METASTABLE METHANE CLATHRATE PARTICLES AS A SOURCE OF METHANE TO THE MARTIAN ATMOSPHERE

E. Chassefière LATMOS-IPSL/ UVSQ-CNRS-UPMC eric.chassefiere@latmos.ipsl.fr

Workshop on Methane on Mars: Current Observations, Interpretation and Future Plans, 25-27 November 2009, ESA/ESRIN in Frascati, Italy.

Why a seasonal cycle of methane?

Why a general H₂O/CH₄ correlation, as seen by PFS from orbit... Data from Geminale et al. 2008

Chassefière, 2009

... and not contradicted by recent Earthbased measurements?

Mumma et al., 2009

Montmessin et al., 2004

Our hypothesis to solve the mystery

- How can the atmospheric H₂O distribution, controled by meteorology, be correlated with the CH₄ distribution if CH₄ is produced by fixed sources at the surface?
- One possible solution : gaseous CH_4 is produced in the atmosphere by a process involving H_2O .
- If so, the source is necessarily solid :
 - Methane ice? NO
 - Adsorbed methane? NO
 - Clathrates? POSSIBLE IF STABLE

Methane clathrate hydrate

- CH₄ molecules trapped in water molecules cavities : CH₄-5.85 H₂O.
- Form at high pressure (e.g. ocean groundfloor on Earth), but <u>NOT</u> in Mars atmosphere.
- May form at depth in Mars crust, at <u>p>1</u> <u>bar</u>.

« Anomalous preservation » of clathrates

Ultra-stability of very pure clathrate crystal agregates (Zhang and Rodgers, 2008): 268 K during 10 days.

Release of methane clathrate particles

- 1- Formation of clathrate in the crust at high (lithostatic) pressure.
- 2- Fracturation of subsurface by tectonics, yielding local macroporosity.
- 3- Erosion of (friable) clathrate host framework and uplift of particles.
- 4- Release to the atmosphere of (ultra-stable) clathrate particles.

Possible destabilizing effect of water condensation

- Small clathrate particles (<1 µm), lifted up to ≈50 km, may serve as condensation nuclei (second mode observed on Viking images by Montmessin et al, 2002?)
- Hypothesis : Condensation of H₂O on clathrate particles above the hygropause (z> 20 km) → destabilization of clathrate to gas phase (by which mechanism : latent heat release, disruption of crystalline structure?)
- <u>Needs to be studied and validated by</u> <u>experimental works in Martian conditions (never</u> <u>done).</u>

What would our hypothesis explain?

- The seasonal cycle of methane (low level during fall/winter, followed by sharp increase at spring)
- The general H₂O/CH₄ correlation
- A mesospheric source for gaseous methane (as suggested by limb PFS results)

What would our hypothesis imply?

- First observational evidence of clathrates on Mars.
- Some correlation between gaseous CH₄ (controled by dynamics) and <u>mesospheric</u> H₂O (controled by both dynamics and condensation). Not straightforward (Help, GCM!)
- A partial or total loss of the memory of the (clathrate) source distribution at the surface due to atmospheric redistribution of clathrates.

Sink of gaseous methane

- Strongly inhomogeneous CH₄ : Lifetime < 200 days (Lefèvre and Forget, 2009).
- The oxidant could be H₂O₂ (or grains oxidized by H₂O₂) in the subsurface.
- Example of Haber-Weiss iron-catalyzed reaction, able to produce OH (but does it work in the absence of liquid water?)

The decomposition of H_2O_2 in soils may proceed through a number of mechanisms, the first of which can be most simply described by reactions 2-5:

$$-Fe^{3+} + H_2O_2 \rightarrow -Fe^{2+} + O_2^- + 2H^+$$
 (2)

$$O_2^- + -Fe^{3+} \rightarrow -Fe^{2+} + O_2$$
 (3)

$$O_2^- + -Fe^{2+} + 2H^+ \rightarrow -Fe^{3+} + H_2O_2$$
 (4)

$$-Fe^{2+} + H_2O_2 \rightarrow -Fe^{3+} + OH + OH^-$$
 (5)

Here, $-Fe^{3+}$ represents iron in a liganded form or occupying a site at an oxide surface.⁸⁻¹⁰ The sum of reactions 2-5 represents the Fe-catalyzed Haber-Weiss reaction

$$O_2^- + H_2O_2 \rightarrow O_2 + OH + OH^-$$
(6)

If the OH generated in reaction 6 reacts exclusively with H₂O₂

$$OH + H_2O_2 \rightarrow H_2O + O_2^- + H^+$$
 (7)

the net reaction becomes

$$2H_2O_2 \rightarrow O_2 + 2H_2O$$
 (8)

Petigara et al, 2002

- Oxidation budget : $CH_4 + 4H_2O_2 \rightarrow CO_2 + 6H_2O_2$
- 1 CH₄ removes 4 H₂O₂: ≈20 nmol H₂O₂ cm⁻² yr⁻¹ → 2 yr lifetime for H₂O₂, less than 1 cm depth.
- Centimetric (not metric) oxidation layer

What could be done in the future?

\Rightarrow Laboratory measurements :

- Check and characterize clathrate metastability in Martian conditions.
- Study the decomposition of clathrates in presence of condensing H_2O .
- Study the kinetics of methane oxidation by adsorbed H₂O₂ in presence of iron-rich minerals (Haber-Weiss-type reaction)

\Rightarrow Modelling :

- Decomposition of clathrate particles in presence of condensing water.
- GCM simulations of methane cycle (coupled with water cycle).

\Rightarrow Space observation :

- Search for and characterize from future orbiters the second mode particle population (<1 μm) in Martian atmosphere.
- Characterize from future landers the oxidation state of the superficial regolith, with a sub-centimetric vertical sampling capability