Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Weak Lensing with Euclid

Adam Amara (on behalf of WLWG)

Outline

- 1. Weak Lensing Introduction
- 2. Weak Lensing Science
- 3. Systematics and Their Treatment

EIC Weak Lensing Working Group

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Adam Amara, (coordinator - ETH Zurich); Andrew Taylor, (co-coordinator -U. Edinburgh); Filipe Abdal Ia, (UCL); Nabila Aghnim, (IAS); Luca Amendola (INAF - OSS.Roma/U. Heidelberg); Vincenzo Antonuccio (INAF - Cantania Astrophys. Obs.); David Bacon (U. Portsmouth); Manda Banerji (UCL/IoA Cambridge); Joel Berge (JPL); Rongmon Bordoloi (ETH Zurich); Julien Carron (ETH Zurich); Frederic Courbin (EPF Lausanne); Eduardo Cypriano (UCL/U. Sao Paulo); Hakon Dahle (U. Oslo); Benjamin Dobke (JPL); Adam Hawken (UCL); Alan Heavens (U. Edinburgh); Benjamin Joachimi (U. Bonn/UCL); David Johnston (Nothwestern U.); Lindsay King (IoA Cambridge); Donnacha Kirk (UCL); Thomas Kitching (U. Edinburgh); Konrad Kuijken (U. Leiden); Ofer Lahav (UCL); Marco Lombardi (U. Milano); Roberto Maoli (U. Roma La Sapienza); Katarina Markovic (UCL/Ludwigs-Maximilians U.); Richard Massey (U. Edinburgh); Massimo Meneghetti (INAF - Oss. Bologna); Stepahne Paulin-Henriksson (CEA Saclay); Mario Radovich (INAF - Oss. Capodimonte); Anais Rassat (CEA Saclay); Justin Read (U. Zurich/U. Leicester); Alexandre Refregier (CEA Saclay); Jason Rhodes (JPL); Anna Romano (U. Roma La Sapienza); Roberto Scaramel la (INAF - Oss. Roma); Michael Schneider (U. Durham); Michael Seiffert (JPL); Fabrizio Sidoli (UCL); Robert Smith (U. Zurich); Jiayu Tang (UCL/IPMU); Romain Teyssier (CEA Saclay/U. Zurich); Shaun Thomas (UCL); Lisa Voigt (UCL)

Euclid Primary Science Objectives

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

lssue	Our Targets
Dark Energy	Measure the DE equation of state parameters w0 and wa to a precision of 2% and 10%, respectively, using both expansion history and structure growth.
Test of General Relativity	Distinguish General Relativity from the simplest modified- gravity theories, by measuring the growth factor exponent γ with a precision of 2%
Dark Matter	Test the Cold Dark Matter paradigm for structure formation, and measure the sum of the neutrino masses to a precision better than 0.04eV when combined with Planck.
The seeds of cosmic structures	Improve by a factor of 20 the determination of the initial condition parameters compared to Planck alone.

Tuesday, November 17, 2009

Lensing examples: Giant Arcs

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08 HST • WFPC2

Tuesday, November 17, 2009

Lensing examples: Einstein Rings

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Einstein Ring Gravitational Lenses Hubble Space Telescope • ACS J073728.45+321618.5 J095629.77+510006.6 J120540.43+491029.3 J125028.25+052349.0 J232120.93-093910.2 J140228.21+632133.5 J162746.44-005357.5 J163028.15+452036.2 NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team STScI-PRC05-32

Tuesday, November 17, 2009

Tuesday, November 17, 2009

Euclid Parameter Constraints

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

	Dark E	nergy	Densities			Initial Conditions		Hubble	DE
	Δw_p	Δw_a	$\Delta \Omega_{\rm m}$	$\Delta\Omega_{\Lambda}$	$\Delta\Omega_{ m b}$	$\Delta\sigma_8$	Δn_s	Δh	FoM ²
Current +WMAP ³	0.13	-	0.01	0.015	0.0015	0.026	0.013	0.013	~10
Planck	-	-	0.008	-	0.0007	0.05	0.005	0.007	-
Euclid Req.	0.018	0.15	0.004	0.012	0.006	0.004	0.007	0.022	400
Euclid Goal	0.016	0.13	0.003	0.012	0.005	0.003	0.006	0.020	500
Euclid +Planck	0.010	0.066	0.0008	0.003	0.0004	0.0015	0.003	0.002	1500
Factor gain on Current	13	> 15	13	5	4		I 4	7	150

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope Decause a convolution a

Detectors measure a pixelated image

Image also contains noise

Stars: Point sources to star images:

 \wedge

Summary of Top Level Requirements

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Description	Quantity	Requirement
Survey Geometry: Area: Errors on dark energy	A_s	$> 20000 \text{ deg}^2$
parameters depend on the area of the survey		
Survey Geometry: density of galaxies: And the	N _{eff}	$> 30 \text{ gals}/\text{amin}^2$
effective number density of galaxies useful for		
gravitational lensing (Neff)		
Survey Geometry: galaxy redshift: Redshift dis-	Zm	> 0.8
tribution of the lensing galaxies		
Shape Measurement: To reach the above cos-	$\sigma_{ m sys}^2$	$< 10^{-7}$
mological objectives, systematic effects shall be		
controlled to a level where they do not domi-		
nate over the statistical errors. This is done		
by controlling the variance of the residual shear		
systematics.($\sigma_{\rm sys}^2$)		
Photometric Redshifts statistical: The statisti-	$\sigma(z)/(1+z)$	< 0.05
cal rms error $\sigma(\overline{z})$ in the photo-zs in the range		
0.2 < z < 2.0		
Photometric Redshifts error in the mean: The	$\sigma(\overline{\mathbf{z}_{\mathbf{i}}})/(1+\overline{\mathbf{z}_{\mathbf{i}}})$	< 0.002
mean of the redshift distribution $n(z)$ of each bin		
must be known to high precision		

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

End

Tuesday, November 17, 2009