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Asteroid mass, density, gravity field, orbit
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Radio-Science Method

• Two-way radio link between the spacecraft and Earth using the 
spacecraft´s radio subsystem and radio carriers at two 
frequencies: X/X and X/Ka

• Observables: 

- Carrier frequency shift due to relative motion between 
spacecraft and ground station on Earth (Doppler => relative 
velocity)

- Propagation time of coded (ranging) signal => distance 
between spacecraft and ground station 
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Space Segment

• Instrumentation onboard the Marco Polo spacecraft:
X/X transponder
X/Ka transponder  
Reception/transmission via High Gain Antenna (HGA)
RF power: X-band xx Watt; Ka-band 2.5 Watt

• Spacecraft will be configured and operated in the two-way radio 
link mode
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Ground Segment
• 35-m antenna structure; (New Norcia) and Cebreros
• Cebreros is equipped with Ka-band receivers/transmitters
• up/down-link converter chains
• Intermediate Frequency Modem System (IFMS) to transmit,

receive and record radio signals parameters:
•Doppler
•Ranging
•Signal Power (AGC)
•Meteo data
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Science Objectives
• Geophysical characterization of the asteroid

– mass, bulk density
– for a close orbiter: 

• gravity field; low degree and order
• Comparison with computed gravity coefficients
• => first idea of internal structure

• Precise determination of heliocentric orbit
– By orbiting or escorting
– By beacon on the surface
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strategy

• Pre-arrival determination of shape and first order rotational state 
by optical instruments required

• => first estimate of the volume, assume density 
=> first mass estimate; required for approach navigation

• Have some close and/or slow flybys (drift-bys) for a mass 
determination in the 10%....1% accuracy range

• Depends on   v0*d  , noise, initial mass estimate, asteroid 
ephemeris and geometry

• Good mass determination required for going into bound orbit



R
os

et
ta

_C
D

\P
R

\w
ha

t_
is

_R
S

_v
4.

pp
t, 

19
.0

6.
20

09
 1

7:
59

A
M

, 7

Asteroid flybys - geometry
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MEX/Phobos flyby, 17th July 2008

GM = 0.7120 ± 0.0006 x10-3 km3/sec2  (error 0.08%)   (1σ)
Based on JPL Phobos ephemeris from Jacobson, 2008

Δf = -35.03 ± 0.06 mHz
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Rosetta/Lutetia Flyby 2010 - simulation
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Rosetta/Lutetia Flyby 2010 - simulation

no
tc

ov
er

ed

estimated
mass
error 4%
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Drift-bys at very small bodies: GM accuracy
.
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Example: radius 2.5 km
noise 20 μm/s
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Drift-bys at very small bodies: GM accuracy
.
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Example: radius 2.5 km
noise 20 μm/s

drift 1000 m/s
distance 100 km
mass error 30%
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Drift-bys at very small bodies: GM accuracy
.
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Example: radius 2.5 km; density 2 g/cc
noise 20 μm/s

drift 1000 m/s
distance 10 km
mass error 3%
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Drift-bys at very small bodies: GM accuracy
.
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Example: radius 2.5 km; density 2 g/cc
noise 20 μm/s

drift 100 m/s
distance 10 km
mass error 0.3%
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Initial Mass Determination

• The mass accuracy is iteratively improved by more and closer 
flybys (drift-bys)

• Once the mass is sufficiently well known, the spacecraft may be 
injected into a bound orbit; the mass may now be determined with
even higher accuracy

• The bulk density follows from the volume and mass determination
• The driver for the density accuracy is the volume determination 

which is from experience less precise than the mass 
determination

• Low degree and order gravity field may be determined from 
orbiting, but is challenging for small bodies
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Radio Science Simulator (RSS)
• Developed by Universität der Bundeswehr München
• Software based on MATLAB / SIMULINK; User friendly graphical 

interfaces
• Planning and analysis of Radio Science observations
• Main computation tasks:

• State vectors of spacecrafts
• Planetary ephemeries
• Ground station visibilities
• Occultations (planetary, solar)
• Spacecraft attitude control maneuver  for Bistatic Radar and 

occultation measurements
• Doppler und Ranging predicts based on planning or reconstructed 

orbits
• Simulation of orbits about planetary bodies assuming models of the 

planetary body and of gravitational and non-gravitational forces 
acting on the spacecraft
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Simulation of orbits about small bodies

Example of simulated s/c orbit
considering the heliocentric orbit
of small body, potential gravity
field, non-gravitational forces

Body-fixed coordinate system
body rotates about small axis
s/c terminator orbit

Simulation study for Don Quichote; terminator orbit of a 400 m size body
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same orbit as seen from
inertial reference frame

Simulation study for Don Quichote; terminator orbit of a 400 m size body
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surface coverage
over a time range
of 14 days

simulation study for Don Quichote; terminator orbit of a 400 m size body
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Simulation study for Don Quichote; terminator orbit of a 400 m size body

X/X noise
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Gravity field acceleration

GM

C20C22

radiation pressure
1AU
2AU

2000 m size object
axis ratio 2:1:1
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asteroid orbit

• Spacecraft tracking during prime mission
– improved ephemeris; important for improved spacecraft orbit
– improved received frequency prediction and residuals; 

extracted gravity field

• Radio beacon on the asteroid surface
– radio tracking of asteroid
– precise orbit determination
– rotational states =>  hints on internal structure
– orbit perturbations



R
os

et
ta

_C
D

\P
R

\w
ha

t_
is

_R
S

_v
4.

pp
t, 

19
.0

6.
20

09
 1

7:
59

A
M

, 2
3

method

• Two-way X/X transponder on the surface (LaRa type)
• Transmission RF power: 1 – 3 watts
• Beacon antenna: omni-directional dipole with 0.7 dBi gain
• Ground stations: 35-m dish (NNO-type); 70 m dish (DSN)
• Example: Asteroid Wilson-Harrington, a = 2.64AU, e = 0.62
• Geocentric distances: very close Earth distances to 3 AU 
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received signal power

35-m G/S

70-m G/S
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Conclusions
• Radio Science Group Cologne/Munich may provide support for

planning and feasibility assessments of potential Marco Polo orbit
scenarios

• Radio Science experiment on Marco Polo may characterize
physical parameters of the asteroid: mass, bulk density, rotation, 
interior....

=> important for further study of surface material

• Long duration orbiter or surface beacon may be used for
precise determination of heliocentric orbit => potential hazard?


