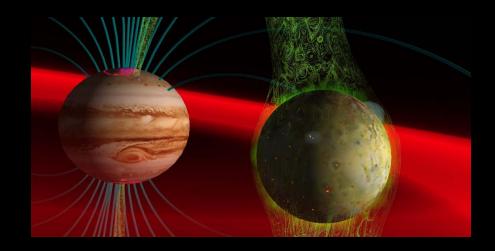
Cold plasma in the jovian system

Chris Arridge^{1,2} and the JuMMP Consortium

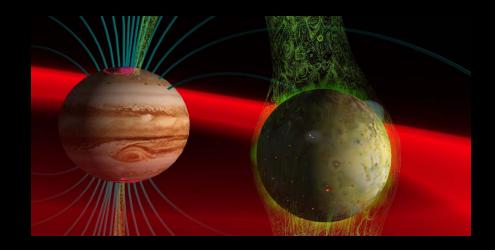
 Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, UK.
 The Centre for Planetary Sciences at UCL/Birkbeck, UK.

Email: csa@mssl.ucl.ac.uk

3rd EJSM Instrument Workshop - 18-20 January 2010 - ESTEC


JuMMP Investigation

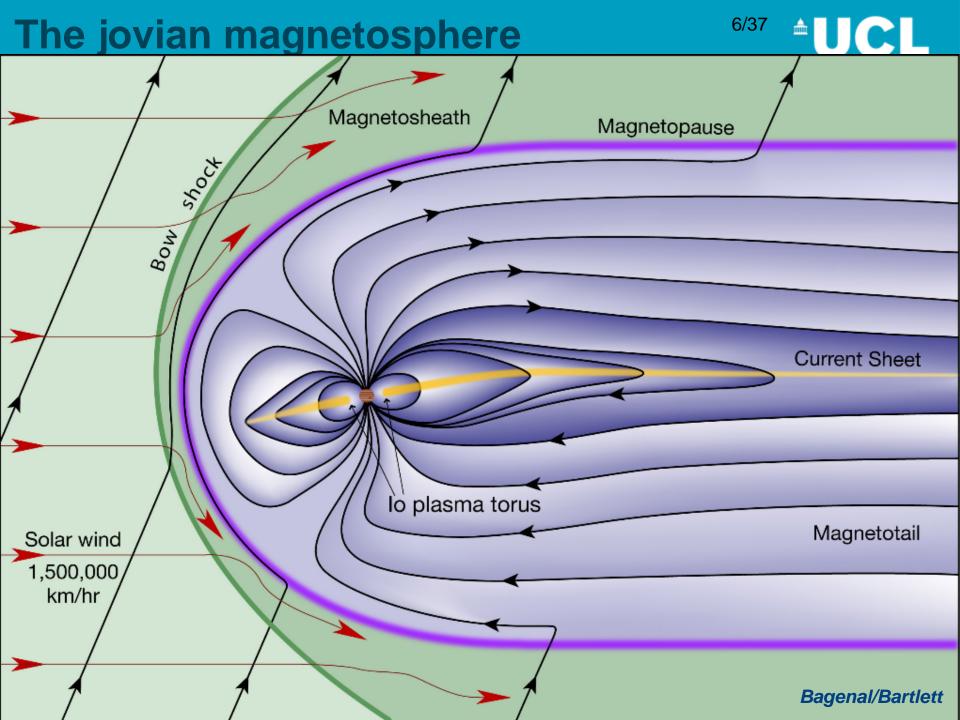
- Jupiter Magnetosphere and Moons Plasma assessment study.
- Exceptionally strong science study team:
 - >30 year heritage in studying rapidly rotating magnetospheres and moonmagnetosphere interactions.


2/37

- >40 year heritage in space plasma physics.
- Theory, empirical modelling, simulation and observation.
- Includes team members that have been involved in important recent discoveries at Jupiter and Saturn.
- Consortium has strong links with magnetometer, plasma wave, and UV teams and long-standing collaborations with many members in the PEP consortium.
- Strongly involved with JSDT and working groups.

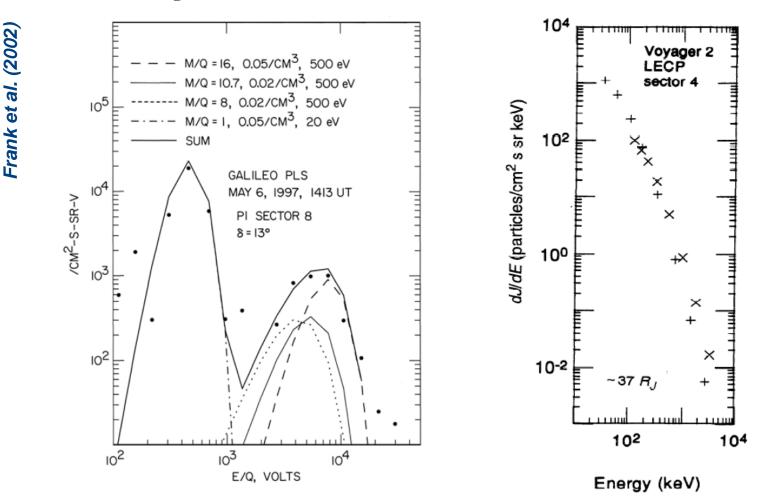
- **UCL**
- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

- [±]UCL
- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging



Introduction

 Hot plasma populations (>~10 keV) provide most of the particle pressure in the jovian magnetosphere.


5/37

- However, cold plasma (<~10 keV) carries most of the density.
- Important for surface charging....
 - Thermal charging currents for electrons and ram currents for ions.
 - Secondary electron emission currents from electron and ion impact.
- As well as for the physics of the system...
 - Centrifugal stresses and latitudinal plasma/current sheet structure.
 - Seed populations for hot plasma and radiation belt distributions.
 - Ram pressures and wave speeds.
- Jupiter's environment has been visited by **eight** spacecraft !!
- In this talk I will (rather arbitrarily) consider cold plasma to be "measured" at less than a few 10s of keV/charge.

Plasma in the jovian magnetosphere 7/37

- Distinct populations: cold plasma, hot plasma, radiation belt particles
- Cold plasma: k_BT~1-1000 eV
- Hot plasma: k_BT~10-100 keV

Kane et al. (1996)

Cold plasma in Jupiter's magnetosphere de la colorada de la colora

PLS DATA

500

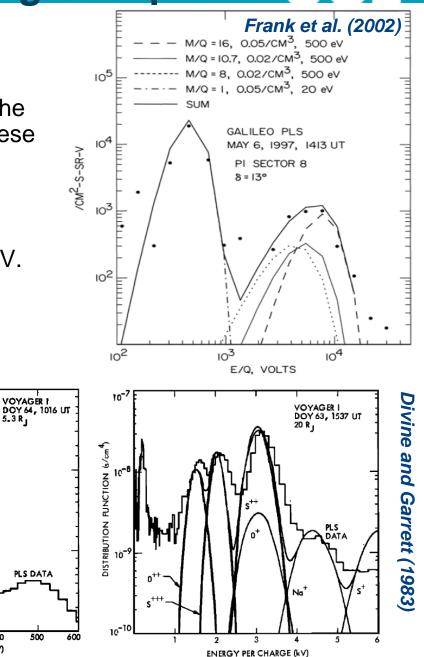
- lons:
 - Thermal energies less than 1 keV.
 - Often measured at several kV due to the bulk velocity (several 100 km s⁻¹) of these populations.
- Electrons:
 - Thermal energies less than several keV.

10

10-5

100

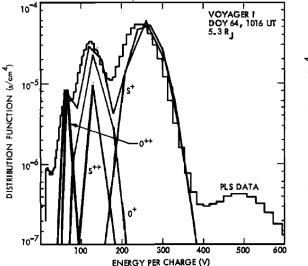
200

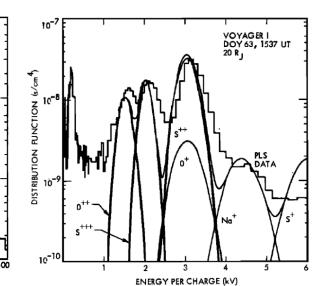

300

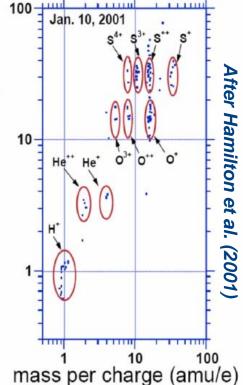
ENERGY PER CHARGE (V)

400

DISTRIBUTION FUNCTION (s/cm⁴)

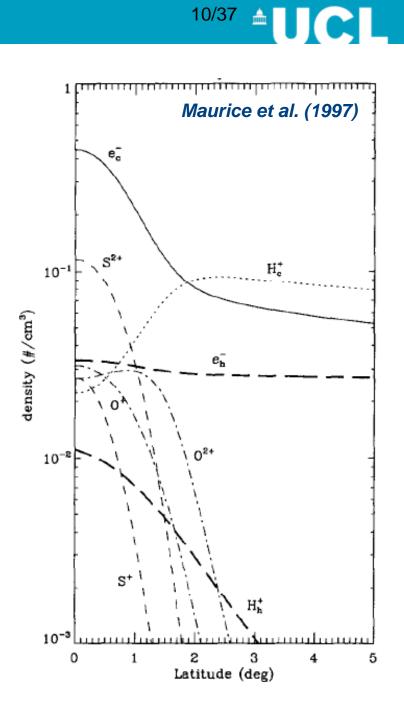

Have little knowledge of distributions above 6 keV.

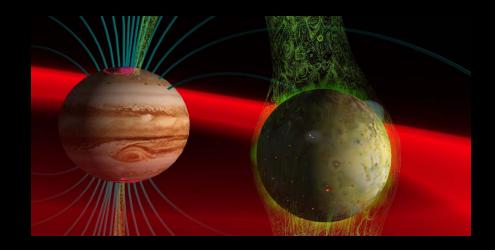



Plasma composition

Solar wind	H+, He ²⁺ , O ⁶⁺		
Jupiter	H+, (H2+, H3+)+		
lo	O ⁺ , O ²⁺ , O ³⁺ , (O ⁴⁺), (Na ⁺ , K ²⁺), S ⁺ , S ²⁺ , S ³⁺ , S ⁴⁺ , (S ⁵⁺)		
Icy satellites	$(H_2O^+, H_3O^+), (H^+, H_2^+, O^+, O_2^+, S_x^+, SO_x^+, CO_x^+, Na^+, K^+, CI^+, CI^-, possibly Mg^+, Ca^+ and organic fragment ions)$	100	
Undetermined (possibly Jupiter)	He+		

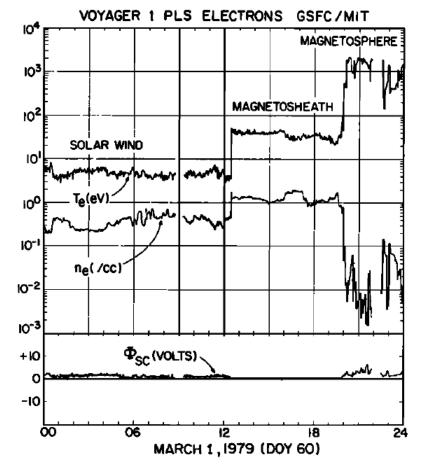
Divine and Garrett (1983)


mass (amu)


Geiss et al. (1992)

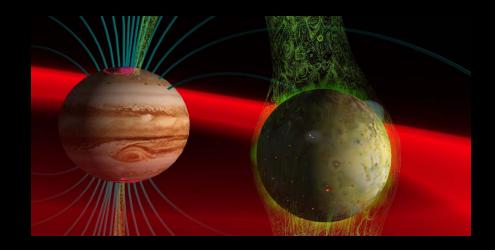
Effects of centrifugal force

- Rapid rotation of the magnetosphere ⇒ important centrifugal forces.
- Centrifugal scale heights \propto (kT/m)^{1/2}.
 - Heavy cold species are confined to the equator - electrons can fill field lines.
- Quasi-neutrality ⇒ ambipolar electric field which pulls e⁻ towards equator
- Simple case for single ion and electron population.
- Complex latitudinal distribution with multiple species and multiple charge states.



- **UCL**
- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

Solar wind and magnetosheath


- Solar wind (at least core) and magnetosheath populations are cold populations.
- Solar wind:
 - n_e=2-8×10⁵ m⁻³ (0.2-0.8 cm⁻³)
 - T_e=3-9 eV
 - − $T_e/T_p=2.5 \Rightarrow T_p \sim 7-23 \text{ eV}$
 - $v_{SW} = 400 \text{ km s}^{-1}$
 - Suprathermal (halo) T_e~40 eV
- Magnetosheath:
 - $n_e = 0.9 2 \times 10^6 \text{ m}^{-3} (0.9 2.0 \text{ cm}^{-3})$
 - $T_e = 20-50 \text{ eV} \text{ (mean energy 40-60 eV)}$
 - Suprathermal T_e~keV

12/37 🛕

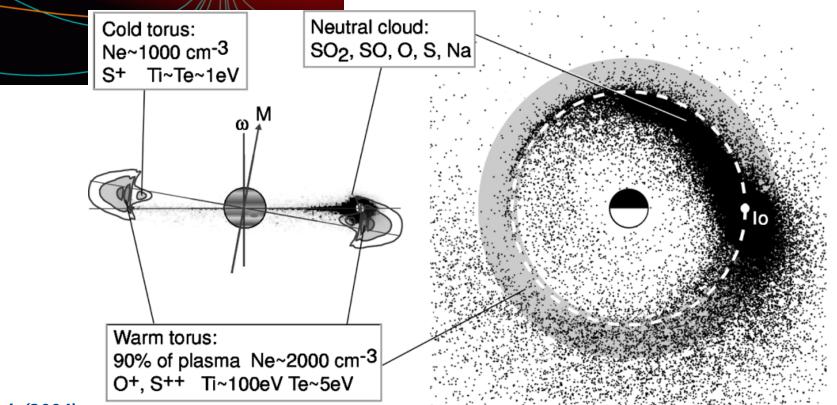
Scudder, Sittler and Bridge (1981)

- **UCL**
- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

Plasma torus

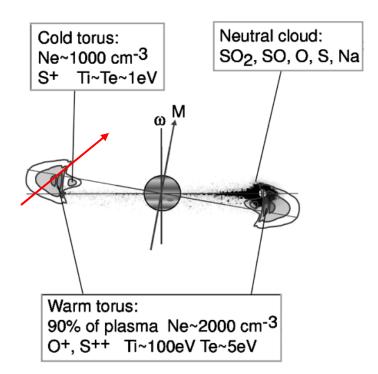
John Spencer

Plasma torus


Neutral cloud: Cold torus: SO2, SO, O, S, Na Ne~1000 cm⁻³ Ti~Te~1eV S+ Warm torus:

Thomas et al. (2004)

- Neutral cloud in equatorial plane.
- Cold and warm plasma torii located in the centrifugal equator.


15/37

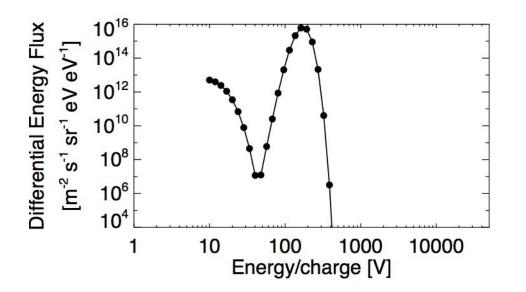
Centrifugal equator located between equator and magnetic dipole equator.

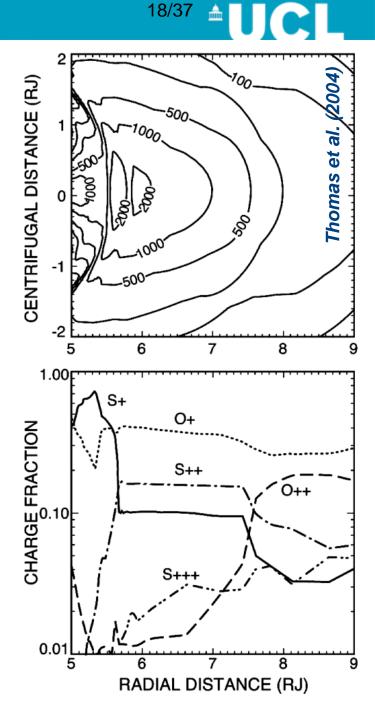
Plasma torus

- Spacecraft only make cuts through this 3D picture.
- Solve force balance along field lines (diffusive equilibrium) to extrapolate local measurements and generate 2D maps of density.
- Require:
 - Ion composition [UV spectra].
 - Ion and electron temperatures and anisotropies [Voyager/PLS].
 - Measured densities [Voyager/PLS & PWS].
 - Carried out by Bagenal and Sullivan (1981) later discovered that input ion temperatures were in error by a factor of 2.
 - Corrected in later calculations (Bagenal et al., 1984; 1994).

16/37 📤

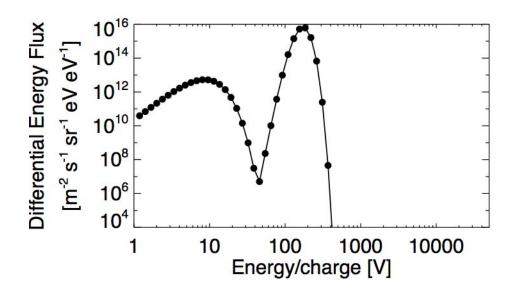
Plasma inputs

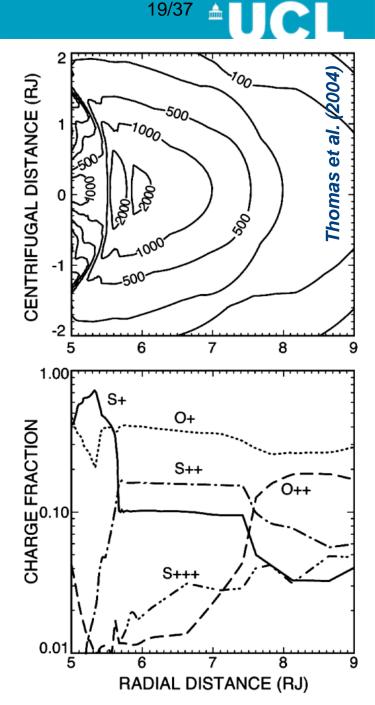


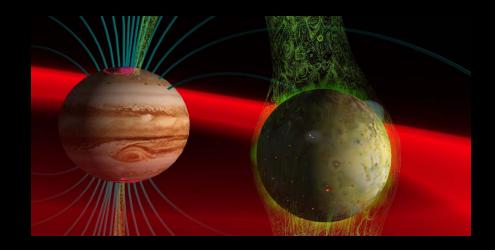

Thermal inputs Suprathermal inputs (a) (a) ELECTRON DENSITY AT VOYAGER 1 T, HOT IONS 1000 L 1000 S+ Pick Up PRA TEMPERATURE [eV] DENSITY [cm-3] Pick Up HOT ELECTRONS 100 100 S&S I, HOT IONS MODEL 10 10 6 5 8 5 6 7 8 9 1((b) (b) CORE TEMPERATURES HOT IONS 0.10 IONS 100 CHARGE FRACTION TEMPERATURE [eV] HOT ELECTRON 10 ELECTRONS 5 6 7 8 9 10 RADIAL DISTANCE [Rj] 5 6 7 8 9 10 Rodial Distance [Rj]

Bagenal (1994)

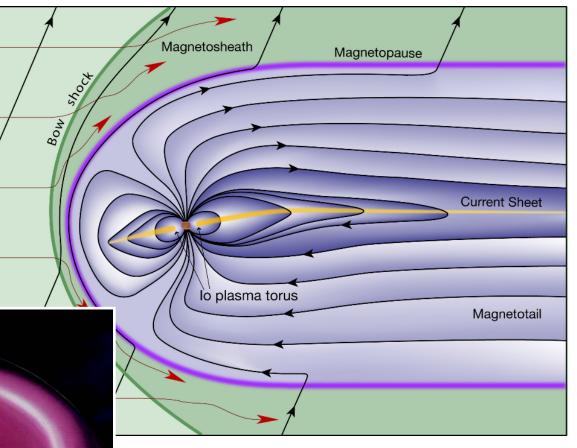
2D Maps and composition


- Electron density maximises around 2×10^9 m⁻³.
- Evolution in dominant ion species.
- H⁺ is a minor species in the plasma torus, but is more important in the outer magnetosphere.
- H⁺ E/Q spectra from the cold torus often appear below the 10 eV threshold of V/PLS.



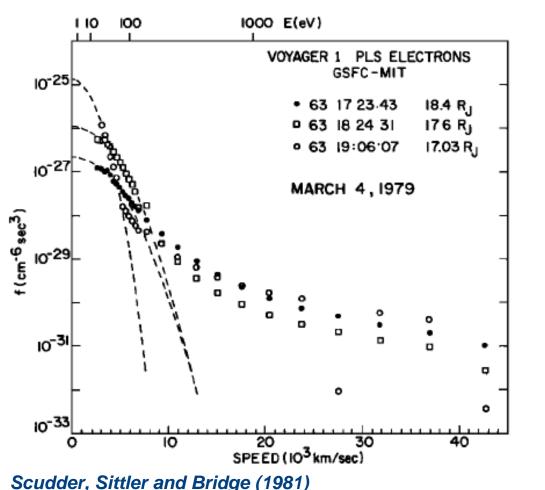

2D Maps and composition

- Electron density maximises around 2×10^9 m⁻³.
- Evolution in dominant ion species.
- H⁺ is a minor species in the plasma torus, but is more important in the outer magnetosphere.
- H⁺ E/Q spectra from the cold torus often appear below the 10 eV threshold of V/PLS.



- **UCL**
- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

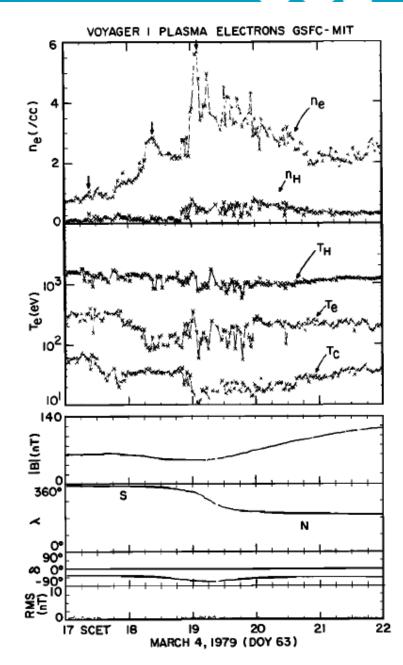
Magnetodisc morphology


 Models give z_{cs} as function of System III longitude, local time, and radial distance.

21/37 📥 🛛 💽

• Latest model: *Khurana and Schwarzl (2005)*.

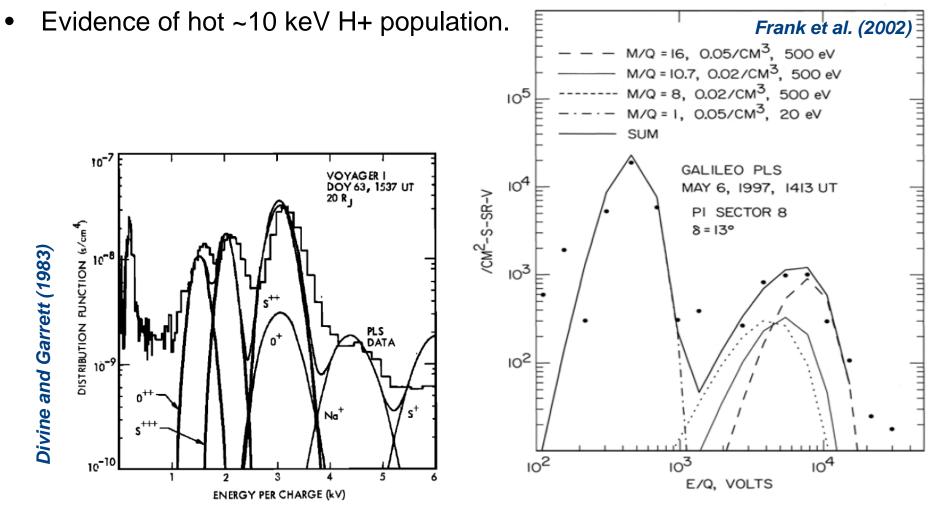
Electrons in the middle magnetosphere²²³⁷ = UCL


- Scudder, Sittler and Bridge (1981) published significant analyses of the Voyager/PLS electron data.
- Voyager/PLS data up to 6 keV Voyager/LECP starts at 28 keV.
- Core Maxwellian population with suprathermal tail Kappa or bi-Kappa

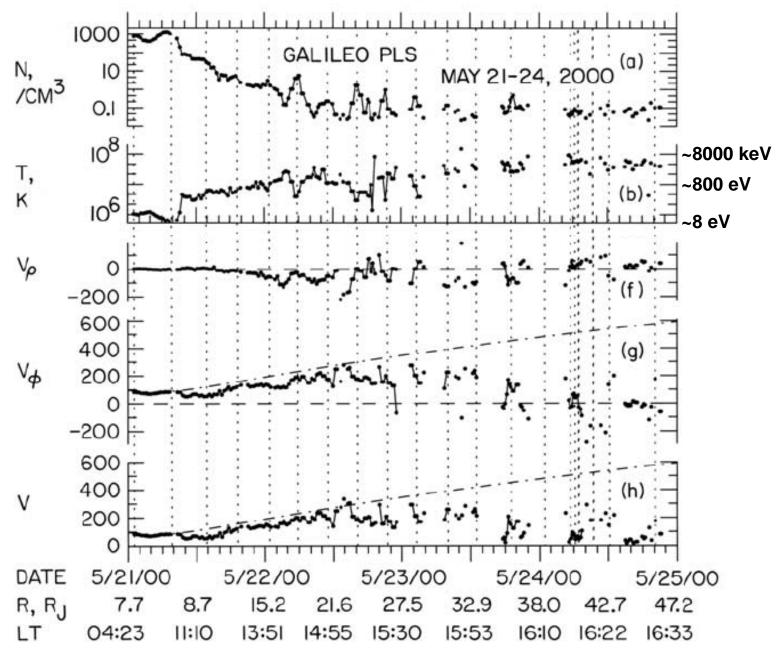
- Limited published data from Galileo/PLS (failure of electron sensor below ~ few keV)
- Little information available to close gap in understanding of the electron distribution between 6 and 28 keV.

Electrons at CS crossing

- Densities vary between ~10³ and ~10⁵ m⁻³.
- Temperatures between ~0.1 and 3 keV.
 - Range probably due to bi-modal or Kappa-distributed electrons.
 - $T_{c} \sim 10-80 \text{ eV}$
 - T_h~1 keV
 - $T_{e} \sim n_{e,c} T_{c} + n_{e,h} T_{h} / (n_{e,c} + n_{e,h})$
- Electron density maximises at current sheet crossings due to increase in cold electron density.
- Hot electron density almost constant.
- Occasional appearance of cold blobs of plasma - linked to plasma transport?


23/37

Ion spectra

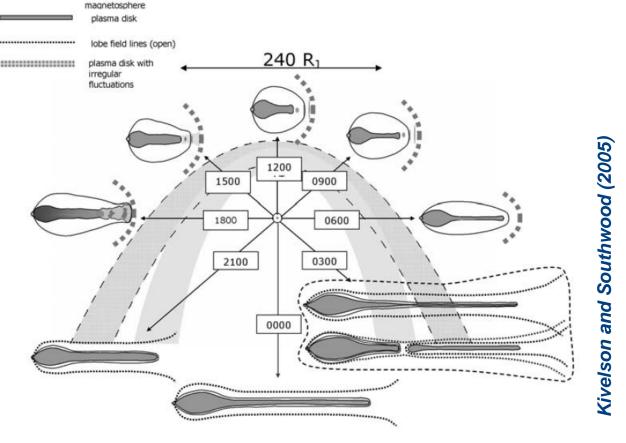

 Dominant species appear to be M/Q=16 (either S++ or O+) and M/Q=1 (H+) - M/Q=8 (O++) and 10.7 (S+++) are more minor species.

24/37 📤

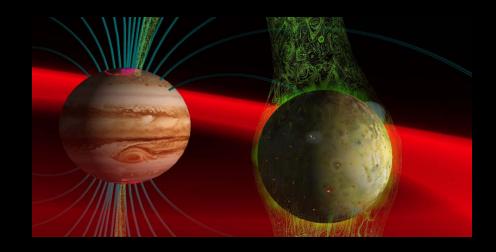
 Cold populations T_{H+}=20 eV and T_{O/S}=500 eV but measured at kV due to bulk motion (supersonic).

Ion moments

Frank et al. (2002)


25/37 📥

Outer magnetosphere


line: outer

- Characterised by disordered plasma c.f. New Horizon's observations in the deep magnetotail.
- Cushion region: Dayside region characterised by southward fields and numerous field "nulls" associated with increases in plasma density.

26/37 🚠

- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

[±]UCI

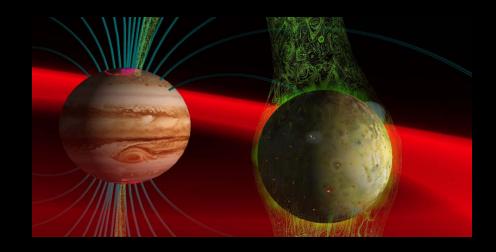
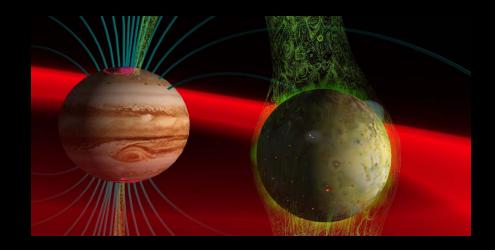

Trans-moon cold plasma environment⁸³⁷ ⁽¹⁾

Table 21.1. Physical properties of the Galilean satellites and surrounding plasma.

Symbol (units), Physical property	Io	Europa	Ganymede	Callisto
Plasma and fie	eld parameters of the amb	ient magnetospher	ric plasma	
$\begin{split} B_{\rm o}({\rm nT}), \ \text{jovian magnetic field, av. min (max)} \\ n_{\rm e}(\text{elns cm}^{-3}), \ \text{Eq. av. (range) eln. density} \\ < Z >, \ \text{Eq. av. (lobe) ion charge} \\ < A >, \ \text{Eq. av. (lobe) ion mass in } m_{\rm p} \\ n_{\rm i}(\text{ions cm}^{-3}), \ \text{av. (range) ion no. density} \\ \rho_{\rm m}(\text{amu cm}^{-3}), \ \text{av. (range) ion mass density} \\ kT_{\rm i} \ (\text{eV}), \ \text{equator (range) ion temperature} \\ kT_{\rm e}(\text{eV}), \ \text{electron temperature} \\ p_{\rm i,th}(\text{nPa}), \ \text{Eq. (range) pressure} \\ \text{thermal plasma} \\ p_{\rm i,en}(\text{nPa}) \ (20 \ \text{keV-100 MeV ions}) \\ p_{\rm e}(\text{nPa}) \ (\text{both "cold" and "hot" electrons}) \\ p(\text{nPa}), \ \text{Eq. (max) total pressure} \\ v_{\rm cr}(\text{km s}^{-1}), \ \text{local corotation velocity} \\ v_{\rm \phi}(\text{km s}^{-1}) \text{s plasma azimuthal vel. (range)} \\ u(\text{km s}^{-1}), \ relative velocity \ (range), v_{\rm \phi}t \ v_{\rm s} \end{split}$	1720 (2080) $2500 (1200-3800)$ $1.3 (1.3)$ $22 (19)$ $1920 (960-2900)$ $42 300 (18 000-64 300)$ $70 (20-90)$ 6 $22 (3-42)$ 10 2.4 $34 (54)$ 74 17 $74 (70-74)$ $57 (53-57)$	370 (460) 200 (18-250) 1.5 (1.5) 18.5 (17) 130 (12-170) 2500 (200-3000) 100 (50-400) 100 2.1 (0.10-11) 12 3.2 17 (26) 117 14 90 (70-100) 76 (56-86)	64 (113) 5 (1-10) 1.3 (1) 14 (2) 4 (1-8) 54 (2-100) 60 (10-100) 300 0.04 (0.002-0.12) 3.6 0.2 3.8 (3.9) 187 11 150 (95-163) 139 (84-152)	4 (42) 0.15 (0.01-0.70) 1.5 (1) 16 (2) 0.10 (0.01-0.5) 1.6 (0.02-7) 60 (10-100) 500 0.001 (0.00-0.01) 0.37 0.01 0.38 (0.39) 328 8 200 (130-280) 192 (122-272)
$v_{\rm A}({\rm km~s^{-1}})$, Eq. (range) Alfvén speed $c_{\rm s}({\rm km~s^{-1}})$, Eq. (range) sound speed $B_{\odot}^2/2\mu_{\rm o}({\rm nPa})$, Eq. (lobe) magnetic pressure $\rho u^2({\rm nPa})$, Eq. av. (max) ram pressure $\rho u^2({\rm nPa})$, lobe ram pressure	180 (150–340) 29 (27–53) 1200 (1700) 230 (350) 100	160 (145-700) 92 (76-330) 54 (84) 24 (38) 2.5	190 (130–1700) 280 (190–1400) 1.6 (5) 1.7 (4.1) 0.08	70 (30-6500) 500 (230-4400) 0.006 (0.7) 0.10 (0.90) 0.002

Kivelson et al. (2004)

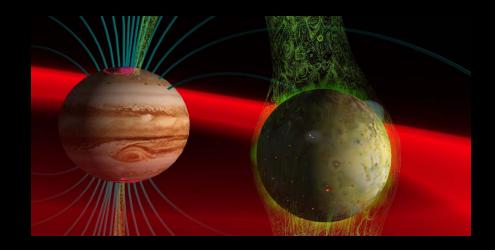
- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging


[±]UCI

Models

- Divine and Garrett (1983) model.
 - Uses incorrect ion reduction in Io PT and map has shown to be inconsistent with Ulysses data.
 - Assumes populations are isotropic drifting Maxwellians.
 - Fixed azimuthal plasma velocity with no local time asymmetries or local structure.
 - Old magnetodisc geometry model.
- Revisions:
 - New magnetodisc morphology (Khurana and Schwarzl, 2005).
 - Lots more data and "meta-models" (e.g., *Bagenal, 1994*; *Moncuquet et al., 2002*) available now on which to base a new cold plasma model.
 - However, Voyager and Ulysses electron data sets remain the most complete and published low energy electron data at Jupiter.
 - Critical to consider the possible impacts of this i.e., will s/c potential calculations in JOREM/Spenvis be incorrect?

- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

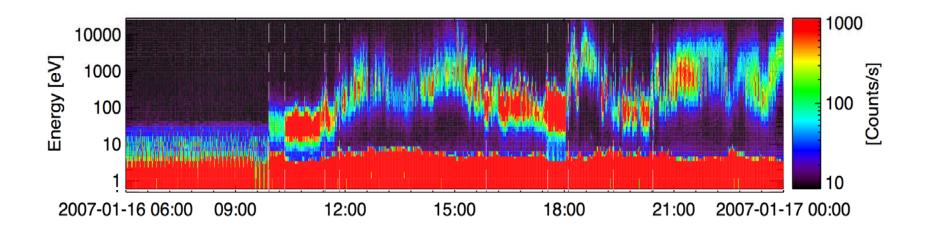


[±]UCI

Some key cold plasma science questions

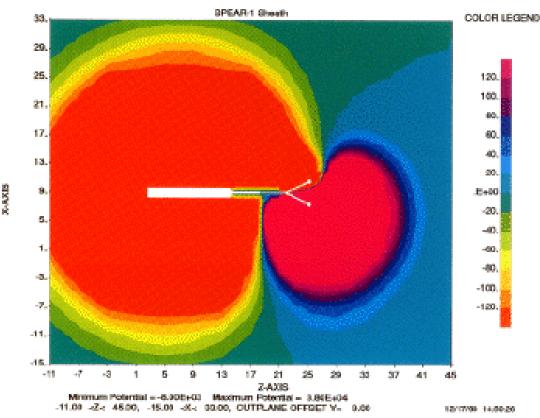
- How is iogenic plasma accelerated from ~1 eV to >100 keV ?
 - E.g., stochastic acceleration, turbulence, and Speiser-type acceleration.
- What is the role of the solar wind in driving and shaping the jovian magnetosphere?
 - Track ion velocity, composition and temperature of different flows.
- What is the cushion region and how is it formed?
- How is plasma transported from the Io PT and through the magnetodisc?
- How is cold plasma lost from the magnetosphere?
 - All lost in the tail or ejection through the dayside magnetopause?
 - Tearing in the magnetodisc?
- What is the nature of plasma flow around Ganymede's magnetosphere?
- Magnetospheric stress balance: what roles do centrifugal stress and cold plasma anisotropies play?

- The jovian magnetosphere and its plasma populations
- Cold plasma:
 - Solar wind and magnetosheath
 - lo plasma torus
 - Cold plasma in the magnetodisc and outer magnetosphere
 - Cold plasma in trans-lo/Europa/Ganymede/Callisto environment
- Cold plasma models
- Key science questions
- Implications for surface charging

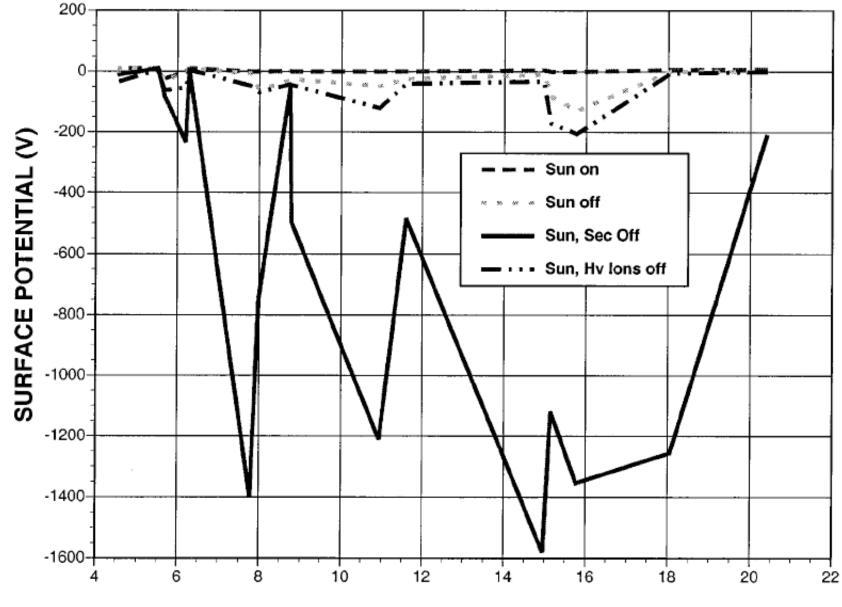

UCI

Spacecraft charging

• Figure below shows Cassini CAPS/ELS data from a period where the spacecraft was charged to a positive potential.


34/37 📤

- Changes in potential with ambient conditions clearly visible: 3 40 V.
- When charged to a positive potential the distribution can be shifted in energy (in accordance with Liouville's theorem) to provide a corrected data set.


Potential correction limitations

- Measurements (with particle spectrometers) down to a few eV affected by spacecraft potential uniform potential can be corrected.
- However, large positive potentials can produce density underestimates using this technique depends on the relative values of $e\Phi_{SC}$ and k_BT_e .
- Non-uniform potential must be characterised low energy bulk velocities and plasma frame anisotropies won't be reliable (e.g., *Scime, Phillips and Bame, 1994*).

35/37 🛕

Surface charging validation

36/37 🛕 🗌 💽

DISTANCE FROM SATURN (Rs)

Summary

• Much of the high pressure action is in the hot >10 keV populations there is still a lot of interesting physics and open questions for the cold plasma.

37/37 🛕

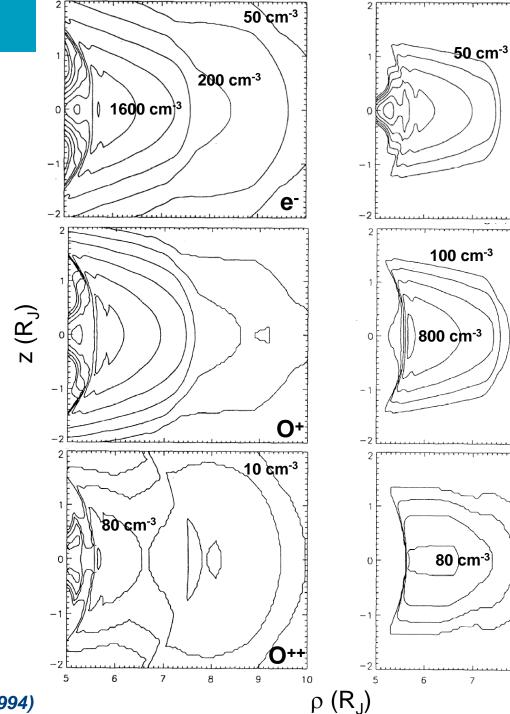
• Variety of species and charge states and strong radial evolution of these populations.

 Challenges due to large dynamic (n: 10³-10⁹ m⁻³) and energy ranges and temporal scales

 Surface charging and particularly surface potential structure could compromise low energy cold plasma measurements <~10 V (direction and under-resolution).

Backup slides

Spacecraft charging



Charging currents [c.f., Whipple, 1981]:

- Thermal electron and ion: $j \sim n(k_B T/m)^{1/2}$
 - Charge positive and negative respectively but generally k_BT/m is much larger for electrons than for ions and so the thermal electron current dominates.
 - This assumes Maxwellian distributions but we know that the distributions are power-laws at high energies.
- Ion ram currents: j_{ram}~nv
 - Produces negative charging weak dependence on composition.
- Secondary electron and ion
 - Depend on energy of primaries region between 6 and 28 keV is largely unexplored - or at best unpublished.

2D Maps

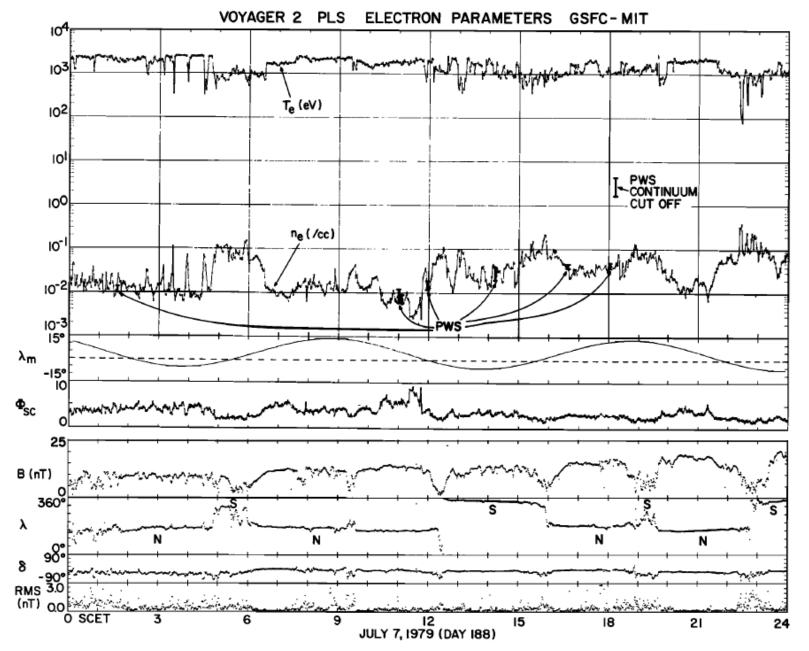
- 2D maps from diffusive equilibrium calculations.
- H⁺ is considered a minor species and is distributed fairly evenly in latitude.
- Contributing 10% to the e⁻ density at the (cen) equator and 50% at 1.5 R_J.

S++

10

10 cm⁻³

8


Bagenal (1994)

Non-Maxwellian distributions

- 41/37 **L**
- Turns out that non-Maxwellian electron distributions are important -Ulysses electron observations incompatible with *Bagenal (1994)* model.
- Moncuplet et al. (2002) demonstrated that by representing the electron populations using Kappa distributions the observed increase in T_e could be reproduced.
- Changes scale heights and temperature profiles small changes to density.

 Ion distributions are Maxwellian in the cold torus but not necessarily so in the warm torus.

Typical n and T

42/37 📥