EUCLID Data Handling System and Ground Segment

Edwin A. Valentijn
ESST
ESST Data handling working group

OmegaCEN - University Groningen

Observing the Dark Universe with EUCLID conference ESTEC 18 November 2009

CAT: Merge DUNE SPACE -> data handling issue

- Feasibility study
 - Showstoppers ?
- How to
 - Data handling system

6 The Scientific Information Track – Operations and Dataflow

Euclid will deliver an unprecedented large volume of data for astronomical space missions: e.g. about 4

Dataflow WG

- WG members
 - Valentijn Chair OmegaCEN- Univ Groningen NL
 - Niranjan Thatte Oxford- UK
 - Matthias Steinmetz AIP- D
 - Rene Laureijs ESA
 - Anthony Brown Leiden GAIA
 - Fabio Pasian INAF Trieste I
 - Herve Aussel CEA Fr
 - Andrey Belikov OmegaCEN NL
 - Marco Scodeggio Milano INAF -I

Raw data budget

- 20 000 deg² of extragalactic sky |b|>30 degrees during the mission lifetime of 5 years
- A *field* ~0.5 deg² is dithered 2400 sec
- On a daily basis, Euclid will observe strips 20 degrees long = 36 fields
- On approximately monthly basis a *patch* will be completed, 400 deg²
- **deep** field **40 deg²**, 2 mag deeper no additional requirements
- covering of 20000 + 10% overlap deg² with leads to 44000 fields -> **3.4 years** of observing time.

Add time for slewing, deep fields and calibrations plus maintenance periods +1 more vear

Instrument (frame size)	Collecting	Number of frames	Volume (Gbit/frame)	Compress Factor	Compressed Volume (Gbit/frame)
VIS (36 CCDs of 4x4k)	1 visible band of 0.5x1.0 degrees, 4 dithers to fill gaps	4	38.81	2.8	13.86
NIP (18 detectors of 2x2k)	4 NIR photometric bands, 4 dithers each, 24 2x2k detectors	12	14.5	2.5	5.81
NIS (8 detectors of 2x2k)	1 spectroscopic field, 4 integrations	5	2.69	1.5	1.80
Totals			56		21.47

Data rates

	EUCLID	Planck	GAIA	Astro-WISE (KIDS)
Data Storage	5 PB	TB-scale (2 TB/year raw)	~ 1 PB (200 TB raw)	363 TB (2009) ~ PB (2010)
Data Processing	10 ²⁰ Flop	5 Tflops (?)	10 ²¹ Flop	

40 TB raw compressed integer /year - > 270 TB/year floats -> 1 Peta / year-> 5 PB √

- All this in a distributed Mission Archive MA √
- GAIA type process peak ~ 1 Tflop √
- extensive existing processing packages √

Single Mission Archive / science information system enabling:

- quality control at all levels
 - → feedback report to SOC/MOC
 - → monitoring satellite and instruments
 - → all aspects propagating as systematic errors ← IOCs SDCs

Connect various instrument and science teams

- → exchange and verification of results
- → connect Ground based observations
- → connect simulated data

EUCLID Legacy Archive

- → science ready data -> VO
- → data processing from raw data to ELA additional studies

Key Components GS

Satellite \rightarrow Ground Station \rightarrow MOC \rightarrow SOC *ESA responsibility*

Instrument Operation Centers (IOCs) →
Science datacenters (SDCs)

Consortia responsibility

Mission Archive → EUCLID Legacy Archive joint responsibility of ESA and Consortia

The GS in turn will be propelled by a data handling system (DHS), which amongst other things will maintain all administration of data at various stages of pro-cessing, data products and quality controls

GS Components Data Flows

GS Components Mission Support Operations

GS Components

Data processing challenges critical for systematic errors

all requiring interoperability along 2 axis:

Vertical: Along data flow (feed-back)

Horizontal: Between teams (cross check)

- Photometric redshifts
 - vs Euclid Spectrogr. redshifts
 - vs ground based
- PSF modelling- CTI glitches
- E.g. Illumination corrections- photometry
- Simulations

DHS single distributed infrastructure the dark energy of EUCLID DHS

- Component Based Software Engineering (CBSE) – modular approach
- Common Object-Oriented Data Model
- Persistence of Data Model Objects
- each processing step and lineage is saved in the system- full backward chaining (to ...)

Conclusions - DHS

- Data rates, data volumes \(\cdot \)
- Including external data, Ground based, simulations √
- QC reporting and sharing \(\bigveright\)
- Cross verifications redundant and competitive data processing systematic errors √

No duplications

- Save on data processing
- Save on staff
- Save on interfaces (one single interface for data access)
- Save on storage space (no unnecessary duplication of data items)
- Save on processing facilities (shared by participants)