I only gave half the story

 Methanogenium frigidum was incubated at 6° C.

Growth and Biomediated Mineral Alterations by Methanogens Under Geochemical Conditions Similar to the Martian Subsurface

Courtesv: NASA

Brendon K. Chastain
University of Arkansas
Dept. of Biological Sciences

This Study:

- H₂ (energy)
- Bicarbonate buffer/CO₂ (carbon/water)
- Regolith analogs (micronutrients)
 - Jarosite
 - Nontronite
 - Montmorillonite
 - JSC Mars-1
 - JSC Mars-2 (45% montmorillonite/45% basalt/10% hematite)
- Do any of the analog materials support methanogenic metabolism?

Why would montmorillonite results be so dramatically different from those of nontronite or JSC Mars-2?

Steps to address the Fe³⁺ anomaly

 Geochemical studies showed that neither the analogs nor ferric nitrate solutions effectively oxidized methane.

- A follow-up biological study investigated possible Fe³⁺ reduction by the methanogens.
 - No transfer of cultures

Reduction and Visual Alteration

	Absorbance (510 nm)	g/L Fe ²⁺
M. formicicum	0.013	2.46E-04
M. barkeri	0.012	2.29E-04
M. wolfeii	0.003	7.28E-05
Control	0.003	7.28E-05

Colorimetric assay for ferrous iron in solution

Reduced Nontronite

750 nm IT band of nontronite in various reduced states. The peak flattens in samples that are either fully oxidized or fully reduced. (Lear and Stucki, 1987)

Important Follow-up Results

- M. formicicum produced no methane for more than two months, even though Fe³⁺ was being reduced.
 - Methane production increased rapidly thereafter and ended study at ~60%
- M. barkeri simultaneously reduced Fe³⁺ and CO₂ (methanogenesis), though methanogenesis greatly decreased.
- Until 3 days before embarking for Italy, *M. wolfeii* was assumed "dead" and unable to effectively reduce Fe³⁺.....

July 22, 2009

Sept. 24, 2009

M. formicicum

M. wolfeii

In the last 2-3 weeks

First 7+ months of study

Just a few days ago

Implications for Mars

- Mars possesses the basic, obtainable natural resources necessary for methanogenic metabolism.
- Methanogens can "subsist" and even <u>alter</u> their environment until improved conditions are available.
- Bishop et al. (2008) identify an unknown Fe²⁺-bearing smectite layer overlying a "nontronite-like" Fe³⁺-bearing smectite.
- Biomass could be enormous without necessitating large amounts of methane.