The Search for Methane Gas Emission Features in Nili Fossae, Syrtis Major, and Isidis Planitia, Mars

Goro Komatsu^{1, 2}, Gian Gabriele Ori¹, Marco Cardinale¹

¹International Research School of Planetary Sciences, Universita' d'Annunzio, Pescara Italy ²Planetary Exploration Research Center, Chiba Institute of Technology, Narashino Japan

James Dohm^{3, 4}, Vic Baker³

³Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ USA ⁴The University Museum, University of Tokyo, Tokyo 113-0033 Japan

> David Vaz⁵ ⁵Centre for Geophysics, University of Coimbra, Coimbra Portugal

Noriyuki Namiki², Takafumi Matsui² ²Planetary Exploration Research Center, Chiba Institute of Technology, Narashino Japan

Methane concentration in the Martian atmosphere:

Seasonal dependency

High during the northern summer but low during the northern winter (Geminale et al., 2008; Mumma et al. 2009)

Geographical restriction

(e.g., Mumma et al. 2009: plumes at -30°S-30°N, 260-330°W)

Methane emission on Mars:

- Still unsolved question.
- Effect of season-dependant solar illumination?
- Decomposition of methane clathrate?
 (e.g., Ori et al., 2000; Prieto-Ballesteros et al. 2006; Chastain and Chevrier, 2007; Elwood Madden et al., 2007)

Production process(es)? Emission through history

Geological investigation of emission-rich zones

Proposed gas- and gas hydrate-related geomorphic processes on Mars:

The processes involve fluid, ice, gas, clathrate, and detritus.

Bulge/mound formation
(Ori and Baliva, 1999; Ori et al., 2000; Ori et al., 2001)

Chaotic terrain formation
 (Komatsu et al., 2000; Rodriguez et al., 2006)

Syrtis Major

Nili Fossae

Isidis Planitia

Nilli Fossae:

 Nilli Fossae is characterized by a wide variety of minerals including olivine, philosilicates, serpentine, silica, and carbonate.

Non-biogenic production of methane? (e.g., Lyons et al., 2005; Oze and Sharma, 2005)

Ehlmann et al. (2009), LPSC abstract, #1787

Syrtis Major

 Syrtis Major is a volcanic zone characterized by probable lava flow units.

THEMIS Daytime IR

THEMIS Daytime IR

HRSC image

CTX image

Isidis Planitia:

- Isidis Planitia is a large ancient impact basin. There are a number of mounds (a few hundreds meters wide) extensively distributed on the basin floor.
- The proposed origins of the mounds include pseudocraters, peri-glacial features, volcanoes and mud volcanoes.

THEMIS Daytime IR

HRSC image

10 kn

CTX image

Isidis Planitia plains units Early Amazonian (Tanaka et al., 2005)

CTX image

Isidis Planitia mounds

Bridges et al. (2003)

Possible origins of the mounds in Isidis Planitia

- Pseudocraters (e.g., Frey and Jarosewich, 1982)
- Peri-glacial features

 (e.g., Grizzaffi and Schultz, 1989;
 Rossbacher and Judson, 1981;
 Witbeck and Underwood, 1984)
- Volcanic cones (e.g., cinder cones/tuff cones) (e.g., Plescia, 1980; Hodges and Moore, 1994; Bridges et al., 2003)
- Mud volcanoes (e.g., Davis and Tanaka, 1995; Tanaka et al., 2000; Ori et al. 2001)

Terrestrial analogues

Pseudocraters

Pingos

Volcanic cones

Mud volcanoes

Isidis Planitia mounds

HiRISE images

Isidis Planitia THEMIS Nighttime IR + CTX image

Conclusions

- Recent spacecraft and telescopic observations revealed seasonal and geographical characteristics of the atmospheric methane distribution on Mars.
- The methane-rich regions have landforms/mineralogy with possible implications for past methane-related geological processes.