.2	630 <u>+</u> 20	1.05
g_33	507.6	700 ± 17	0.79
g_41	1218.9	220 ± 9	29.95
g_42	1082.1	640 ± 11	1.45
g_48		110 ± 20	43.18
g_49	601.4		
		80 ± 17	46.67
\mathcal{O}_{\perp}			

Raman spectra of Organic Matter

Organic Matter in PX-18: row evaluation of N content

1.80

N ppm

Pre-solar grains

C and N isotopic composition would indicate an abundant amount of SiC-X rare grains_____

NanoSIMS standard measurements: Nitrogen

xenoliths CR-CI – like

xenoliths CM – like

Olivine rare (Fo% = 97) Pyroxene: common (En% = 90-95, Wo% = 1-4) Carbonate: rare (calcite) Magnetite: very abundant Fe-Ni sulfide: no Metal: common <u>Matrix: phyllosilicates</u>

Olivine:

common (Fo% = 73 - 98) Pyroxene:

common (En% = 77-91, Wo% = 0.2 – 4) Carbonate: no Magnetite: rare Fe-Ni sulfide: common (pyrrhotite) Metal: common <u>Matrix: phyllosilicates</u>

Isotopic composition: bulk C and N 1200 Isheyevo bulk Isheyevo • 1000 magnetic fraction (%) 800 $\delta^{15} N_{AIR}$ (' 600 Wild₂ **IDPs** 400 Ishevevo xenoliths 200 Isheyevo IOM non magnetic 0 -200 _____ -100 150 -50 50 100 (%)Isheyevo measures: average values on 40×40 µm² Isheyevo bulk, magnetic and non-magnetic fraction: Ivanova et al. (2007) MAPS, 42, A75, #5164 **IDPs: Floss et al, GCA, 70, 2371, 2006** Wild2: McKeegan et al, Science, 314, 1724, 2006 Insoluble Organic Matter: Busemann et al, Science, 312, 727, 2006

NanoSIMS standard measurements: Carbon

NanoSIMS standard measurements: Hydrogen

The ¹⁵N-rich xenolith #18

Fractionation of light elements

N fractionation

- Low temperature ion-molecule reactions-
- Self-shielding (?)

H fractionation (Sandford et al. 2001)

• Low temperature gas phase ion-molecule reactions

• Low temperature gas-grain reactions

Since the grain mantles in dense clouds represent a much larger fraction of the total reservoir of material than does material in the gas phase (H_2 excepted), grain surface processes are likely to be far more important for the total D fractionation in dense clouds than ion-molecule reactions.

- Gas phase unimolecular photodissociation
- UV photolysis in D-rich ice mantles

ule reactions However, this process only operates on molecules in the gas phase, and the majority of species are condensed onto grains at the low temperatures where fractionation is significant. Thus, while ion-molecule reactions clearly contribute to D fractionation in the interstellar medium, they may not be the main contributor to the bulk fractionation of D in dense clouds.

Rodgers & Charnley 2008:

 $\delta^{15}N \geq 3000\%$

The mechanism of self-shielding

(coutesy of Matthieu Gounelle)

- For a given UV flux, photoabsorption takes place until a certain distance within the molecular cloud (depends on the column density)
- ☆ C¹⁶O being the most abundant molecule, photoabsorption takes place only in the outside skin of the molecular cloud [UV flux at specific wavelengths is totally absorbed]: <u>self-shielding!</u>

C¹⁶O dissociation in an outer skin

 $C^{17}O$ and $C^{18}O$ dissociation inside the whole MC

