"Photochemically Induced Formation of Mars-Relevant Oxygenates and Methane from Carbon Dioxide and Water"

M. Wecks, M. Bartoszek, G. Jakobs, and D. Möhlmann

ESA / ESRIN, Frascati, 25. – 27.11.2009

(Photo)Chemistry – a Source for Methane?

→ by reduction of oxygenates (CO₂, HCHO, and other)

Reduction (non-radical)

$$CO_2$$
 $\xrightarrow{+ H_2}$ HCOOH $\xrightarrow{+ H_2}$ HCHO $\xrightarrow{+ H_2}$ CH₃OH $\xrightarrow{+ H_2}$ CH₄

A probably way is a reaction via radicals formed by UV-radiation or photocatalysis.

$$CO_2$$
 \longrightarrow HCOOH \longrightarrow HCHO \longrightarrow CH_3OH \longrightarrow CH_4 C_2 and C_3 molecules (recombination of radicals)

Reaction Conditions and Equipment

Reaction cell with quartz window, volume: 53 ml

UV-radiation: HBO 100 (mercury short arc light source, 100 watt)

Radiation time: up to 5 hours

Temperature: room temperature (25 °C) or 70 °C

Solid / Catalyst: hematite, synthetic Fe₂O₃ as nanomaterial, TiO₂

Atmosphere: CO₂; 2% CO₂ in He

Pressure: 1013 mbar

Water: 0 ··· 70 µl per cell volume (as moistened hematite)

~3 µl results in a saturated atmosphere at

room temperature

Measurement Set-up

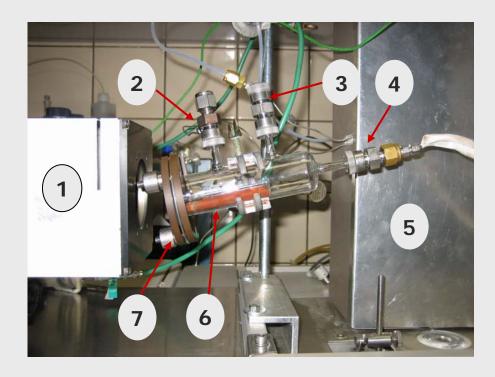
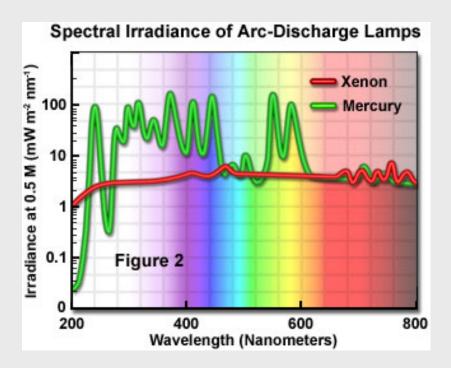


Photo of measurement set-up including analytic system


- (1) Mercury short arc lamp
- (2) Helium-inlet for flushing or injection
- (3) Septa for injection
- (4) Cell outlet (to analyzing system)
- (5) Valves for injection to analytic system
- (6) Reaction cell with Hematite sample
- (7) Quartz window

Equipment

Spectral irradiance of a mercury short arc lamp

Quartz shell with hematite

Analysis

Gas chromatography with mass spectroscopy

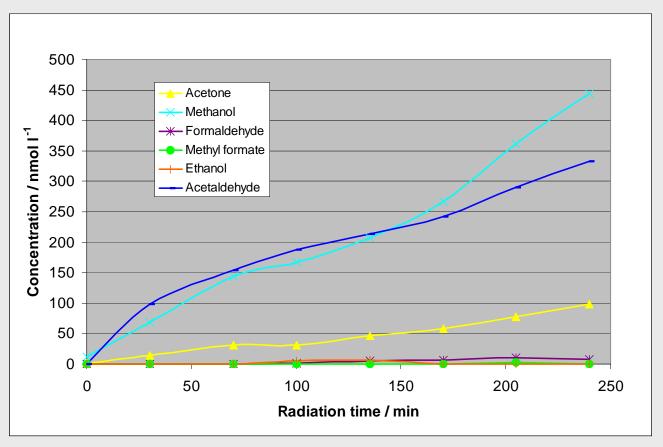
Simultaneous qualitative determination of all components

Quantitative determination of methanol, formaldehyde, carbon dioxide and further oxygenates (C_2 and C_3 components)

Quantitative determination of methane by modification of analytical system

Analysis of gas phase:

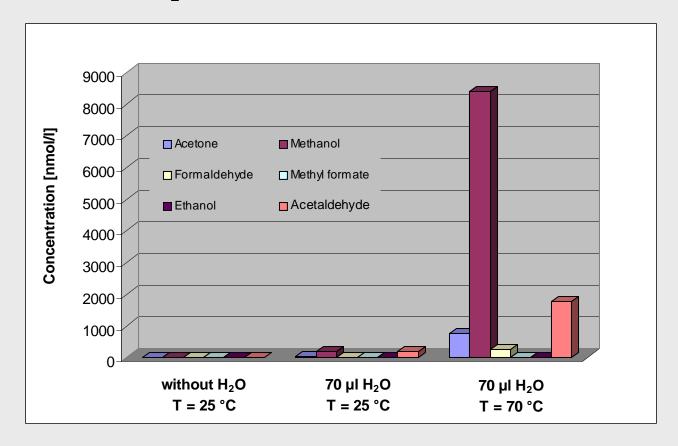
- > at reaction temperature (on-line),
- gas phase after thermal desorption at 70 °C ("adsorbed" molecules at surface of solids)



Influence of Radiation Time

Reaction conditions: CO₂ atmosphere, Hematite with 70 µl H₂O

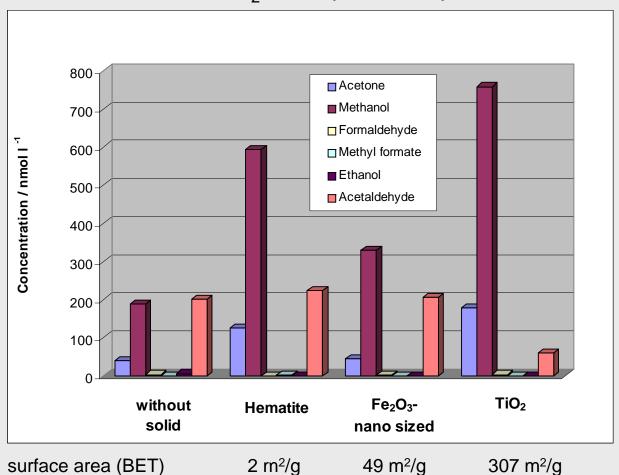
→ Same products with similar distribution



Influence of Reaction Temperature

Reaction conditions: CO₂ atmosphere, Hematite, 2 h radiation time

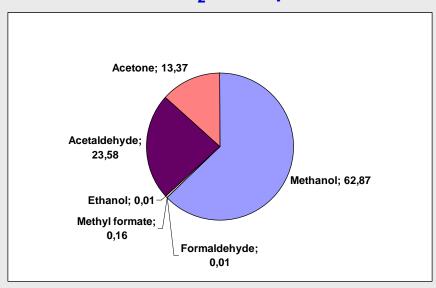
→ Same products with similar distribution

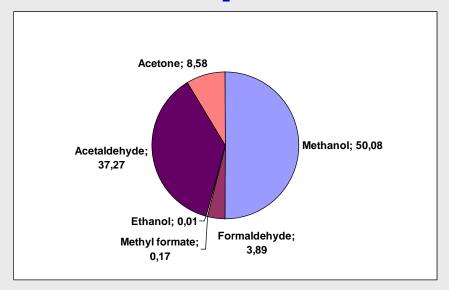



Influence of Solid / Catalyst

Reaction conditions: CO₂ atmosphere, 70 µl water, 2 h radiation time

- Formation of products by gas phase reaction
- No influence of inner surfaces
- Solid as a possible catalyst



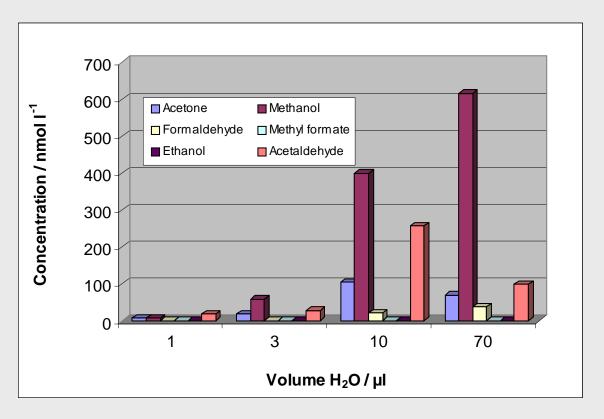

Influence of CO₂ Concentration

Reaction conditions: Hematite with 70 µl H₂O, 2 h radiation time

Pure CO₂-atmosphere

2 % CO₂ in He

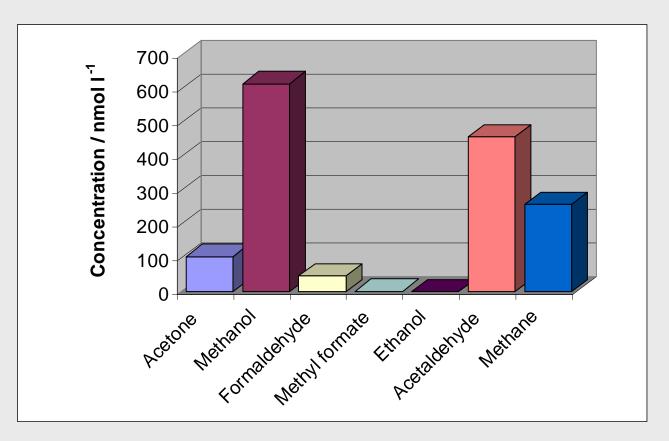
→ Same products with similar concentrations



Influence of Water Content

Reaction conditions: 2 % CO₂ in helium, Hematite, 2 h radiation time

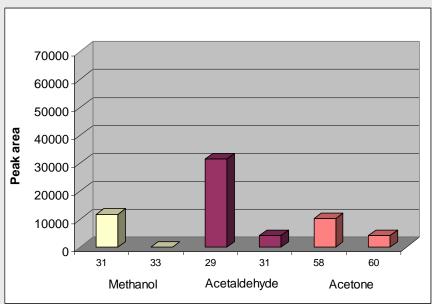
→ Without water no reaction, with 1 µl water favored formation of acetaldehyde, with 3 – 70 µl water formation of same products with similar distribution



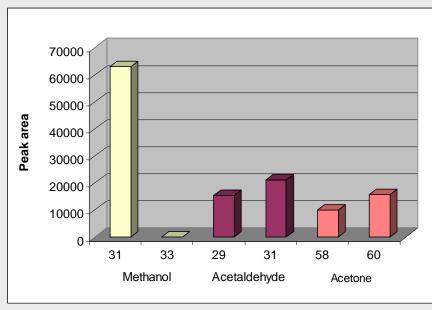
Quantitative Determination of Methane

Reaction conditions: 2 % CO₂ in helium, 70 µl water, 2 h radiation time

→ Formation of 260 nmol/l methane, conversion of CO₂: 0.16 %



Isotope Investigations

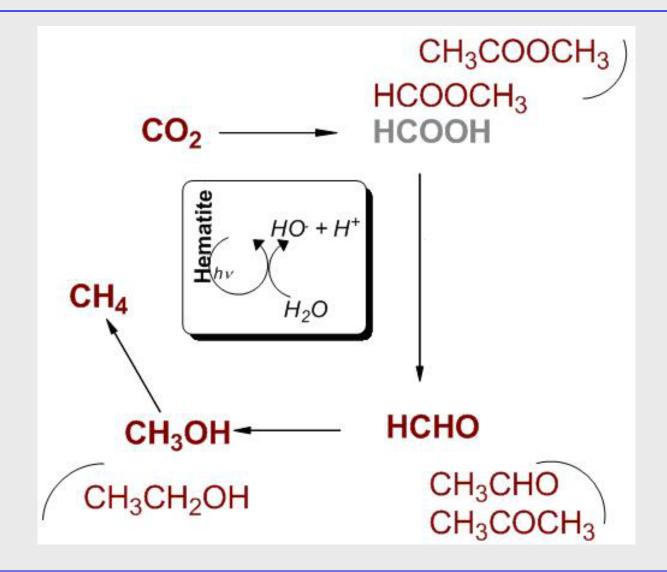

Reaction conditions: 2 % CO₂ in helium, H₂¹⁸O water, 2 h radiation time

1 µl H₂¹⁸O

 No water saturated atmosphere → molecules are formed with oxygen (¹6O) from CO₂

 $3 \mu I H_2^{18}O$

 Water saturated atmosphere → molecules are formed also with oxygen (¹8O) from water


Indication of different reaction pathways and mechanisms

Results

Results - 2

CO₂ + water + UV-radiation are necessary requirement for chemical reactions

→ Formation of organic molecules including methane and further C₂ and C₃ components

Gas phase reactions and also reactions at surfaces

Influence of water content on concentration of reaction products

→ indication of different reaction pathways and mechanisms

Experiments in lab with high UV density

→ high proportion of gas phase reaction → low selectivity
In lab experiments conversion of 0.16 % CO₂

→ Formation of methane under Martian conditions should be possible by (photo)chemistry.

Next Steps

- ➤ Long-time experiments (starting from CO₂ or CH₄ and mixtures of them)
- Kinetic studies (determination of reaction rates)
- Investigation of further solids / minerals (as catalysts)
- > Reaction under Martian conditions (low pressure, lower temperature)
- > Xenon light source for a continuous UV spectrum (imitation of sun light)
- Further experiments with gases with a special stable isotope ratio for determination of reaction channels

Acknowledgement

Dr. Michael Bartoszek and Gunnar Jakobs (Leibniz Institute for Catalysis)

Prof. Dietrich Möhlmann (German Aerospace Center)

Further information and contact:

Dr. Mike Wecks

Institut für Nichtklassische Chemie e.V.

Permoserstr. 15

D-04318 Leipzig

e-mail: wecks@inc.uni-leipzig.de

web: www.uni-leipzig.de/inc

phone: ++49 / 341/ 235-2815

