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Radiation effects on Optics,

Basic Phenomenology & Examples

* Radiation effects on optical glasses, crystals, coatings
and (mirror) substrates may include:

— Induced colour centres (spectral absorption impact => darkening)
— Density changes => ref. index, & dilatation or compaction

— Birefringence (Crystals)

— Charging => Lichtenberg figures, fracture

— Fluorescence, Luminescence and Scintillation

— Dielectric breakdown

See also Willis presentation OPFM Workshop June 2008,


https://opfm.jpl.nasa.gov/europajupitersystemmissionejsm/tutorials/Tutorial_5/player.html

Overview of Glass Damage
Physics

Radiation glass physics overview

Stable effects

Induced Density Induced stress Polarizability § Build-in
absorption changes | and stress relaxation changes charges

Dimensional
instability

Kramers-Kronig Lorentz-Lorentz Photo-elastic § Clausius-Mossoti
relations formula effect formula

Dielectric breakdown
Refractive index (Lichtenberg trees)

O critical failure

perturbation
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Induced Absorption
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Simulated (symbols) and measured (curves) results obtained on a 5-mm thick BK7 glass
sample. Gamma irradiation during 7 days up to a total dose of 800 krad.




Induced Absorption

 Normalised parameterisation is very useful, e.g.

e The radiation Induced Absorption Spectrum (1AS)
IS defined from transmission spectra measured
before (T,) and after (T,) irradiation

Ao = (1/L) In(Ty/T,), L — sample thickness



v 100 krad | /

v 400 krad
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AOPD (nm) = + 22 - 16 -13

» Different behaviour for BK7 series, notably induced OPD sign change
between normal and “ ’



Bulk WFE (Induced OPD Changes), p-600 krad, LaK9 series
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Refractive Index

%ﬂ&\mﬁ

Example of measured radiation induced
Refractive Index changes

LaK9G15

BK7G18
BK7G25

Is this important?

Depends on the refractive index tolerances in your optical design (transmissive optics).

European Space Agency
11
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Effects of radiation on the properties of low thermal expansion
coefficient materials: A review.

Rajaram & Friebele, J. Non Crys. Sol. Vol 108, (1989)

0 Zerodur
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= Compaction due to oxygen hole centers in single and
multi-component glass and glass-ceramics
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The effect of electron radiation on the radius of curvature

of a Zerodur mirror. Doyle et al SPIE Vol. 2775, 1996

Radius of Curvature Reduction vs
Electron Irradiation Dose in Geo




due to Proton irradiation (non-uniform) of
Cerium doped glass Lak9G15. Pictures show polarised light transmitted by the samples when
placed between crossed polarisers under illumination with a Sodium d-line spectral lamp (589
nm). The characteristic cross shaped pattern is in accordance with theoretical predictions.

 Doyle. ESTEC

ABSORBAMNCE (Arb. Units)

25

absorptive losses in unexposed areas of the same sample. The inset shows

the spatial distribution of transmitted 632.8 nm light when the fused silica WAVELENGTH (nm]
sumple was placed between two crossed linear polarizers. The nonzero

transmission s caused by stress bivefringence in an annular area surround- (After Rothschild et aI,
ing the excimer laser spot. The transmitted intensity follows a sin” (26} an-

gular dependence predicied by theory [see, c.p, H. T Jessopand F. O Har. App PhyS Lett. 55’ 1989)

ris, Phaoroelasticine { Dover, Mew York, 19607 ], where & is measured with
respect to the orientation of the polarizers.
15



Space radiation testing of radiation resistant glasses and crystals

Tammy D. Henson and Geoffrey K. Torrington
Sandia National Laboratories. P.O Box 5800. Albuquerque. NM 87185-0972
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Figure 23. Transmission measurements of a Schott 157 nm eximer Figure 24. Transmission measurements of a Schott 193 nm eximer
grade synthetic monocrystalline CaF, window after grade synthetic monocrystalline CaF; window after
exposure to gamma radiation (t = 7.065 mm). exposure to gamma radiation (t = 9.94 mm).

Inorganic Optical Materials 111, Alexander J. Marker 1ll, Mark J. Davis, Editors,
Proceedings of SPIE Vol. 4452 (2001) ® 2001 SPIE - 0277-786X/01/515.00
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Fig. 3: Radiouluminsence intensity vs. dose rate for selected optical materials. [Treadaway (1975a)]

Treadaway (1975a) M.J. Treadaway, B.C. Passenheim and B.D. Kitterer "Transient Radiation Effects in
Optical Materials" Intelcom Rad Tech Inc. Report No. SAMSO-TR-75-174. This is a very
thorough and information packed report on a series of experiments that addressed particularly the
study of the effects of radiation on optical materials of interest in connection with spacecraft.




(b}

Fic. 1. (a) Top view of discharge figure in borosilicate sample.
(b) Lateral view of discharge figure in borosilicate glass (for this
photograph a lateral section of the sample was cut away, to avoid
distortion of the picture by the curved lateral surfaces).

Known since 1957!

PHYSICAL REVIEW VOLUME 107, NUMBER 2 JULY 15, 19357

Irradiation Effects in Borosilicate Glass

BervuArRD GrOSS
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H. U. KELLER ET AL.

SSR, 128, 2007

transmission
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Colour Glass, with annealing
recovery over days (at room temp)
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Figure 15. Transmission curves for KG3 glass. The bold curve provides the transmission prior to

irradiation to a proton fluence of 10" cm=2. The dashed curves show the recovery of transmission

with time at room temperature.

Interference Filter
Delta tx post p+ irradiation

wavelength (nm)
(b)

Fig. 3. (a) Measured transmission of the 572-nm interference
filter as a function of wavelength. Continuous curve, non-
irradiated filter; dashed 30-keV irradiated portion of the filter. (b)
Difference between the non-irradiated portion of the filter and the

irradiated portion. Naletto et al App. Opt. 42, 2003




Peculiarities of the EJSM JGO
Radiation Environment

1.00E+08

—e— [otal

1 00E+07 —m— Trapped Electrons

Bremsstrahlung
Solar Protons

1.00E+06

*— Irapped Protons

Total dose [rad]

1.00E+04

ESA Laplace Environment Spec, Iss. 2 Rev 0, JS-14-09

1.00E+03

Shielding thickness [mm Al]

» Trapped electrons are the dominant ionising radiation component
>50 MRad surface dose equivalent
» Dose rate estimate for Glass 30 mRad/s (for 10 mm Al equiv shielding)




Approaches for Qualification and

Testing

 Differential testing essential
— Baseline before irradiation
— Incremental dose accumulation
— Measure performance loss after each step
— Maintain unirradiated control sample(s)

e Test for annealing impact (long term)

 Temperature and environment
(air/vacuum) may be important

21



Literature, Sources

« Check complimentary reports from testing of materials
In other domains e.g.

— Plasma Fusion reactor programmes (e.g. ITER, where doses
of >100s GRads are reached!)

— Laser fusion programmes
— X & EUV optics for lithography projectors
— Particle accelerators e.g. LEP at CERN

— Glass fiber radiation responses (V. long path lengths)

22



Some Data and Literature

Resources

ESA Radiation Effects Unit web site “ESCIES”

NASA Photonics web site “Miss Piggy at Goddard”

IEEE Radiation Effects Data Workshops

SPIE Digital Library

23


https://escies.org/ReadArticle?docId=227
http://misspiggy.gsfc.nasa.gov/photonics/
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7606
http://spie.org/x648.html?product_id=382659
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Selected References 4

TABLE II. Dose exponent for compaction® formation in synthetic fused silica from previous compaction
studies.

Radiation Compaction Dosze
Work souUrce range (Ap/p) Fused silica exponent ()

Primak er al® neutron. He+ . D+ 10-%—103 Suprasil 1
gamma, e-beam 10-5—-10"3 Suprasil 0.66
H+ 107 %—10"3 Suprasil 0.71
Higby er al® e-beam 10 °—10"3 Suprasil 2 0.59
Suprasil 300 0.56
Suprasil W2 0.77
Friebele et al? 10°°—1073 Suprasil 2 0.64
Suprasil W2 0.67
Neorris et al ® 10" *—10"3 Corning 7940 0.65%

10-5—-10"% Corning 7940 0.70f
Merzbacher ef al 10 *—-10"°7 Suprasil 2 0.5
Shelby et al® gamma 107 °—10773 Suprasil W 0.81

"Fadiation-induced expansion has been reported in some fused silicas (see Refs. 4. 6. and 12). Both Norris (see
Eef 12) and Shelby (see Ref 6), however, asserted that the observed expansion resulted from impurity effects.

"W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).

‘P. L. Highy and E. J. Friebele, Am_ Ceram Soc. Bull. 67, 615 (1088).

9E_ J. Friebele and P. L. Higby. in Laser Induced Damage in Optical Materials., 1987, NWIST Spec. Pub. 756,
edited by H. H. Bennett, A H. Guenther, D). Milam_ B. E. Newnam, and M. J. Soileau (NIST, Boulder, CO),
1988). p. 89.

*C. B. Norris and E. P. EerlNisse. J. Appl. Phys. 45, 3876 (1974).

Denotes values that were estimated from published data plots.

BC. I. Merzbacher. E. J. Friebele. J. A Ruller. and P. Matic. Proc. SPIE 1533. 222 (1291).

By E. Shelby, J. Appl. Phys. S0, 3702 (1979).

1068 J. Appl. Phys., Vol. 82, No. 3, 1 August 1997 R. E. Schenker and W. G. Oldham
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Conclusions &

Recommendations

Always carefully review the literature

Leverage optics design lessons from previous (deep space) missions
Design vs performance requirements at EOL
Select materials and alternatives (availability can be a problem)

Design test campaign to qualify materials against TID requirement
— Consider Dose rate, Annealing and Energy spectrum

— Synergistic effects may also be important; temperature environment, thermal cycling,
surface charging and dielectric breakdown, UV, molecular contamination, air-
vacuum, etc

Measure induced degradation of the
for each material

Test early and often to secure results and evaluate thoroughly to convince QA



Thanks for your Attention

 Dominic Doyle
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