

Miniaturized Integrated Instrument Suites at Europa: Tools and Strategies for Operating in the Jovian Environment

S. Moon, M. Esposito D. Lampridis, S.Hannemann *ESTEC, January 20, 2010*

1

Presentation Agenda

cosine Background Jupiter Instruments **SILAT HIBRIS** MPS Remote Sensing Simulator Conclusions

cosine Background

Founded in 1998, located in Leiden contract R&D in applied physics

Highly trained Research & Development team

- Optical systems
- Industrial metrology
- Ionizing radiation
- Physics calculations and software

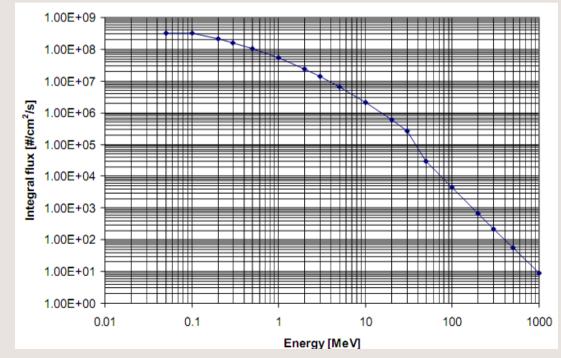
High quality internal laboratory facilities


- clean room
- laser laboratory
- radiation laboratory
- electronics laboratory

Europa-Jupiter Background

cosine Micropayloads design program has generated two project payloads:

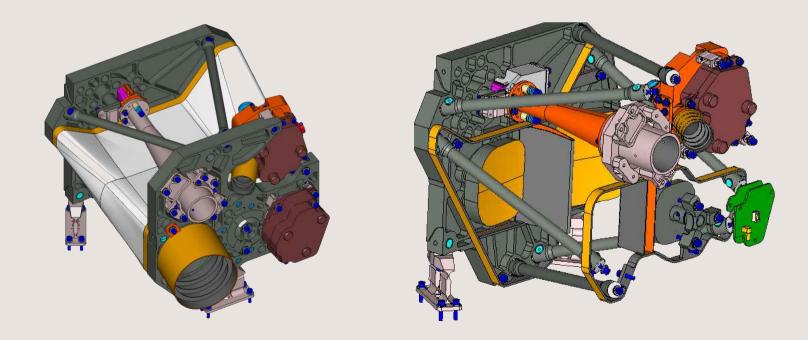
- SILAT Stereo Imaging Laser Altimeter
- HIBRIS Highly Integrated Broadband Hyperspectral Imager and Spectrometer


- Both studied as potential payload for 60 day Europa mission
 - Circular orbit @ 200km altitude

Jovian Mission

Design using science requirements from Jupiter Minisat Explorer (JME)

- Required redesign of payload packages for Europa environment
- Main redesign influence:
 - Thermal environment
 - Radiation
 - TypeIntensity

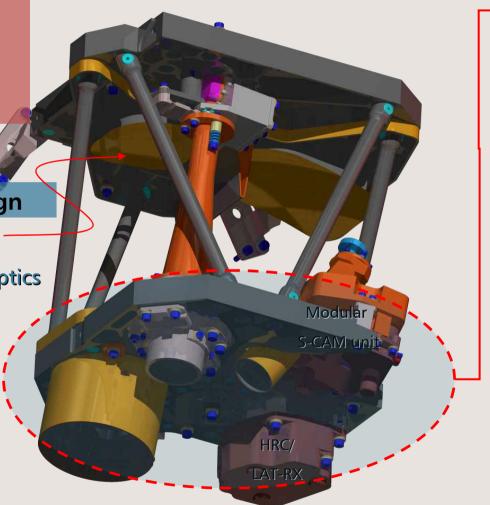


SILAT Overview

SILAT consists of:

- -High Resolution Camera (HRC)
- -Stereo Camera (S-CAM)
- -Photon Counting Laser Altimeter (LAT-TX/RX)

cosine research


SILAT: Features

Mass: 7.6 kg Power: 12 W 30x30x30 cm

Integrated Design

Combined optics

Diamond Turned Optics

Thermal Design

 Opto-mechanical alignment preserved

Science capabilities

•Water identification

• Stereoscopic Imagery

• High Accuracy Altimetry

• Topography

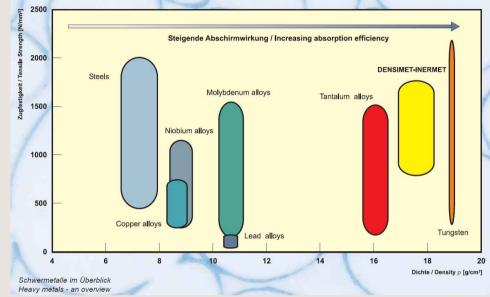
Digital Elevation Map (DEM) data

SILAT Performance – HRC & S-CAM

<u>HRC</u>

- Signal-to-noise (SNR) ratio over 100
- 6.0 m Ground Sampling Distance
- 12.2 km swath
- 32 cm focal distance

<u>S-CAM</u>


- SNR over 100
- 15.9 m GSD
- 16.1 km swath
- Same central wavelength as HRC Green channel

<u>LAT</u>

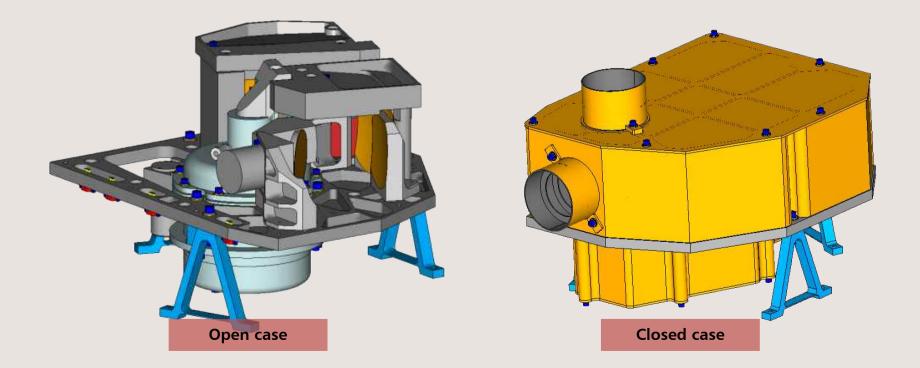
- Single-photon counting with 99.9% confidence
- 15 cm vertical resolution
- > 10 kHz, 25 μ J microchip laser.

Jovian Considerations

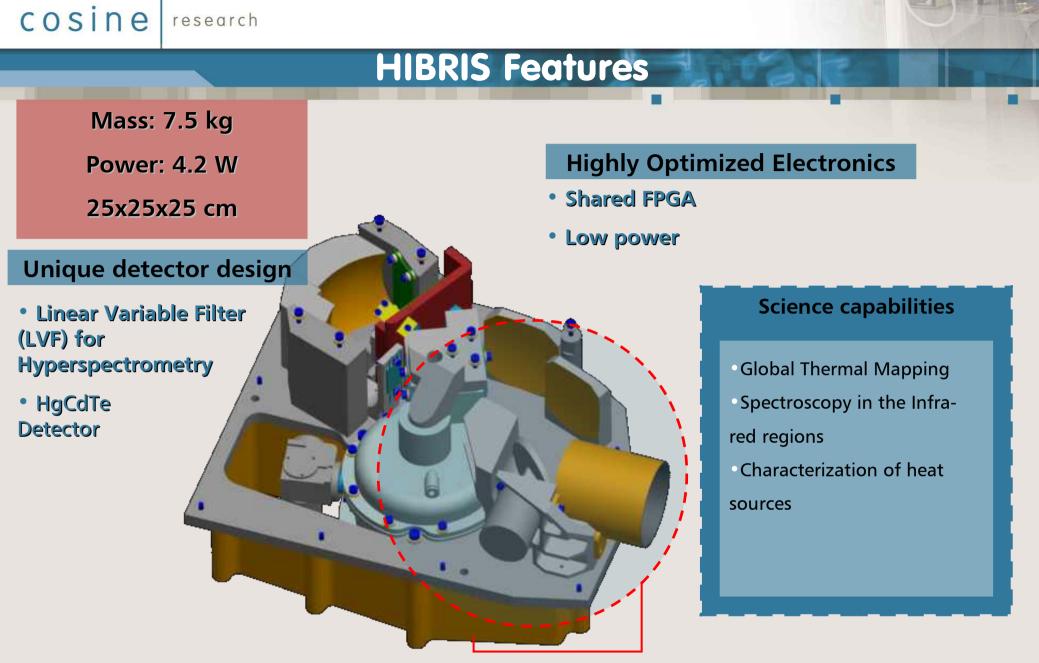
- Radiation shielding
 - Stainless steel
 - Silicon carbide
 - Densiment
 - Shared systems
- Radiation Hard Electronics
 - Redundantly programmed FPGA control
- Opto-mechanical alignment
 - Low CTE, high conductivity materials

Current Status

- Phase B complete
- Next step is engineering model
- Prototype critical components being developed with project partners
 - Aspherical diamond turned optics (with TNO)
 - Microchip lasers for LAT
 - Data analysis software for LAT



• HIBRIS consists of:

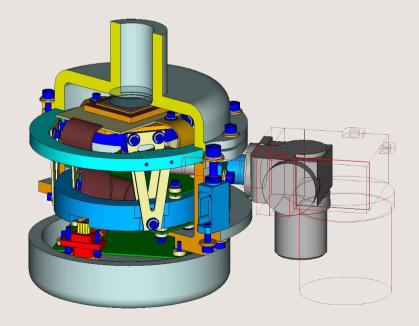

research

cosine

- -Near Infrared Hyperspectral Imager (NSI)
- -Thermal Imager (TI)

research

Compact Optics


HIBRIS Performance – NSI, TI

<u>NSI</u>

- ▶ 50 m GSD
- 52 km swath
- 50 mm aperature
- MCT detector
 - cooled to 80-90 K
- LVF providing spectra between 800 nm and 5.2 μm

<u>TI</u>

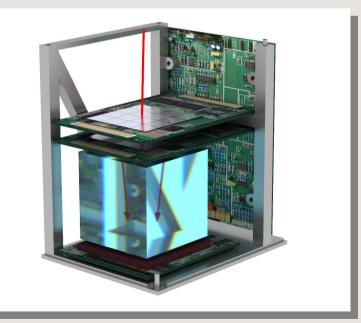
- 143 m GSD
- 55 km swath
- 7 μm bands
- Broad total range

Jovian Considerations

- Radiation shielding
 - Stainless steel
 - Aluminium
 - Shared systems
- Radiation Hard Electronics
 - Redundantly programmed FPGA control

Sectorial analysis for minimum and shared shielding

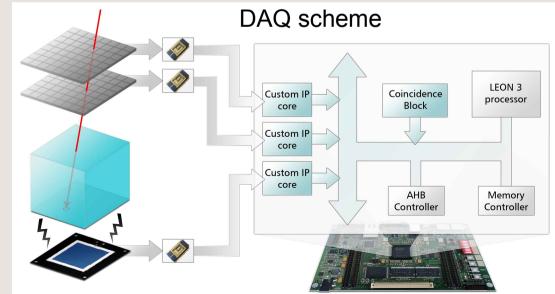
HIBRIS Status


- Design Phase B complete
- Critical technologies under investigation at cosine
 - Infrared detectors
 - Linear Variable Filters (LVF)

Multi-functional particle spectrometer (MPS)

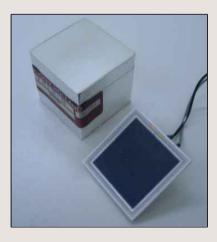
- Developed to provide better radiation monitors on exploration missions
 - Discriminates between 4 types of particles and determines angle of incidence
 - Provides continuous large energy range and good energy resolution
- Makes use of scintillator and detector technologies from nuclear and high energy physics
- Real time analysis

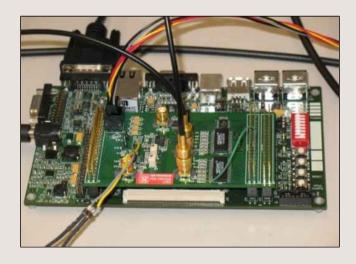
MPS overview (baseline)				
Mass	600 g			
Power	< 2 W			
Width	7.5 cm			
Length	7 cm			
Height	8.0 cm			

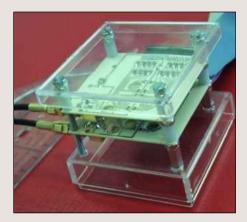


Operating Parameters

Particles


- Protons from 1 to 200 MeV
- Ions from 5 to 400 MeV/n
- Electrons from 1 to 10 MeV
- Gamma from 0.1 to 3 MeV
- Angular Resolution
 - 10° resolution based on tracker separation
- Rate: up to 100 kHz


- Jupiter considerations
 - High rates, decrease sensor area
 - Redundant FPGA control
 - Couple with magnetic spectrometer for high energy electrons > 10 MeV



MPS Status

- Components prototyped
 - Scintillator and detector
 - Thin silicon trackers
 - Control and data analysis software
 - Electronics
- Full funcitonal system prototype under production

Remote Sensing Simulator RSS

Mission Analysis and Simulation Tool

- Used for SILAT, HIBRIS
- Models all bodies in Solar system
- Surface coverage evaluation
- Models expected performance of instrument and overall mission
- Future development:
 - Increased interactivity
 - Visualized output
 - Expansion of mission options

Thank You

Contact

cosine Instruments: s.moon@cosine.nl General Information: info@cosine.nl

Jan 20, 2010

EJSM I.W. 2010

cosine research

Key Performance Parameters

HRC		SCAM		LAT	
Spatial Resolution	Resolution Resolution		15.9 m	Vertical Resolution	0.15 m
Feed			Spatial	10 m	
Focal Distance	320 mm	Focal Distance	126 mm	Resolution	
				RX-IFOV	150 μ rad
Swath Width	12.2 km	Swath Width	16.1 km	TX IFOV	50 μ rad
IFOV	31.25 <i>µ</i> rad	IFOV	79.4 <i>µ</i> rad	Viewing Angle	0°
Viewing Angle	Nadir	Viewing Angle	27°	TX Wavlength	532 nm
, angle				Pulse Rate	10 kHz
				Pulse Energy	25 µJ