Spitzer Observations of Spacecraft Target 162173 (1999 JU₃)

Humberto Campins^{1,2,3}, Yan Fernández¹, Michael Kelley¹, Javier Licandro², Marco Delbó³, Antonella Barucci⁴ Elisabetta Dotto⁵

Spitzer Observations of Spacecraft Target 162173 (1999 JU₃)

Humberto Campins^{1,2,3}, Yan Fernández¹, Michael Kelley¹, Javier Licandro², Marco Delbó³, Antonella Barucci⁴ Elisabetta Dotto⁵

University of Central Florida, Orlando, USA
Instituto de Astrofísica de Canarias, Spain
Observatoire de la Cote d'Azur, France
Observatoire de Paris, France
INAF, Osservatorio Astronomico di Roma, Italy

Outline

- I. Introduction
- **II.** Observations and initial results
- **III.** New constraints on surface properties
- **IV.** Conclusions

Conclusions:

- Thermal inertia (700 Jm⁻²s^{-0.5}K⁻¹) characteristic of pebble-sized surface (mm to cm), similar to asteroid 25143 Itokawa
 - Our observations rule out the low thermal inertia case allowed by previous observations
 - Our evidence against a fine regolith is NOT very dependent on spin axis orientation
- Significant differences with color temperatures of Hasegawa et al. 2008, could be explained by a spin-pole orientation different from that in Abe et al. (2008)

I. Introduction

- Mid-infrared (5-38 μ m) flux from asteroids is dominated by thermal emission
- Observed Spitzer spectra diagnostic of:
 - Size
 - Composition
 - <u>Temperature distribution</u>

I. Introduction

- Mid-infrared (5-38 μ m) flux from asteroids is dominated by thermal emission
- Observed Spitzer spectra diagnostic of:
 - Size
 - Composition
 - <u>Temperature distribution</u>
 - This last term depends on:
 - albedo
 - <u>thermal inertia</u>
 - surface roughness
 - rotation rate and **spin-pole orientation**

II. Observations and initial results

- 5-38 μm spectrum (Infrared Spectrograph on NASA's *Spitzer* Space Telescope on UT May 2.084, 2008)
 - Spectrum has four segments
 - 5.2–8.5 µm (SL2)
 - 7.4–14.2 µm (SL1)
 - 14.0–21.5 µm (LL2)
 - 19.5–38.0 µm (LL1)

Systematic discrepancy of 10% between the fluxes of overlapping wavelengths in the SL and LL orders \rightarrow temperature uncertainty

II. Observations and Initial Results: Diameter and thermal inertia

Model	Scaling	Diameter ^(†)	η	Γ $(Jm^{-2}s^{-0.5}K^{-1})$	$p_V^{(\ddagger)}$
		(km)		(<i>JM</i> 3 A)	
NEATM	no scaling	0.97 ± 0.15	1.90 ± 0.17		0.06 ± 0.01
NEATM	scaled orders	0.91 ± 0.14	1.63 ± 0.15		0.07 ± 0.01
TPM	no scaling	0.97 ± 0.15		~1500 (Fig. 2)	0.06 ± 0.01
TPM	scaled orders	0.90 ± 0.14		700 ± 100	0.07 ± 0.01

II. Observations and Initial Results: Diameter and thermal inertia

- Thermal inertia (700 Jm⁻²s^{-0.5}K⁻¹) characteristic of pebble-sized surface (mm to cm), similar to asteroid 25143 Itokawa.
- We rule out the low thermal inertia case allowed by previous observations

Our evidence against a fine and mature regolith is NOT very dependent on spin axis orientation

- Our evidence against a fine and mature regolith is NOT very dependent on spin axis orientation
- Even if we had unknowingly observed with pole-on geometry, the thermal model would yield a lower thermal conductivity, and the true value would be even higher, i.e., indicative of an even rockier surface

- Our estimates of diameter and geometric albedo of asteroid 161273 1999 JU₃ are consistent with those of Hasegawa et al. (2008)
- However, significant differences with color temperatures of Hasegawa et al. (2008), could be explained by a spin-pole orientation different from that in Abe et al. (2008)

- Asteroid 161273 1999JU₃ fits well the trend of increasing thermal inertia with decreasing asteroid diameter (Delbó et al. 2007)
- i.e., most or all small NEAs will not have a fine-grained regolith

Conclusions:

- Thermal inertia (700 Jm⁻²s^{-0.5}K⁻¹) characteristic of pebble-sized surface (mm to cm), similar to asteroid 25143 Itokawa
 - Our observations rule out the low thermal inertia case allowed by previous observations
 - Our evidence against a fine regolith is NOT very dependent on spin axis orientation
- Significant differences with color temperatures of Hasegawa et al. 2008, could be explained by a spin-pole orientation different from that in Abe et al. (2008)

Significant color temperature differences between Spitzer spectrum and **Akari and** Subaru photometry (Hasegawa et al. 2008)

2-4 Micron Spectra of 24 Themis (Rivkin and Emery 2008 and Campins et al. 2009)

Absorption due to **water ice**, not due to hydrated silicates