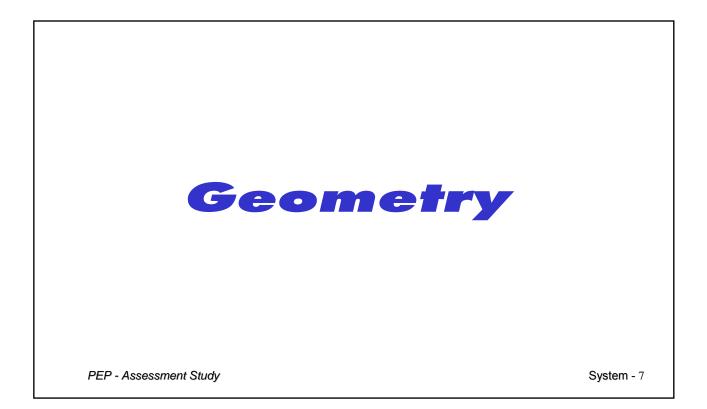
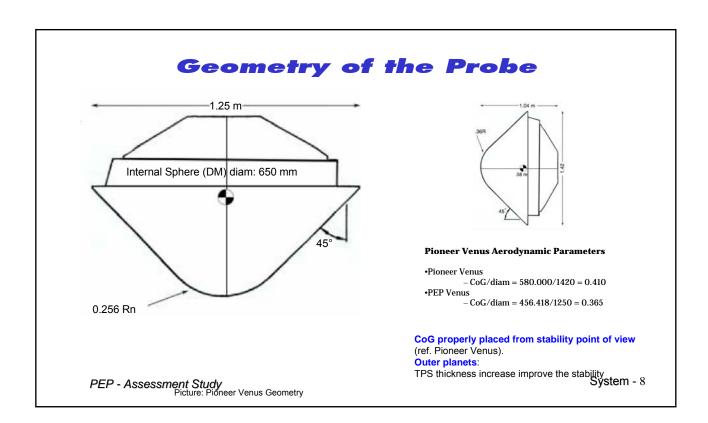
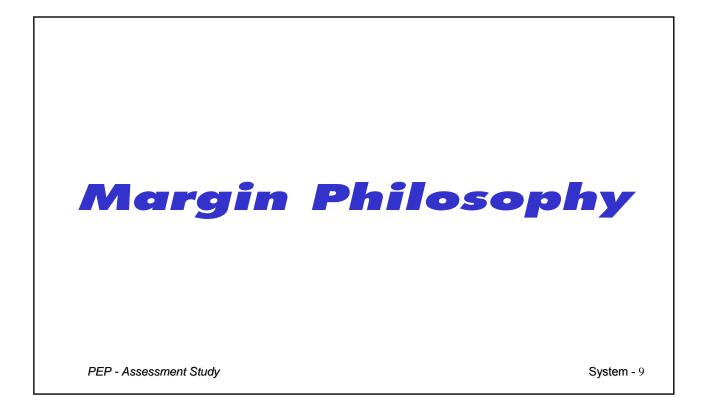
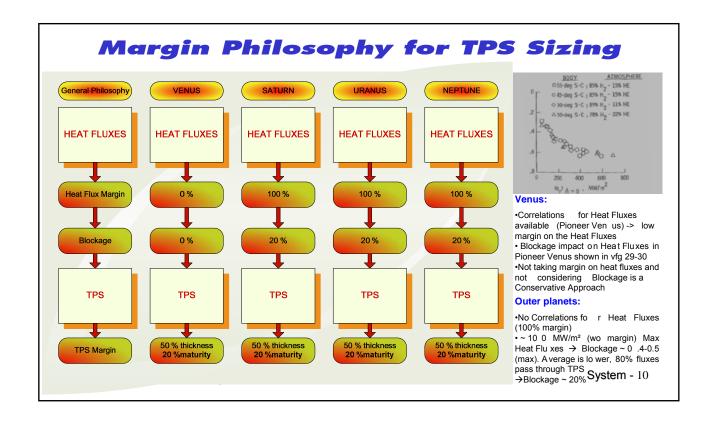
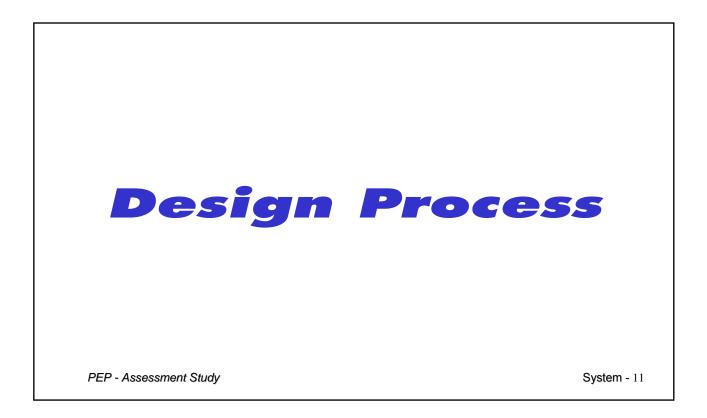

Introduction
 PEP: Planetary entry probes On request of SRE-PA Assess the feasibility and preliminary design of entry and descent probes to investigate the characteristics of Planetary atmospheres of: Venus Saturn Uranus Neptune In preparation of the next Cosmic Vision call Sixteen sessions (14 April – 30 June) Today is the Internal Final Presentation (IFP) This is also a final iteration to verify each other's results Science issues should be discussed off-line
PEP - Assessment Study Intro- 2

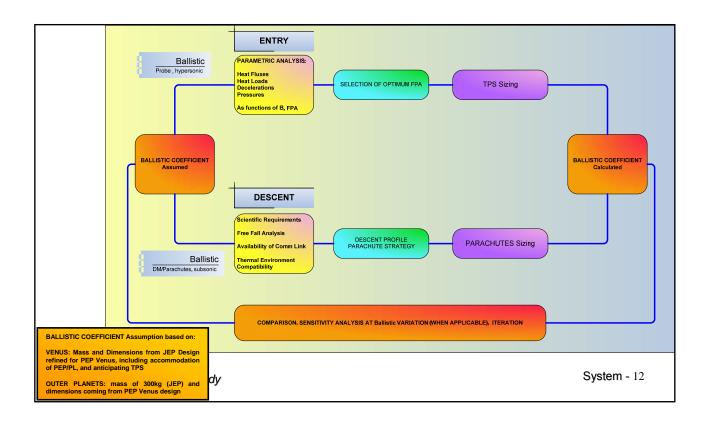

PEP - Assessment Study

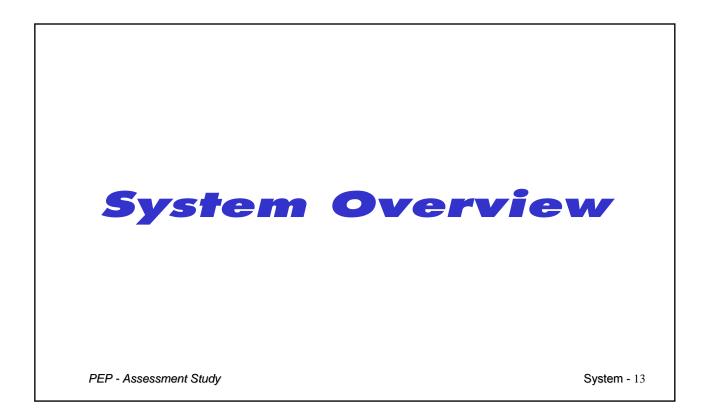

	MISSION REQUIREMENTS
SR-1	Mission launch timeframe 2020-2035.
SR-2	Launcher shall be Soyuz-Fregat 2-1b from Kourou (baseline), Ariane 5 ECA (backup).
SR-3	The mission design shall be composed of a carrier and a Planetary Entry Probe (PEP)
SR-4	The PEP shall perform a direct entry.
SR-5	The carrier shall perform a deflection manoeuver to have a fly-by trajectory and achieve a telecom relay function.
SR-6	During entry and descent, the apparent carrier elevation will be at least deg (TBC) with respect to the local horizon to optimise the communication budget.
SR-7	During entry and descent, the carrier to PEP range shall not exceed km (TBC) to optimise the communication budget.
SR-8	The time between probe separation and entry date shall be minimised to keep the FPA error as low as possible and in any case lower than TBD deg.
SR-9	Mission design shall allow the PEP to perform entry in the planet atmosphere at near equatorial latitude (baseline) or up to TBD deg latitude (option). This requirement is not applicable to Uranus due to its tilted polar axis. Specific entry trajectories
SR-10	The PEP shall perform an entry followed by a parachute phase.
SR-11	The probe shall operate down to an altitude corresponding to at least 30 bars and up to 100 bars pressure
SR-12	The PEF data shall be transmitted in real time to the carrier, which shall serve as a relay to the Earth.
SR-13	The PEI coast phase and entry should occur in visibility from Earth (TBC).
SR-14	If mass margins are sufficient, the mission shall achieve 2 probes release.

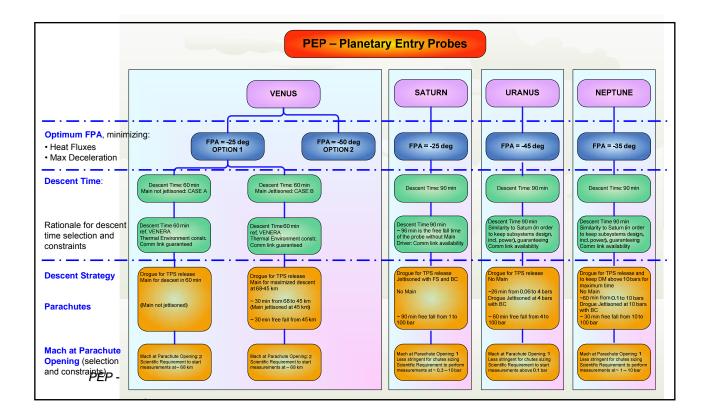

	SYSTEM REQUIREMENTS
SR-15	The PEP mass shall be minimised (reference mass envelope taken from the Jupiter Entry Probe CDF design ~ 300 kg)
SR-16	The ballistic coefficient of the PEP shall be in the range (TBD).
SR-17	The PEP half cone angle shall be set to 45 deg as a starting point.
SR-18	The PEP shall be compatible with the payload interface requirements as defined in the payload requirements section.
SR-19	The PEP shall carry, in addition to science payload, flight instrumentation to validate aerothermodynamic and ablation models
SR-20	For the design of the PEP the following mass margins shall be used: • Conventional maturity margins for all sub-systems, between 5 and 20% depending on the level of maturity to be agreed with the Agency • A system margin of 20 % on top of all PEP equipments, except for the heat shield material (back and forward) • The heat shield mass will be computed using the aerothermodynamics data including their margins and based on a PEP mass including margins (and heat shield
	• A 50% maturity margin shall be added to the mass of the heat shield material computed as mentioned above if the current TRL is lower than 5
SR-21	The PEP shall be uncontrolled and unguided after release.
	EDS REQUIREMENTS
SR-22	The PEP entry and descent system (EDS) shall be composed of a front shield, a back cover (both being jettisoned after the entry phase), a parachute system (deployed at the end of the entry phase) composed by one or two parachutes (possibly featuring a pilot chute)
SR-23	The PEP shall accommodate and operate the payload and the avionics and power subsystems in a descent module compatible with the atmospheric conditions down to 100 bars (target) / 30 bars (threshold).
	COMMUNICATION REQUIREMENTS
SR-24	The PEP communication subsystem shall transmit periodically a minimum telemetry set of critical parameters to the carrier during the coast phase.
SR-25	The PEP communication subsystem shall maintain a communication link with the carrier during entry and descent (except during RF blackout) and shall relay in real time the flight and payload measurements data.
SR-26	FP - Assessment Study System - 5


	AERODYNAMIC REQUIREMENTS
SR-27	The PEP shall be aerodynamically stable during entry.
SR-28	The descent module and its parachute shall be aerodynamically stable during descent.
	PAYLOAD REQUIREMENTS
SR-29	The PEP shall accommodate, carry and operate the model payload defined.
	VENUS SPECIFIC REQUIREMENTS
SR-30	The Venus PEP analyses shal consider 2 scenarios: one scenario where the PEP is released as a piggyback during a GAM of a larger mission (Laplace mission shall be considered as a reference), and one scenario featuring a stand alone mission as for outer planets
SR-31	Note: DTE refers to science payload and Probe telemetry data, not to RF carrier recovery and Doppler tracking from Earth, which is specified in any case, provided in visibility from Earth
SR-31	In the case of a DTE link, no deflection manoeuvre nor relay function shall be considered for the carrier.
SR-32	The Venus PEP shall be sized to sustain the surface pressure of 92 bars (but no landing system shall be analysed).
SR-33	The Venus PEP shall operate down to the surface
SR-23	As an option, the feasibility of releasing the parachute before reaching the surface (in order to accelerate the final descent phase) shall be analysed, including analyses of the descent module stability


PEP - Assessment Study



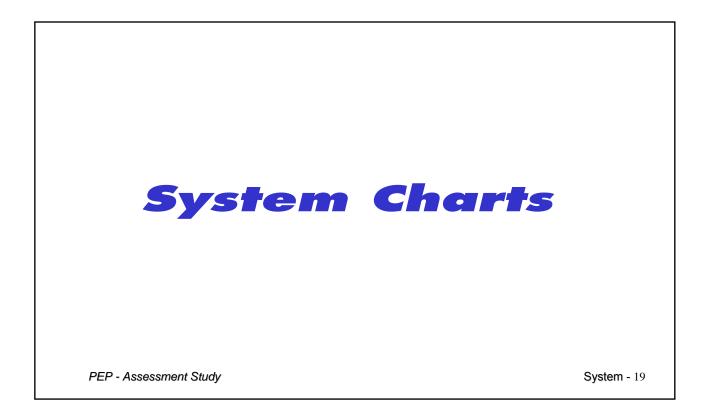


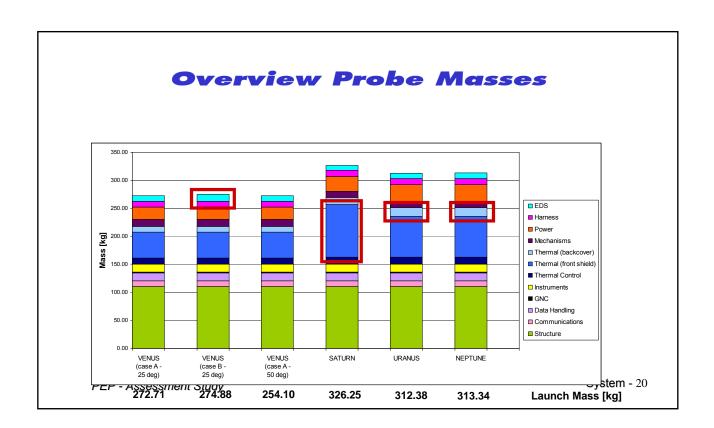


	Assumptions							
AREA	ASSUMPTION ITEM	VALUE	UNIT	REMARKS				
Geometry	Front Shield Cone Angle	45	deg					
	Nose Radius	0.256	m	JEP ref.				
Comms	Telecommand Capability during Coasting	No		Ref. vfg 35				
	Frequency Band	UHF		400 MHz				
	Comms Duration during Coasting	1	hour	(6 slots of 10 min)				
Aerothermodynamics	Mach at Parachute Opening	M ~ 2 Venus M ~ 1 Outer Planets		Due to Scientific Requirements Better Scenario for Parachute Opening				
Margin Philosophy	TPS sizing	50 20	% %	Thickness Margin Maturity Margin				
	Heat Flux Margin	0 100	% %	Venus Outer Planets				
	Blockage	0 20	% %	Venus Outer Planets				
System Modes	 Coast Intermediate Mode (Mode 2), including: a. Entry b. Parachute Deployment Sequence 	All planets: 20 days All planets: 106 s	days s	Mode 2 (Intermediate): For power subsystem sizing purposes, a + b: assumed of constant duration. The actual duration has a different value for each planet (ref vgf 18), but this has a minor impact on the design (same order of meanity).				
PEP - Asses	snîefît®tudy	Venus: 60 min Outer Planets: 90 min	min min	^{magnitude)} System - 15				

	Syste	e m Trade	- 0	ffs	
AREA			Planet	REMARKS	
Mission Architecture	Dedicated Mission	Piggyback Mission Architecture	Venus	Piggyback Option: Laplace Mission Architecture	
Mission Analysis	Transfer Scenarios		All		
Coast Duration	Several durations investigate	d	All	20 days coasting has been baseline for all planets	
Entry Conditions	Daylight Entry	Night Entry	All	Outer Planets: night entry = not in visibility from	
	Earth Visibility	No Earth visibility	All	- Earth	
nertial FPA	- 25 deg	- 50 deg	Venus	For all the planets an optimization of the entry inertial FPA has been performed, for Venus 2 dedicated options (FPA -25deg and FPA -50 deg) have been studied)	
Thermal	TPS Concepts and Materials		All		
	RHU	No RHU	All	Need during Coasting to be checked (later phases)	
Communications	DTE	Relay Orbiter	Venus	Outer Planets: DTE not feasible	
	Comms during entry	No comms during entry	All	Flight housekeeping data can be transmitted out of the blackout period	
GNC	IMU	No IMU	All		

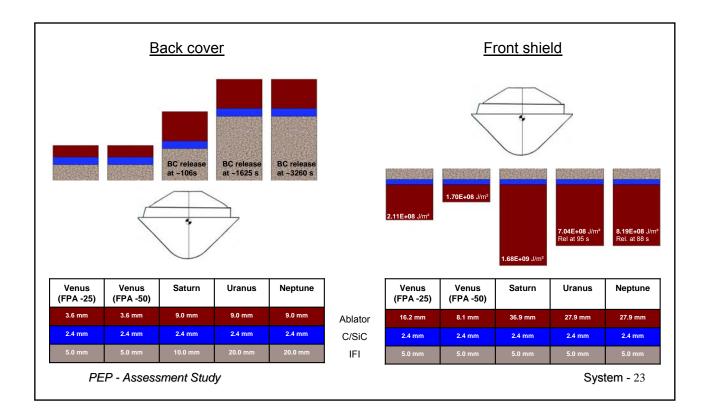
System Trade - Offs (cont'd)


AREA			Planet	REMARKS
Main Parachute Type	Disk Gap Band	Conical Ribbon	All	
Number of Parachutes	Main parachute	No main parachute	All	Drogue is needed for TPS release. Need for main is related to free fail duration of DM sphere, compared with the scientific requirements to perform measurements at a specified pressure/altitude, maintaining link with the carrier
Main Chute Jettisoning	No jettisoning	Jettisoning at 45 km	Venus	To maximize scientific measurements at interesting altitudes (68 – 45 km)
Drogue Chute Jettisoning	No jettisoning	Jettisoning at given pressure (or altitude)	Outer Planets	To maximize scientific measurements at interesting pressures
Parachute sizing	Based on TPS release	Based on descent time	All	
Mach at Parachute Opening	M ~ 2	M ~ 1	All	


PEP - Assessment Study

System - 17

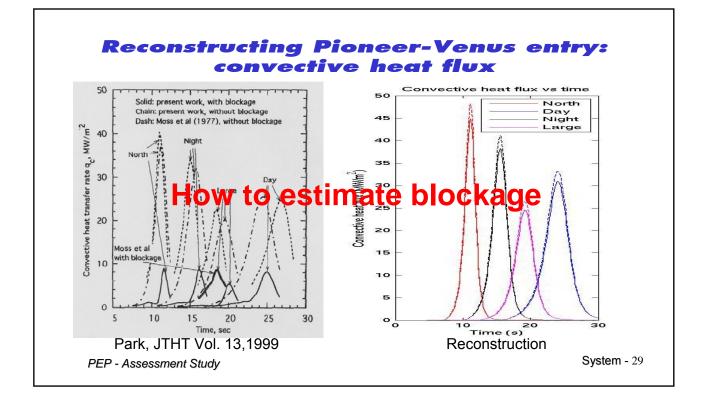
System Modes and Duration

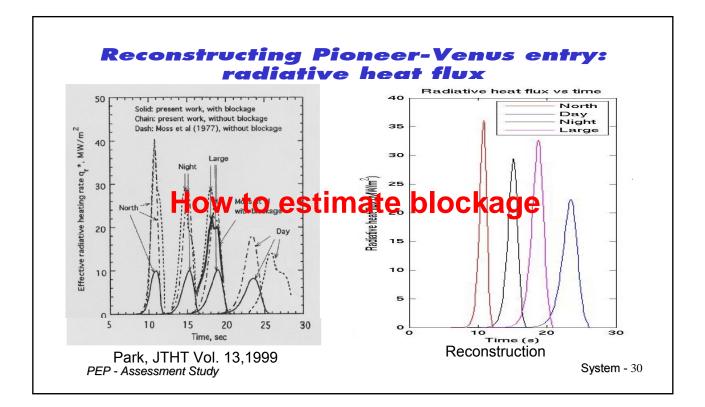

MODE NAME	DESCRIPTION	DURATION
Coast	From probe's release from carrier till atmosphere entry. The probe uses its own Power system and timer switches to activate automatic sequences. NO Telecommand Capability assumed.	20 days
Intermediate	From the point where the probe reaches the interface altitude to the Front Shield Release and Main Parachute Deployment (when applicable). During this phase the probe relays flight instrumentation data. A black-out is caused by a plasma sheath around the probe	~106.20 s • Atmospheric Entry • Parachute Deployment Sequence and Front Shield Release
Descent	After the Front Heat Shield release the DM is ready to: -perform scientific measurements, -relay data (communication window allows link budget with compatible range and elevation), - survive Thermal Environment	~ 60 minutes VENUS (VENERA) ~ 90 minutes OUTER PLANETS
TMOSPHERE	ENTRY AND PARACHUTE DEPLOYMENT/TPS RELEASE SEQUENCE	
VENUS:	M = 2 at 36.8 s from atmosphere interface + 20 s for drogue opening, 30s for FS release, 2s for	BC release, 20s for main opening
SATURN:	M = 1 at 76.0 s from atmosphere interface + 30 s for drogue opening and TPS release BC is released at 106.20 s from atmosphere interface	
JRANUS:	M = 1 at 65.0 s from atmosphere interface + 30 s for drogue opening and TPS release.	
	BC is released at $t = 1625$ s from atmosphere interface	
NEPTUNE:	M = 1 at 58.7 s from atmosphere interface + 30 s for drogue opening and TPS release.	
	BC is released at $t = 3260$ s from atmosphere interface	
Blackout is related to t	A SPERSON PULL, Studies of the atmosphere, the geometry of the heat shields, and the peak of the heat loads. The black be shorter than the entry phase duration.	out period assessment is out of the scope of this

	The	rmal D	esign -	TPS	
	Venus FPA = -25°	Venus FPA = -50°	Saturn FPA = -25°	Uranus FPA = -45°	Neptune FPA = -35°
		THICI	KNESS		
Front Shield Ablator	CP 16.2mm (31.0kg) Narmco4028 23.4mm (44.77kg) FM5055 26.1mm (49.94)	CP 8.1mm (15.5kg) Narmco4028 13.5mm (25.83kg) FM5055 11.7mm (22.39kg)	CP 36.9mm (70.6kg) Narmco4028 49.5 mm (94.71 kg) FM5055 54.9mm (105.04 kg)	CP 27.9mm (53.38kg) Narmco4028 38.7 mm (74.05 kg) FM5055 42.3 (80.93 kg)	CP 27.9mm (53.38kg) Narmco4028 38.7 mm (74.05 kg) FM5055 42.3 (80.93 kg)
Front Shield C/SiC	2.4 mm	2.4 mm	2.4 mm	2.4 mm	2.4 mm
Front Shield IFI	5 mm	5 mm	5 mm	5 mm	5 mm
Back Cover Ablator	3.6 mm	3.6 mm	9 mm	9 mm (3.07 kg)	9 mm (3.07 kg)
Back Cover C/SiC	2.4 mm	2.4 mm	2.4 mm	2.4 mm	2.4 mm
Back Cover IFI	5 mm	5 mm	10 mm	20 mm	20 mm
			ASS		
Front Shield C/SiC+IFI	8.11 kg	8.11 kg	8.11 kg	8.11 kg	8.11 kg
Back Cover C/SiC+IFI	7.62 kg	7.62 kg	8.62 kg	10.62 kg	10.62 kg
Total Front Shield (Ablator+C/SiC+IFI)	CP 16.2mm (39.11kg) Narmco4028 23.4mm (52.88kg) FM5055 26.1mm (58.05kg)	CP 8.1mm (23.61kg) Narmco4028 13.5mm (33.94kg) FM5055 11.7mm (30.5kg)	CP 36.9mm (78.71kg) Narmco4028 49.5mm (102.82kg) FM5055 54.9 (113.15 kg)	CP 27.9mm (61.49kg) Narmco4028 38.7 mm (82.16kg) FM5055 42.3 (89.05 kg)	CP 27.9mm (61.49kg) Narmco4028 38.7 mm (82.16kg) FM5055 42.3 (89.05 kg)
Total Back Cover (Ablator+C/SiC+IFI)	PICA-likeCP 3.6mm (8.85kg)	PICA-likeCP 3.6mm (8.85 kg)	PICA-likeCP 9mm (11.69kg)	PICA-likeCP 9mm (13.69kg)	PICA-likeCP 9mm (13.69kg)


	Venus FPA = -25° A	Venus FPA = -25° B	Saturn FPA = -25°	Uranus FPA = -45°	Neptune FPA = -35°
Number of Parachutes	2 Parachutes 1 drogue for TPS release 1 main for descent	2 Parachutes 1 drogue for TPS release 1 main for descent	1 Parachute 1 drogue for TPS release	1 Parachute 1 drogue for TPS release	1 Parachute 1 drogue for TPS release and to meet a given descent time to 10 bars
Mach at Parachute Opening	M~2	M ~ 2	M ~ 1	M ~ 1	M ~ 1
Altitude, Pressure at Parachute Opening	68 km, 0.11094 bar	68 km, 0.11094 bar	0.1-0.5 bar	0.05-0.06 bar	0.1 bar
Altitude, Pressure at Parachute Jettisoning	~ 0 km, 92 bar	~ 45 km	Jettisoning after TPS release	4 bars	8-10 bars
Descent Timeline	60 minutes	30 min at 68-45 km 30 min at 45-0 km	90 min free fall from 1 to 100 bar Drogue released with FS and BC	~ 26 min from 0.06 to 4 bars with drogue and BC ~ 64 min free fall from 4 to 100 bars	~ 60 min from 0.1 to 8-10 bars with droge and BC ~ 30 min free fall from 10 to 100 bars

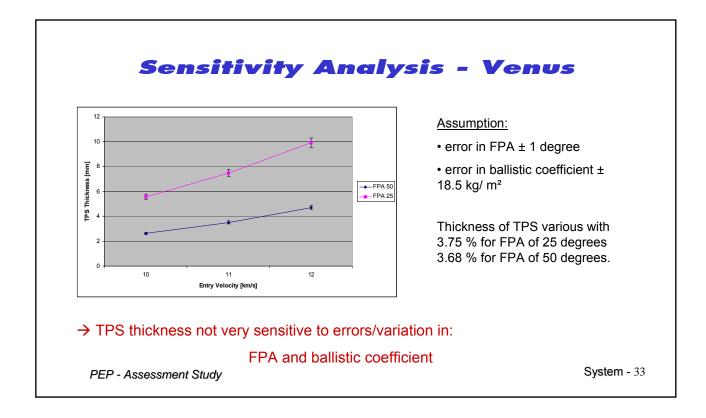
PEP – Subsystems Design

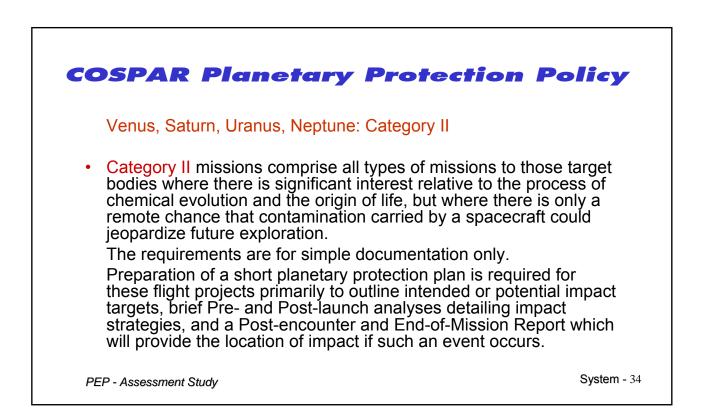

Same Design for All Planets						
Communication	Communication					
Link	Telemetry Link: 200 bps during Coast; 2 kbps during descent					
Power						
Coast	On: 86W; Av. 0.5W					
Entry	On: 53W; Av. 37W					
Descent	On: 416W; Av. 412W					
Payload	Ref. Back-up slides for detailed definition					
DHS	uC+SCOC3 (MTU, CDMU, uRTU, DPU) – 11.56 kg incl margins					
GNC	3 Timer Units for wake up, 2 g-switch to backup timer units, 1 IMU					
Structure	Panel Thicknesses sized to stand 100 bar; max deceleration and max dynamic pressure impact to be further investigated					

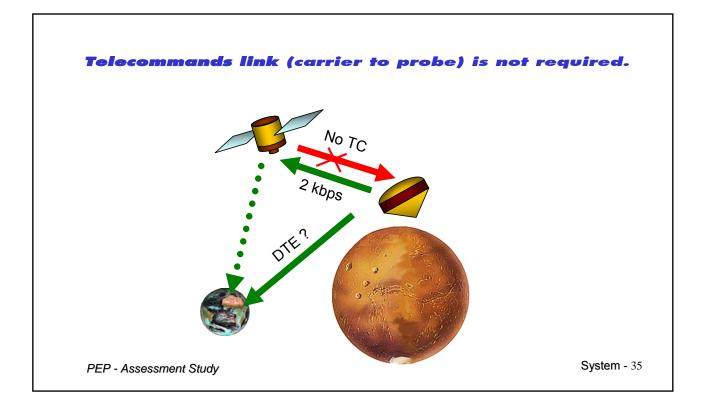

PEP - Assessment Study

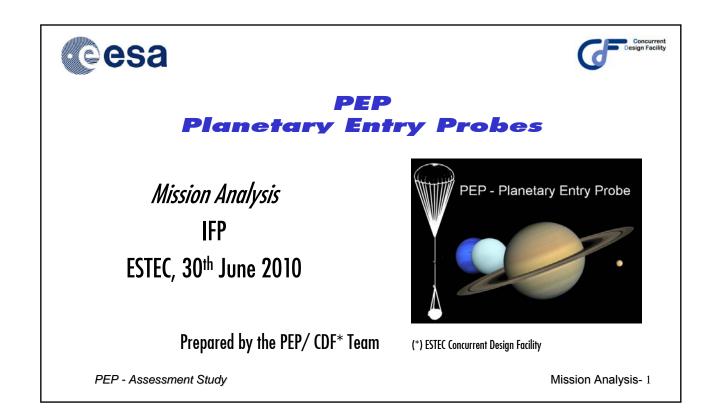
	Summary								
	Venus FPA = -25°	Venus FPA = -50°	Saturn FPA = -25°	Uranus FPA = -45°	Neptune FPA = -35°				
Launch Date	03/11/2020		2025 – 2029 (several scenarios investigated) 02/03/25 baseline	S3/2026 vs S4/2028 28/12/29 baseline	2026/09/05				
Transfer Time	0.33 years		8.6 – 9.78 years	18.5 vs 16.4 years	19.3 years				
Inertial Velocity	11.8 km/s		36.0 km/s	21.7 km/s	24.7 km/s				
Inertial FPA	-25° Option 1	-50° Option 2	- 25°	- 45°	- 35°				
Mach at Parachute Opening	M ~ 2		M ~ 1	M ~ 1	M ~ 1				
Number of Parachutes	1 drogue for TPS Release 1 main for desc. From ~68 km to 92 bar (CASE A) 1 main for desc from 68-45km, then free fall (CASE B)		1 drogue for TPS Release	1 drogue sized for TPS Release and kept till 4 bars (~26 min), and consequent free fall to 100 bar (~1 hour)	1 drogue sized for TPS Release and to reach 10 bars in ~ 1 hour				
Parachute Strategy	CASE A: descent from ~68 to 92 bar in 60 min CASE B: descent from 65 to 45 km in 30 min, 30 min free fall		Descent from 1 to 100 bar in 90 min	Descent from 0.06 bar to 4 bars with drogue chute and BC, in ~26 min, Drogue and BC release and free fall to 100 bar in ~1 hour	Descent from 0.1 bar to 10 bars with drogue chute and BC, in ~60 min, Drogue and BC release and free fall to 100 bar in ~30 min				
Descent Time	60 min (driven by thermal environment)		90 min (driven by available communication link with the carrier (range and elevation optimization)	90 min (driven by available communication link with the carrier (range and elevation optimization)	90 min (driven by available communication link with the carrier (range and elevation optimization)				
Max Deceleration	~ 250 g	~ 360 g	~ 250 g	~ 300 g	~ 325 g				
Max Heat Fluxes	59.5 MW/m ² at 23.5 s from entry	83.37 MW/m ² at 12.9 s from entry	114 MW/m ² at 33.0 s from entry	104.04 MW/m ² at 30s from entry	95.98 MW/m ² at 37.1s from entry				
Tot Heat Loads	2.11E+08 J/m ²	1.70E+08 J/m ²	1.68E+09 J/m ²	7.04E+08 J/m ²	8.19E+08 J/m ²				
Probe Mass	272.71 kg CASE A 274.87 kg CASE B	254.10 kg CASE A	326.25 kg	312.37 kg	^{313.34 kg} System - 26				
Probe Ballistic Coeff	202.01 kg/m² CASE A 203.62 kg/m² CASE B	188.24 kg/m²	241.67 kg/m²	231.40 kg/m²	232.12 kg/m ²				

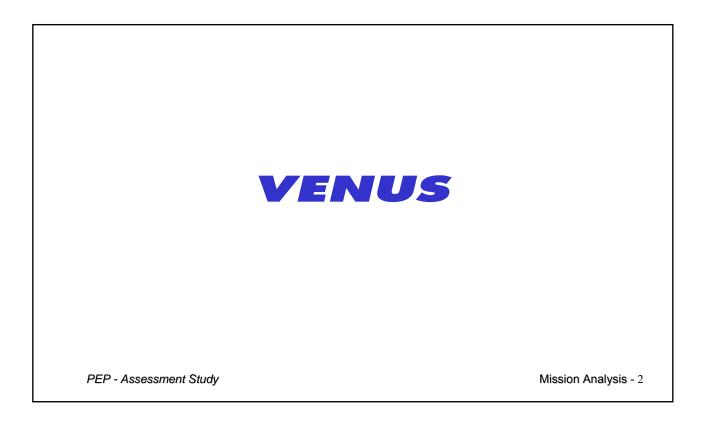
	VENUS (case A)	VENUS	case B)	VENUS C	ption 2	SATURN		URANUS		NEPTUNE	
Thermal (front shield)	45.85	kg	45.85	kg	27.52	kg	93.92	kg	73.00	kg	73.00	kg
Thermal (backcover)	10.13	kg	10.13	kg	9.85	kg	12.89	kg	15.40	kg	15.40	kg
Launch mass	272.71	kg	274.88	kg	254.10	kg	326.25	kg	312.38	kg	313.34	kg
FS Mass Fraction	16.81%		16.68%		10.83%		28.79%		23.37%		23.30%	
BC Mass Fraction	3.71%		3.69%		3.88%		3.95%		4.93%		4.91%	
TPS Mass Fraction	20.53%		20.36%		14.71%		32.74%		28.30%		28.21%	
Entry Velocity	11.8			km/s	11.8	km/s	36	km/s	21.7	_	24.7	
FPA Ballistic Coefficient	25	deg kg/m ²		deg kg/m²	50	deg kg/m²	25	deg kg/m ²	45	deg kg/m ²	35	deg kg/m ²
	_	PIO	NEER V	ENUS	MAR	S Exp	I. Rovers	5	HUYGEN	IS (Tit	an)	
FS Mass Fraction		PIO 8.839		ENUS		S Exp 60%	I. Rovers	-	HUYGEN 5.00%	IS (Tit	an)	
FS Mass Fraction BC Mass Fraction			%	ENUS	9.6		I. Rovers	2		IS (Tit	an)	
		8.83	% %	ENUS	9.6	60% 00%	I. Rovers	2	5.00%	IS (Tit	an)	
BC Mass Fraction		8.83 1.52	% % %	ENUS km/s	9.6 2.0 11.6	60% 00%	I. Rovers	2	5.00% 5.10%		an)	
BC Mass Fraction TPS Mass Fraction		8.83 1.52 10.35	% % %		9.6 2.0 11.6	60% 00% 60%		2	5.00% 5.10% 0.10%	kı		

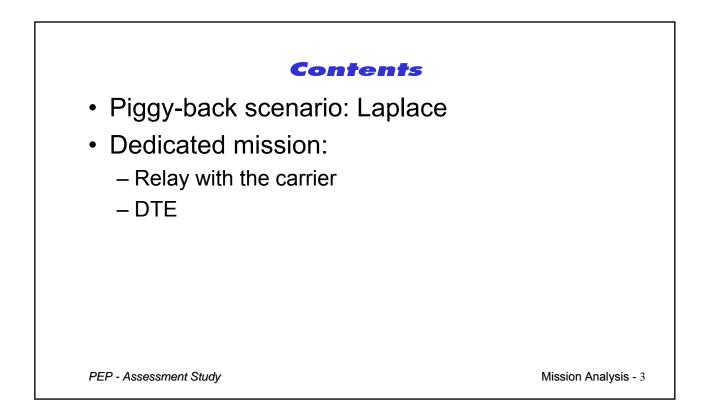


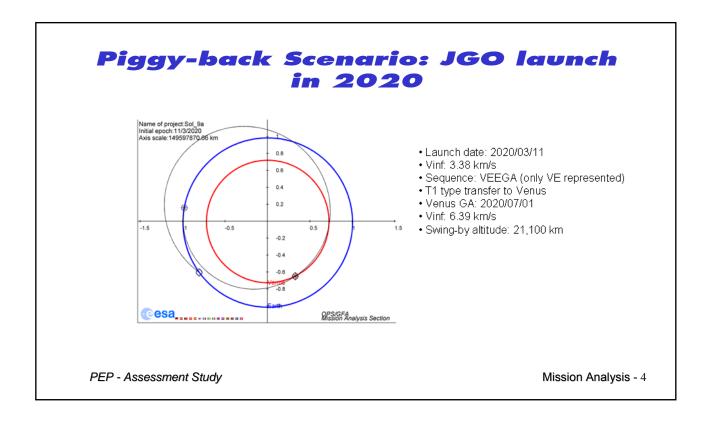


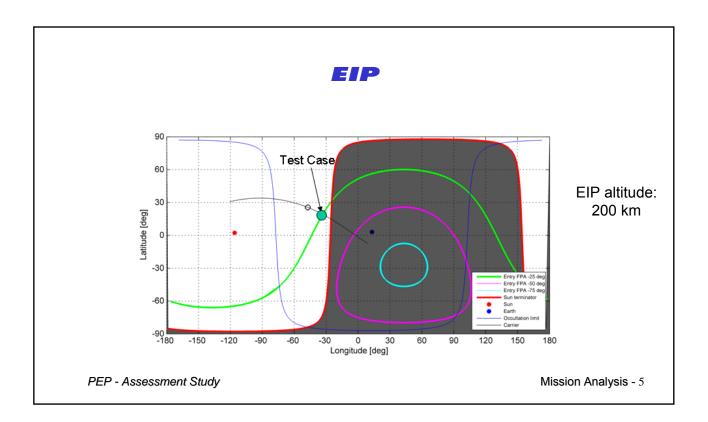

	Mass [kg] w/o margin	X*Y*X [mm]	Power [W]	Data rate [kb/s]	Data vol. [kb]	Duty cycle in 1 h	
ASI/MET	1.25	ACC,TEM, PPI 205x30Ø (outside)	1 sby. 5 ave.	0.16	5900/h	var. cont.	
ASI/MET	1.25	50x50x50 other	10 max.	CANbus	590 compressed		
MS	5.0	250x200x100	4 sby. 8 ave. 10 max.	0.13 CANbus	4800/h (6 samples) 480 compressed	1/10'	
Doppler Wind	1.5	150x150x118	10 ave. 18 max.	-	-	cont.	
Camera	1.2	100x100x200	8 ave. 10 max.	1.747 Spacewire	75.5 Mb/h 6290 kbit comp.	1/10'	
Photometer	0.3	30x30x80	1 ave. 2 max.	0.00026	16 bit/minute 0.96 kbit/h	Cont.	
DPU and power conv.	1.0	50x50x100	3	-	-	-	
Σ	10.25			2.037	7360.5		

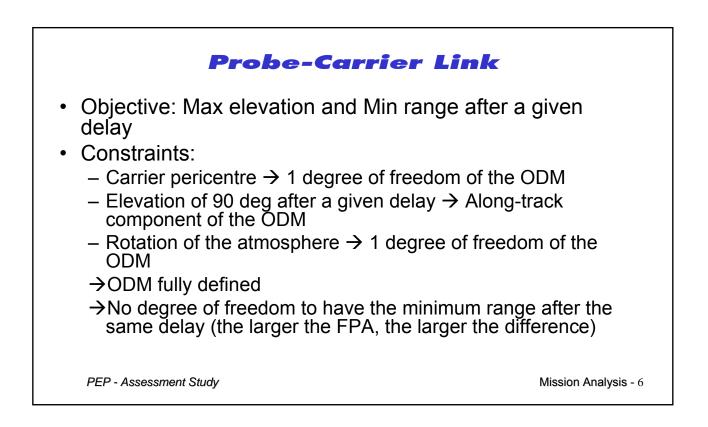

PEP Payload Accommodation Requirements

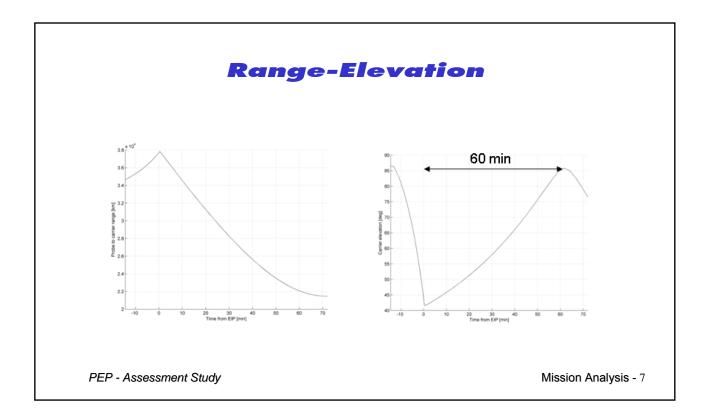

		ACOOMMODATION REQUIREMENTS						
	ACC	Close to the center of mass						
ASI/MET	TEM 1 inlet							
	PPI	1 inlet						
MS		2 INLETS						
Doppler Wind		NONE						
Camera		Downward looking, 15° field of view						
Photometer		Upward looking, 30° field of view						
DPU and power conv.		none						

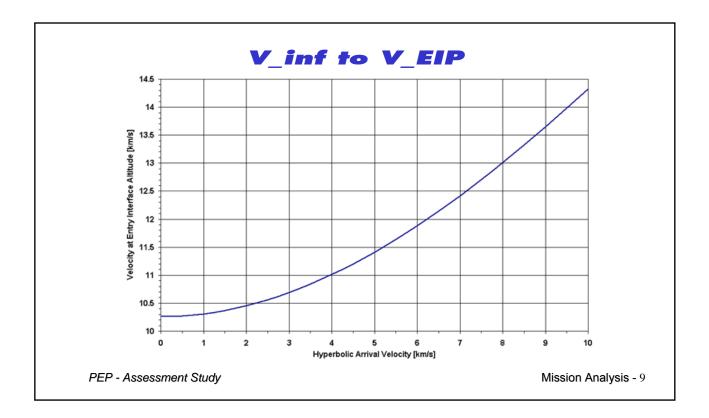


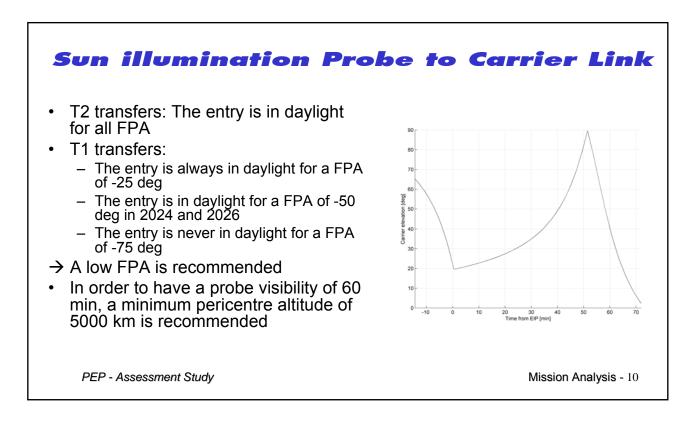


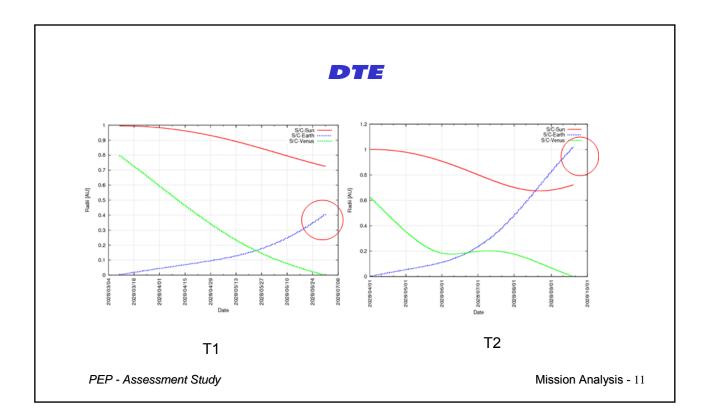


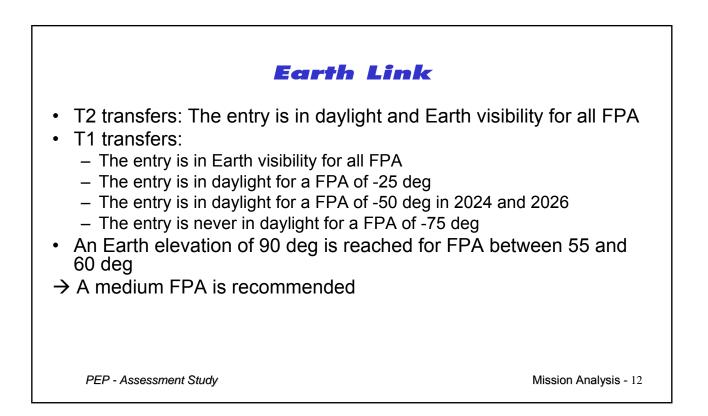


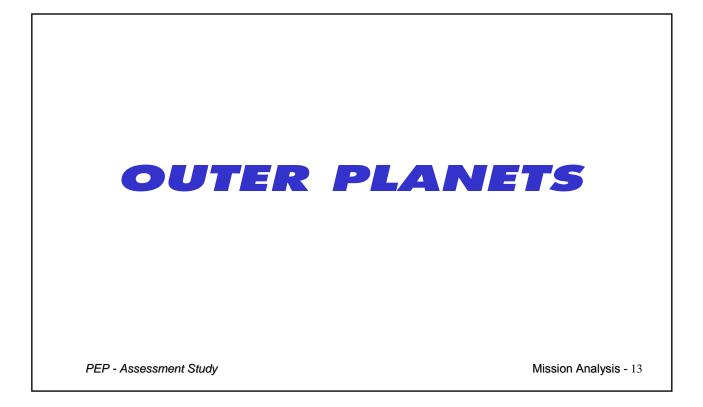


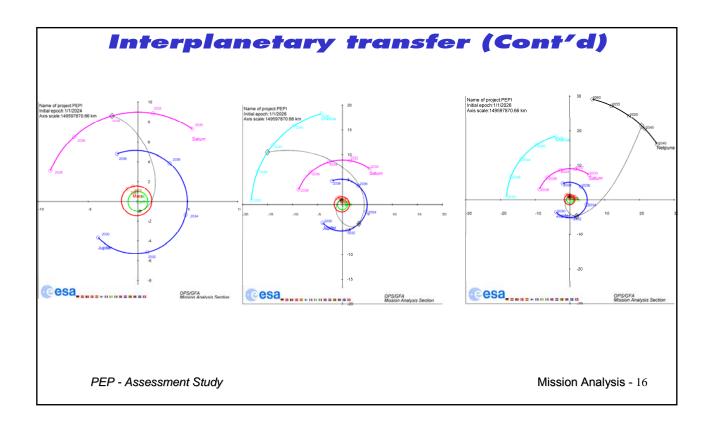


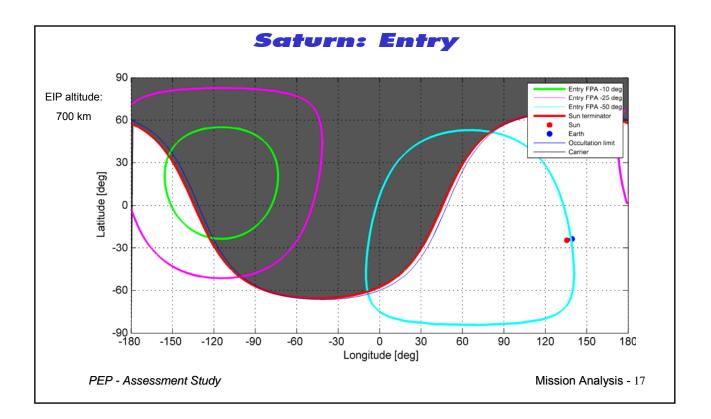


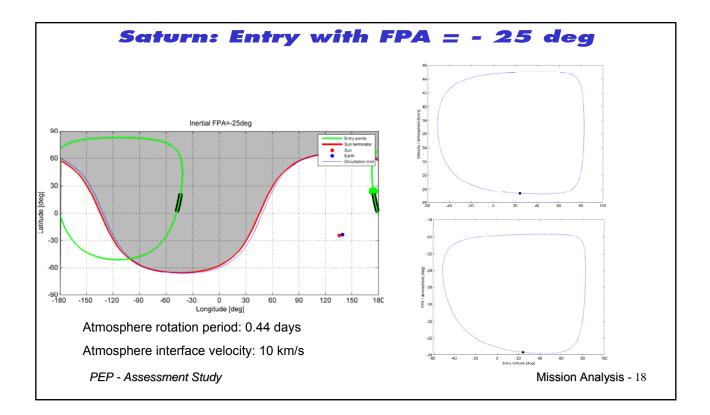




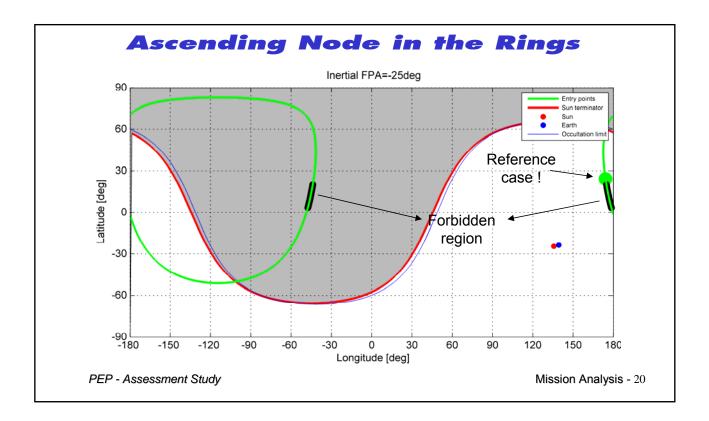

R								
	- H					Gal	rrier	
	_							
		6			6	6 CTO	1	
_	D	Gen 2021/1		1/10/26	Soyuz direct 2021/10/26	Soyuz GTO 2021/10/25		
2	21 T1 Arr mass [k			3867	1392	1815		
2	Arr. vel., dist.fkn			99/0.35	6.188 / 0.34	5.798 / 0.35		
-	Departure			21/11/12	2021/11/12	2021/11/4		
2	21 T2 Arr.mass [k			4378	1584	2001		
-	Arr. vel., dist.[kn			79 / 0.98	5.453 / 0.97	5.021/0.9		
-	Departure				2.1221 0.21		•	
2	23 T1 Arr mass [k			practical	Not practical	Not practical		
-	Arr. vel., dist.[kn							
	Departure			23/5/20	2023/5/21	2023/5/22		
2	23 T2 Arr.mass [k			4952	1762	2090	L	_
-	Arr. vel., dist.[kn			89 / 0.72	3.810 / 0.72	3.777/0.71	'	
	Departure		12/25 2024	4/12/25	2024/12/25	2024/12/25	1	
2	24 T1 Arr mass [k			4897	1748	2080	▲	
	Arr. vel., dist.[kn			84/0.51	3.784 / 0.51	3.784/0.51		
	Departure		10/30				1	
2	024 T2 Arr.mass [k		on LV Not p	practical	Not practical	Not practical		
	Arr. vel., dist.[kn			. 1				
	Departure	e 2026/	7/28 202	26/7/29	2026/7/29	2026/7/29	1	
2	26 T1 Arr.mass [k	[g] Depends	on LV 4	4867	1739	2074	◀	
	Arr. vel., dist.[kn	n/s, AU] 4.931	/0.4 4.90	00/0.41	4.899 / 0.41	4.899 / 0.41		
	Departure	2026/	9/21			2026/9/21	1	
2	26 T2 Arr.mass [k	g] Depends	on LV Not p	practical	Not practical	1778		
	Arr. vel., dist.[kn	n/s, AU] 7.591	/1.1			7.574 / 1.1		
	Departure	2028/	/3/10 202	28/3/10	2028/3/10	2028/3/10		
2	028 T1 Arr.mass [k	g] Depends	s on LV 4	4252	1545	1920	◀	
	Arr. vel., dist.[kn	n/s, AU] 6.016	/0.4 6.15	54/0.4	6.152 / 0.4	6.151 / 0.4		
	Departure	e 2028	/4/2 202	28/4/26	2028/4/7	2028/4/6		
2	28 T2 Arr.mass [k	[g] Depends		3900	1404	1874		
	Arr. vel., dist.[kn	n/s. AUI 6.130	/10 7.85	52/1.04	6.502 / 1.04	6.488/1.04		



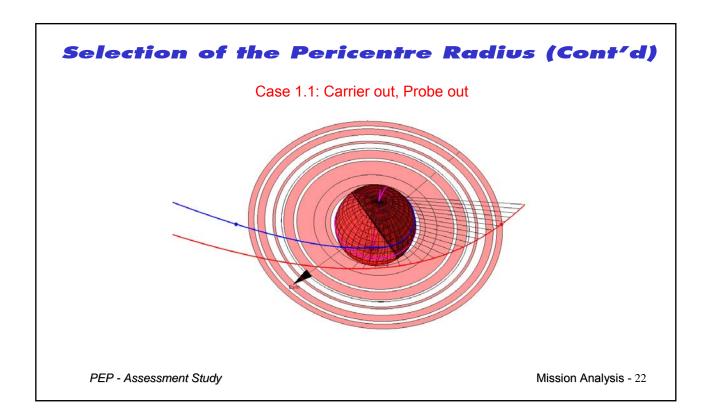


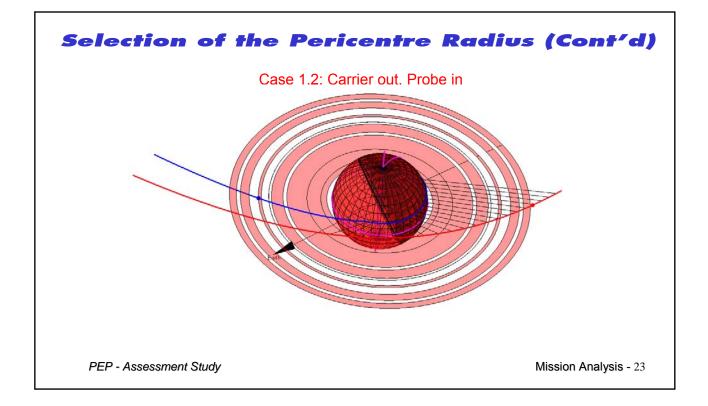


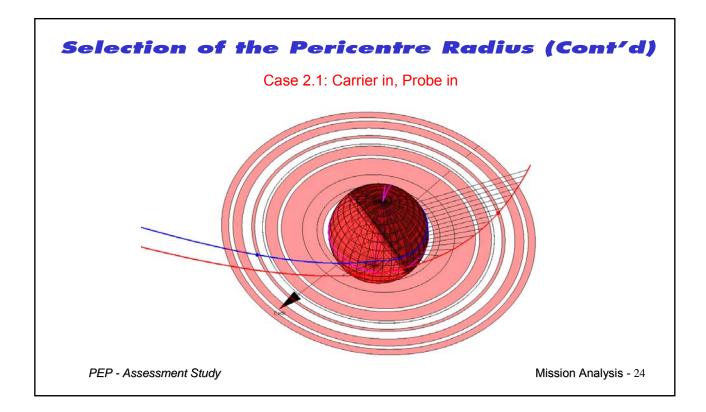
Comparison	
 Commonalities: Transfer time Distance to Earth → Carrier for relay Large radius → Probe to carrier range Fast atmosphere rotation → Entry conditions, modition 	fied ODM
 Specificities: Saturn: rings → Adapted strategies Uranus: North pole tilt (but with no impact on missi 	on analysis)
PEP - Assessment Study	Mission Analysis - 14

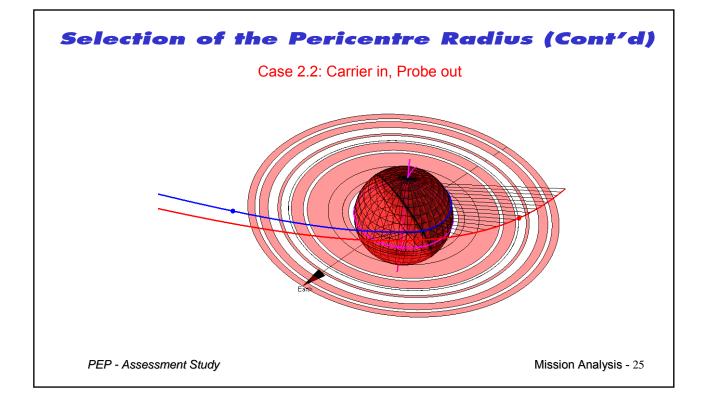

					nte	rpl	9/	ne	tar	y	**	d	ısf	e							
																					_1
lsp	S		400 N			Venus		Earth	Jupiter		Saturn	Uranus	Neptune								
CAS		PARTU		(2)			CRUIS						ARRIVA	_		-		-		TAL/FI	
	date	V-inf		m/s	m/s swb	m/s swb	m/s	swb	m/s swb	_	swb		date	kg	V-inf	ras		m/s		kg	_
Saturn Uranus	02/03/25 28/12/29	3.983 4.138	27 0 3550		0 29/12/29	0 21/09/25 0 30/05/28		04/07/26 31/04/14	37 02/07/29 0 33/04/14	0 185	36/01/30		33/12/08 45/05/22	0	6.361 5.905	41 123	9.3 21.1		37 188	3338	8.8 8 16.4
	05/09/26	3.414	-38		0 29/12/29	0 22/02/27		27/12/27	0 27/12/29		32/05/17		45/05/22	0	5.905 8.100	28			100) 19.3
•	an in Poss	-go ibili	ing st ty of ⁻	ud trai	s are rep y) nsfers to	,					•										
•		•	orobe nsfer:		rect Ear	th to Ju	pite	er. Bı	ut P/L m	nas	s vei	y lov	/ (les	s tl	nan	1 te	on	wit	h		
	AR5		B) ssessri	n on	4 C4 (ch /											issi	~~ (

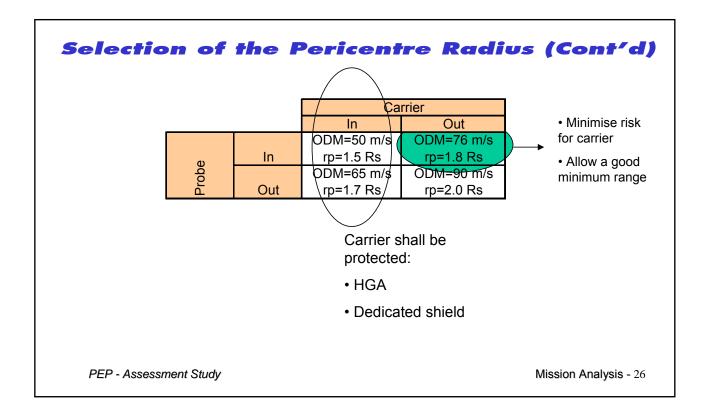


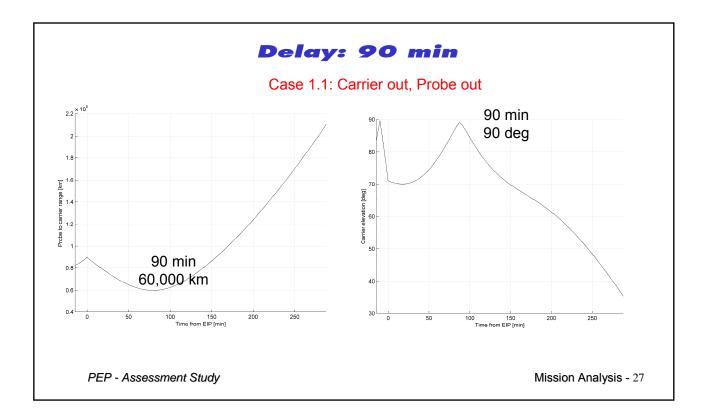


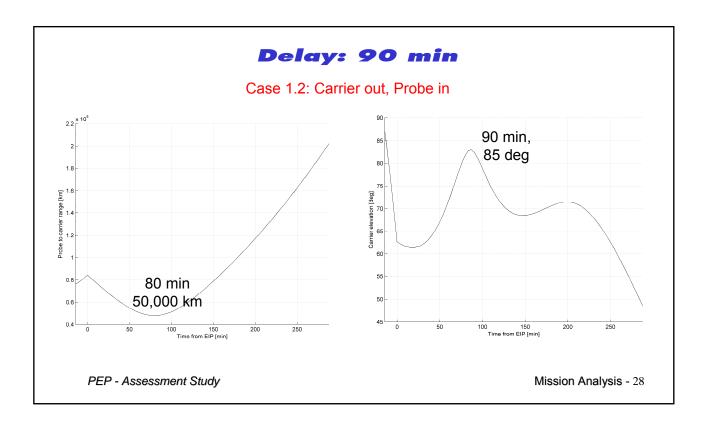


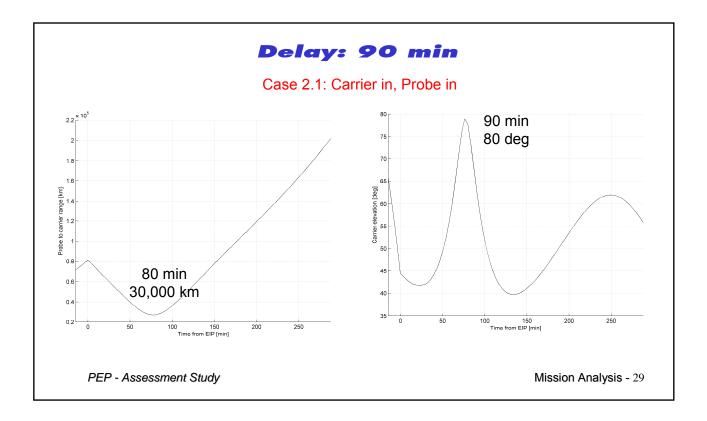

Ring or Region	Inner Ra	dius (r_{in})	Outer Ra	dius (r_{out})	Half Thickness (t_{ring})
	$[\mathrm{km}]$	$[\mathrm{R}_S]$	$[\mathrm{km}]$	$[R_S]$	[km]
D Ring	66970	1.11	74470	1.23	1
$\rm C Ring$	74500	1.23	92000	1.52	1
B Ring	92000	1.52	117400	1.95	1
Cassini Division	117400	1.95	122170	2.03	_
A Ring	122170	2.03	136780	2.27	2
F Ring	140180	2.32	140260	2.32	50
Jan/Ep Debris	149600	2.48	153300	2.54	900
G Ring	165000	2.73	176000	2.92	720
Mimas Debris	181170	3.00	189870	3.15	4800
E Ring	180000	2.98	300000	4.97	10000

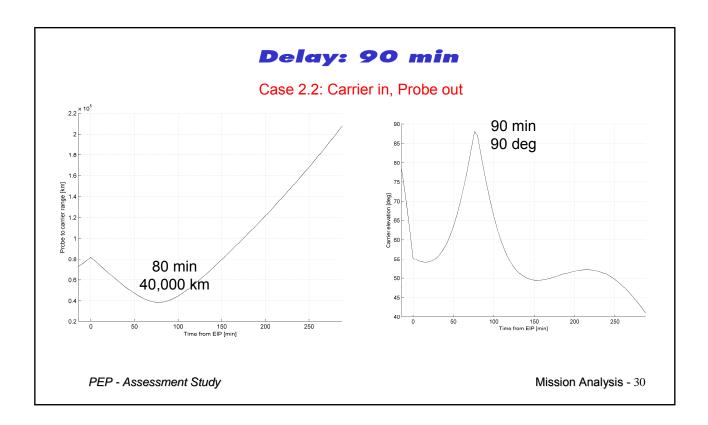


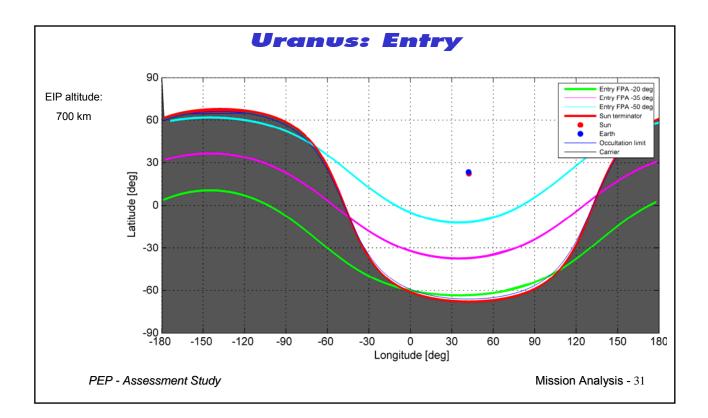


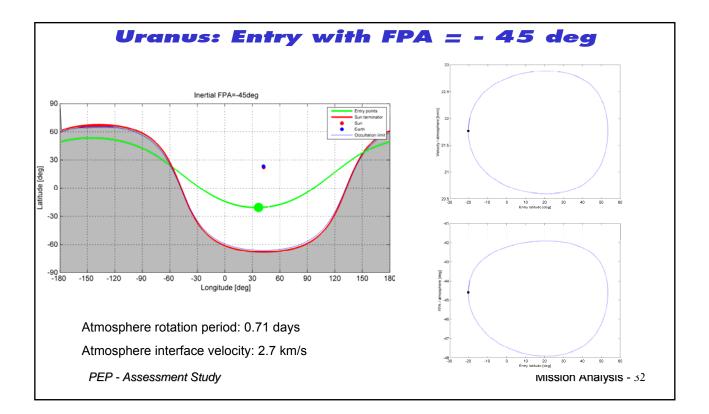


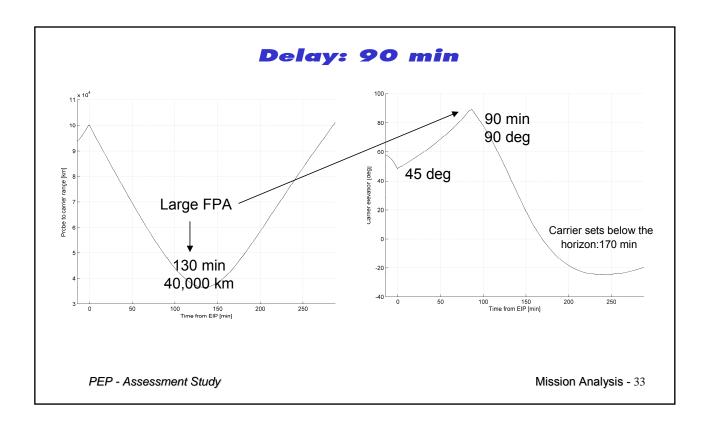


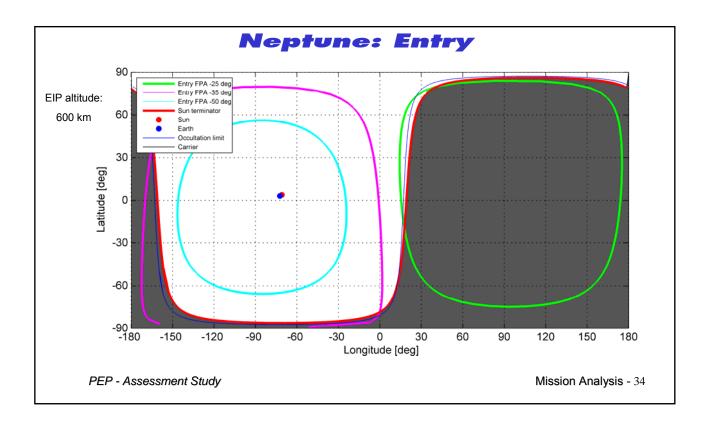


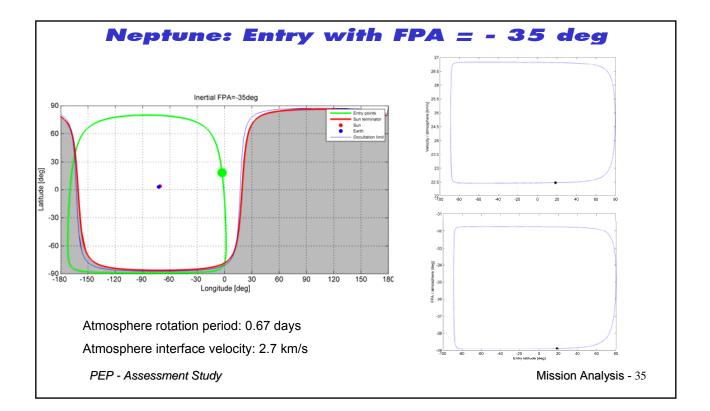


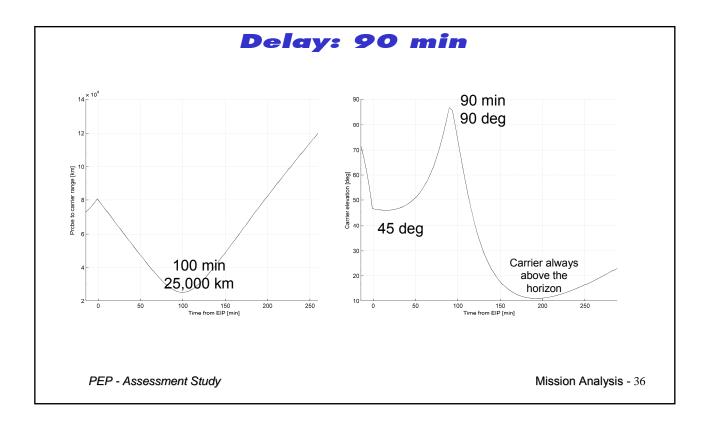








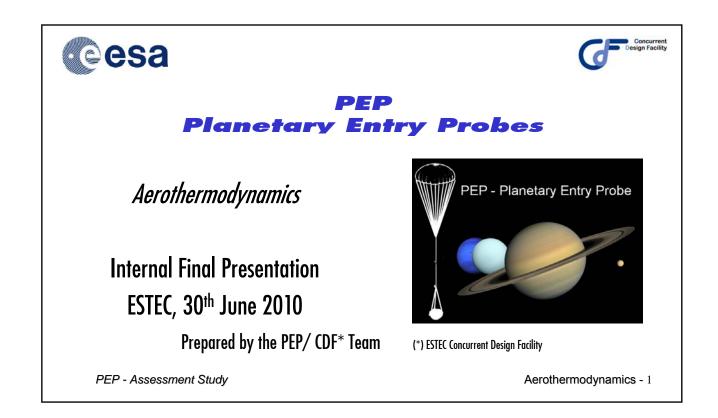




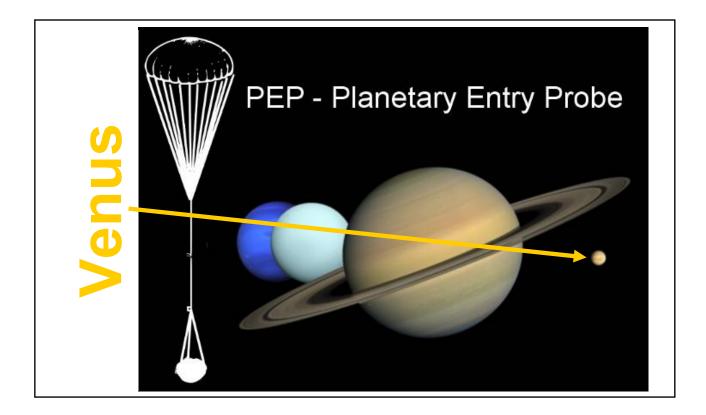
ODM: Operations

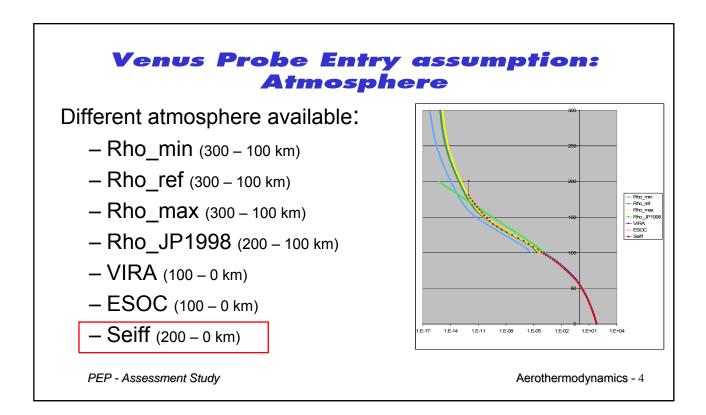
- Time for OD after ODM: 2 days
- Time for upload of the TCM1 and implementation: 1 day
- Time for propagation and OD after TCM1: 4 days
- Time for upload of the TCM2 and implementation: 1 day
- Time for potential safe mode: 4 days
- Time before safe mode recovery and probe entry: 4 days
- → A reasonable minimum amount of time between probe separation and probe entry is 20 days for all planets.
- A larger amount of time may be needed to decrease the ODM down to an acceptable range. This should be traded against the entry accuracy

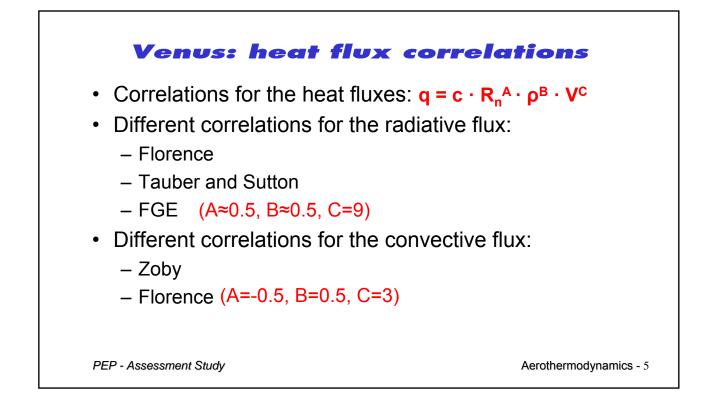
PEP - Assessment Study

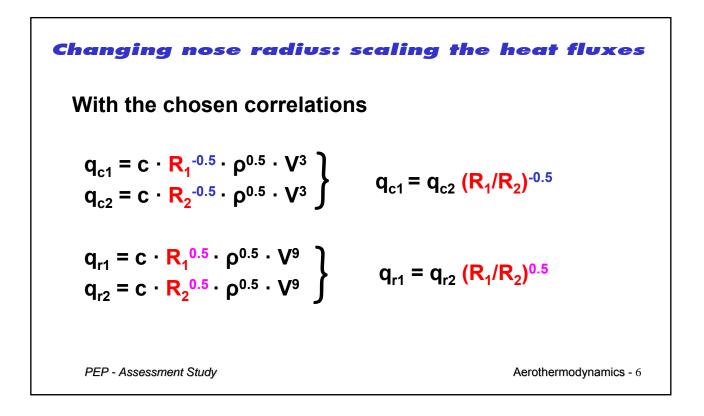

Mission Analysis - 37

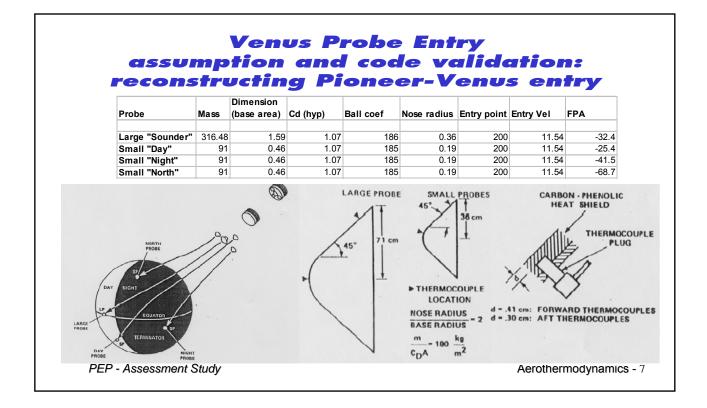
Summary							
Planet	Venus1 (1)	Venus2 (1)	Saturn (2)	Uranus	Neptune		
Inertial Velocity [km/s]	12	12	35.8	21.7	24.7		
Inertial FPA [deg]	-25	-50	-25	-45	-35		
Atmosphere Velocity [km/s]	~0	~0	9.9	2.6	2.7		
Entry latitude (3) [deg]	20	0	15	20	19		
Entry longitude (3) [deg]	-31	-2	176	37	-3		
Relative Velocity [km/s]	12	12	27.4	21.9	22.6		
Relative FPA [deg]	-25	-50	-33.5	-44.5	-38.9		
Velocity azimuth [deg]	-61	-55	79	179	83.2		
ODM (4) [m/s]	17	20	76	53	31		
Entry FPA Uncertainty [deg]	0.32	0.32	0.13	0.2	0.3		
Entry Epoch Uncertainty [s]	7	7	18	20	18		

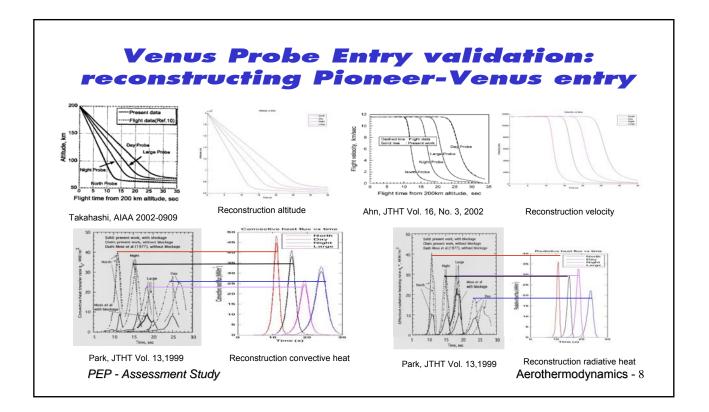

- (1): Release from JGO S/C for a a launch in 2020
- (2): Carrier outside the rings, probe inside the rings
- (3): The choice of entry point affects several parameters: day/night entry, Earth visibility, velocity/atmosphere, FPA/atmosphere. Exception for Saturn: the entry point is fixed because the probe flies through the rings
- (4): All ODM assume a separation 20 days before EIP

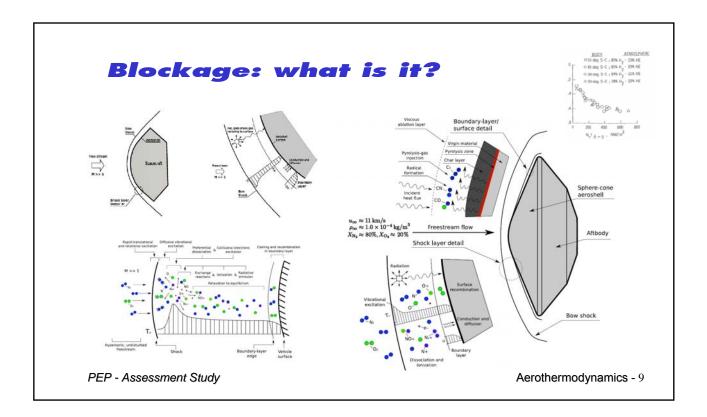

PEP - Assessment Study

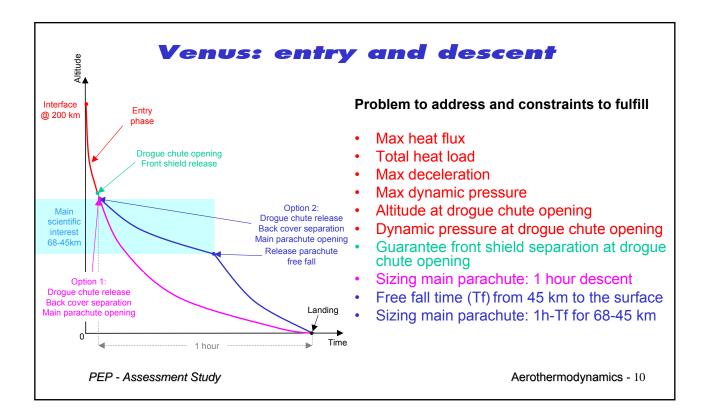

Mission Analysis - 38

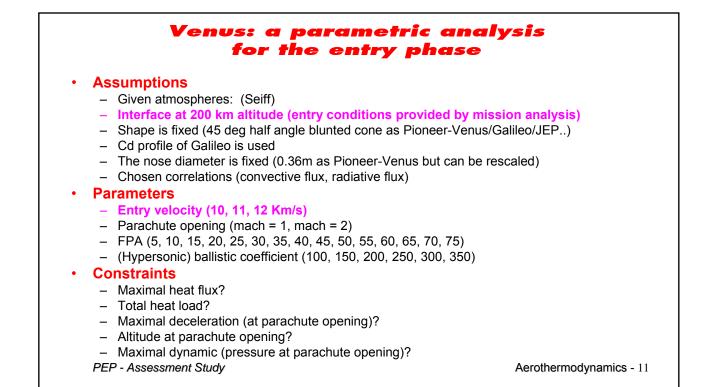


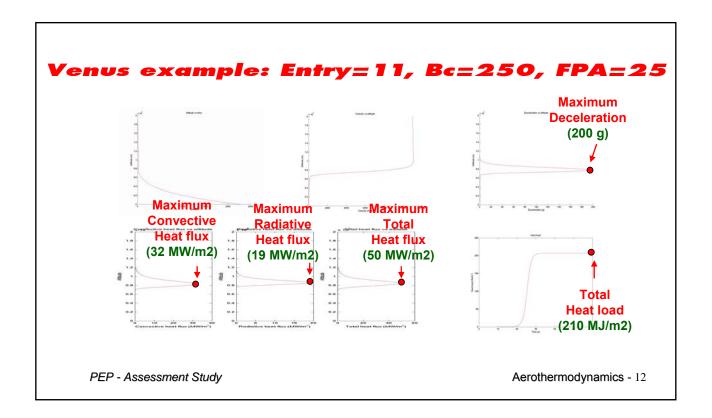

VenusSaturnUranusNeptune	 Scheme Assumptions Atmosphere Heat flux correlations Validation Entry phase Max heat peak Total heat load Max dynamic pressure Max deceleration Descent phase Altitude at drogue chute opening
PEP - Assessment Study	 Dynamic pressure at opening Size of parachute to guarantee a requested descent time Aerothermodynamics - 2

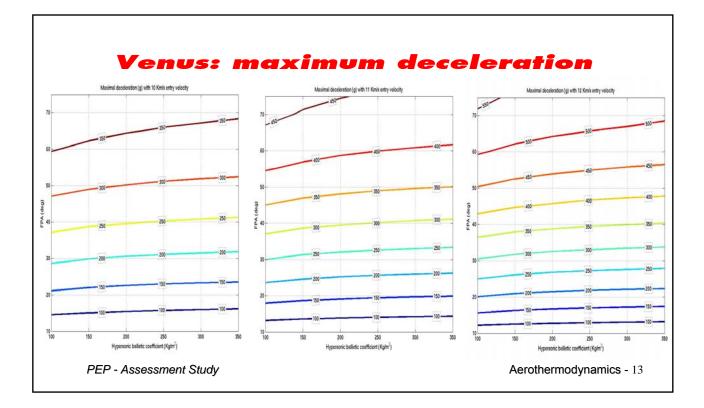


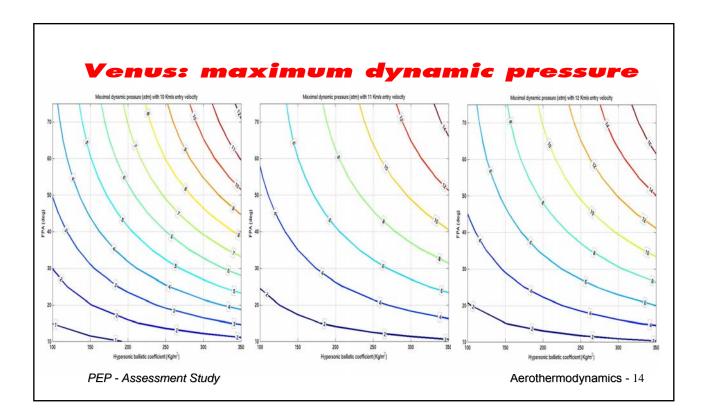


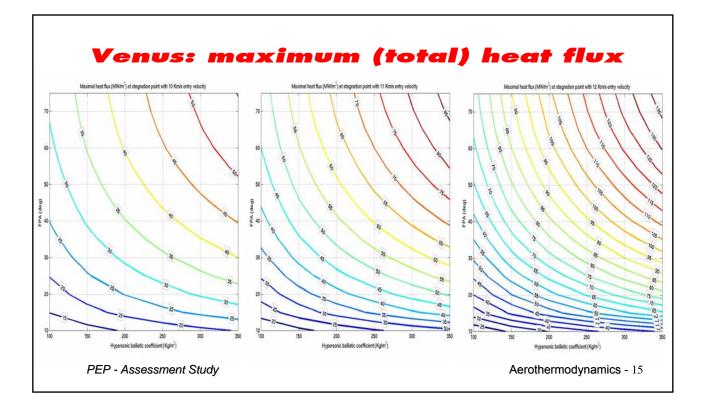


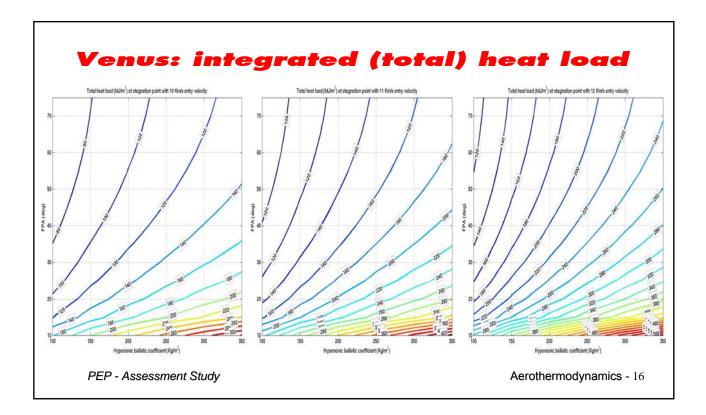


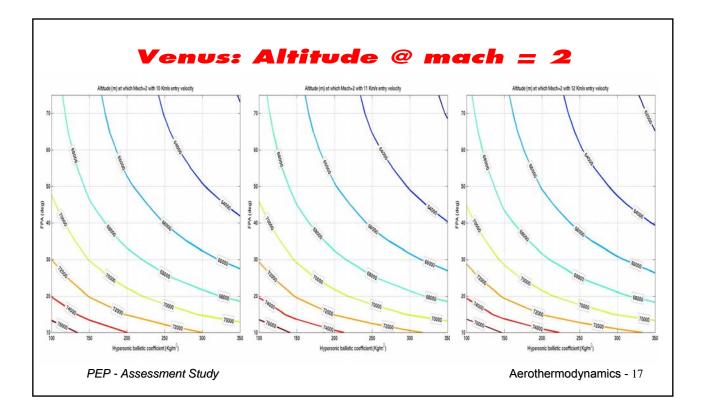


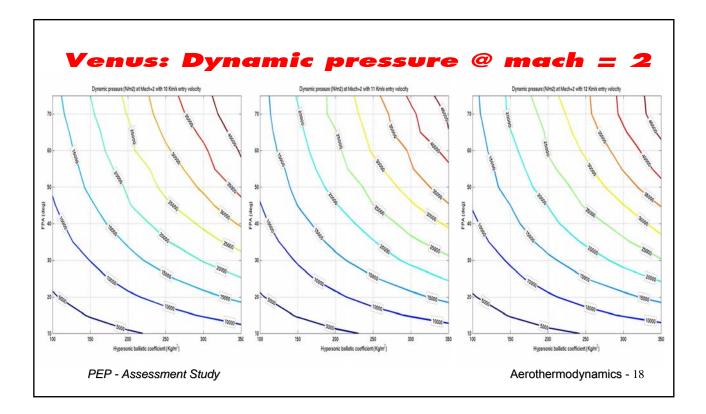


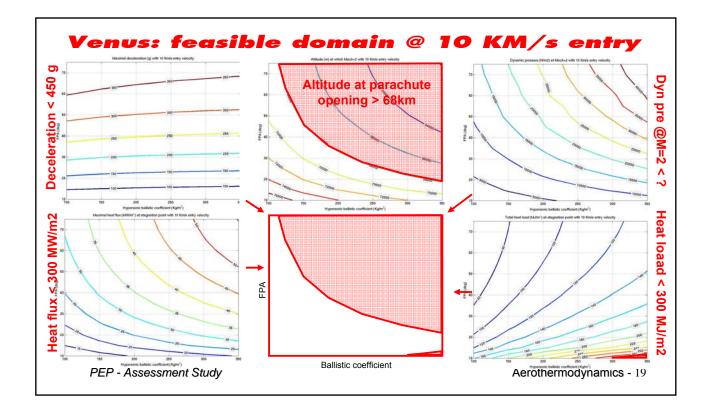


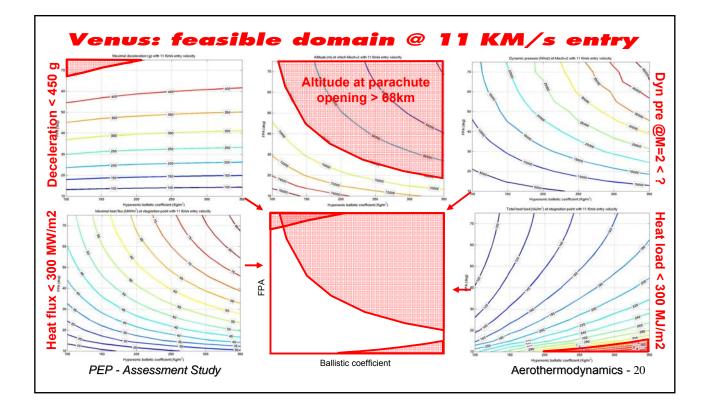


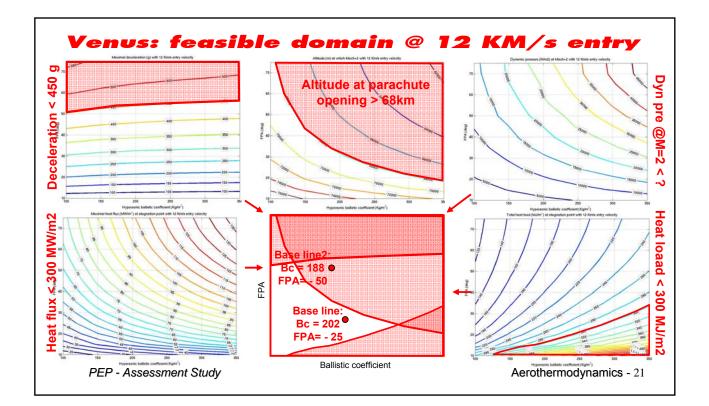


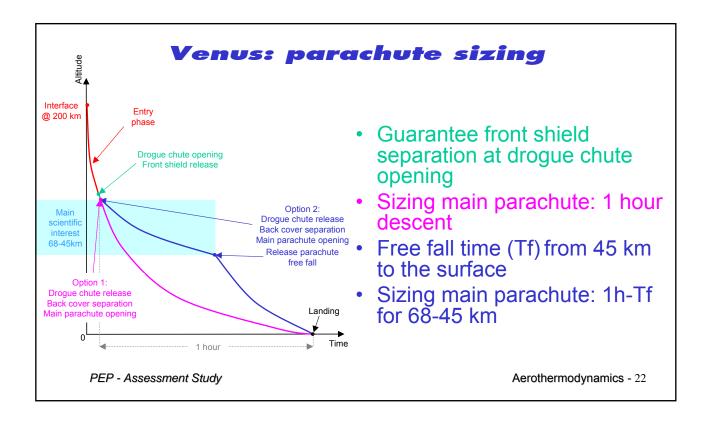


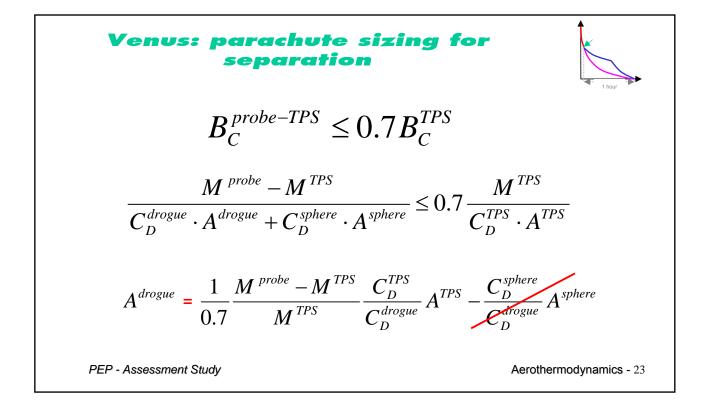


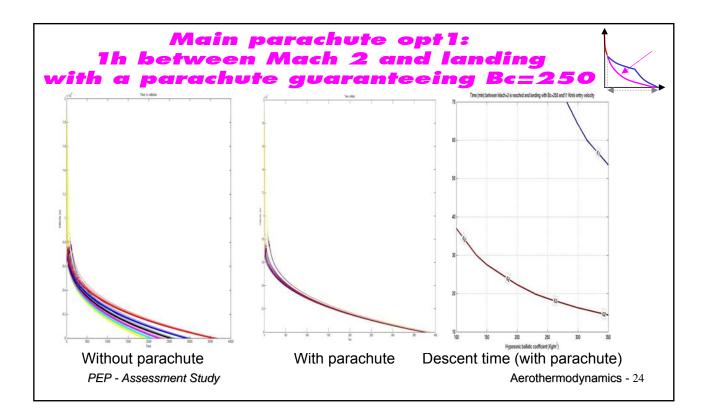


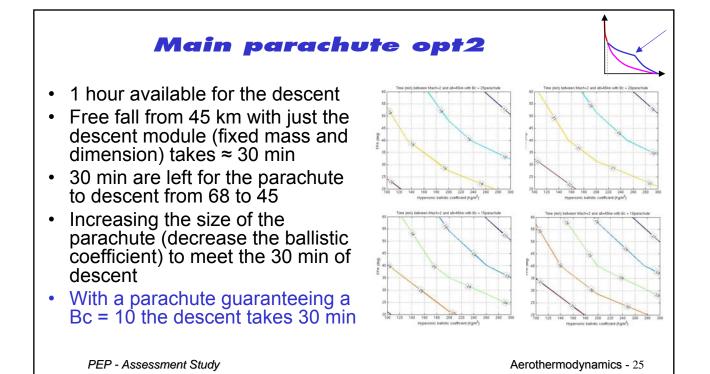


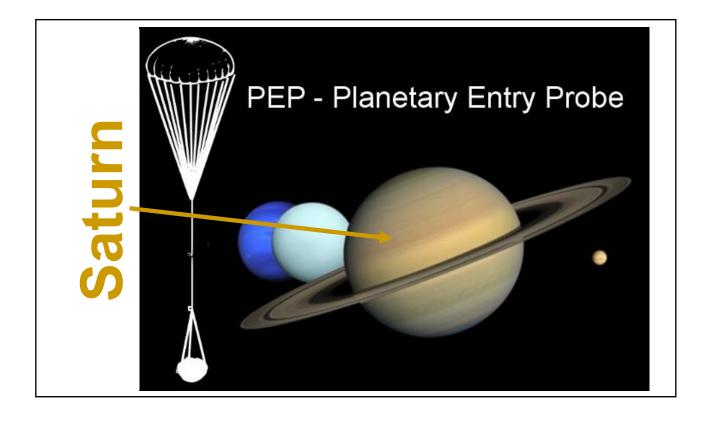


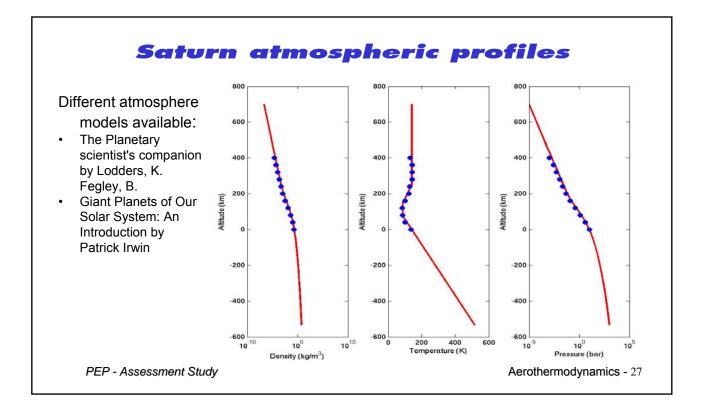


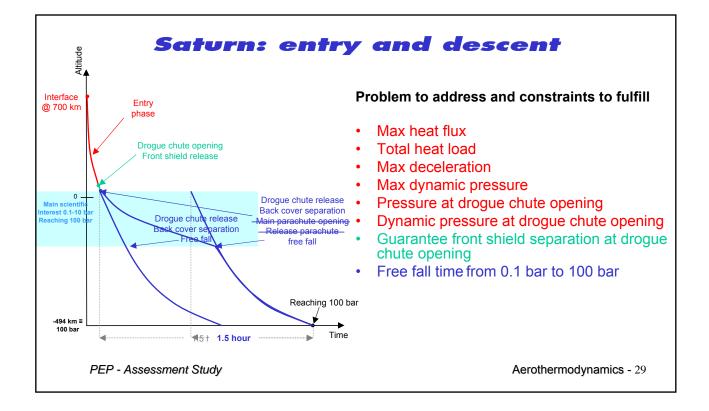


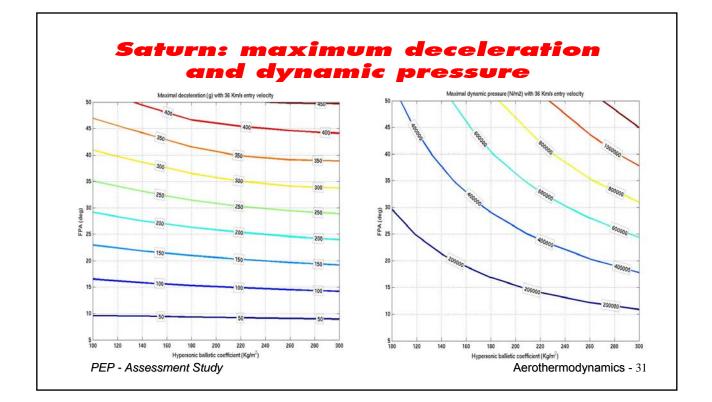


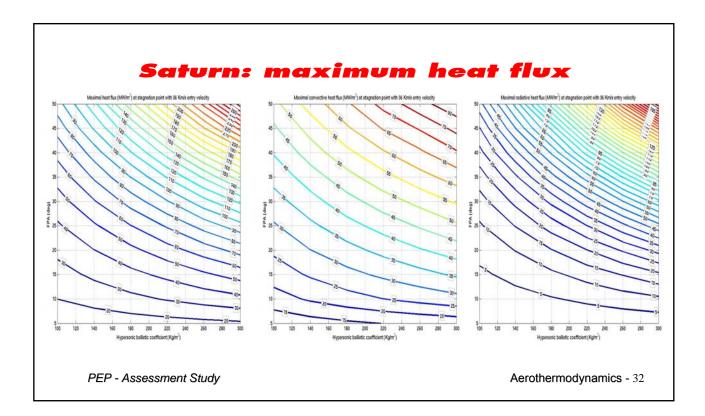


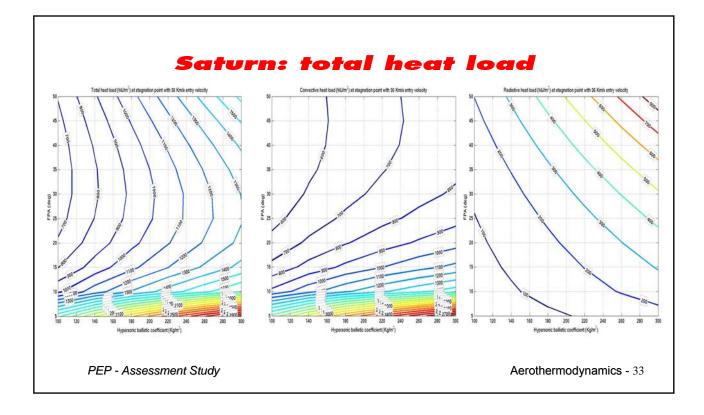


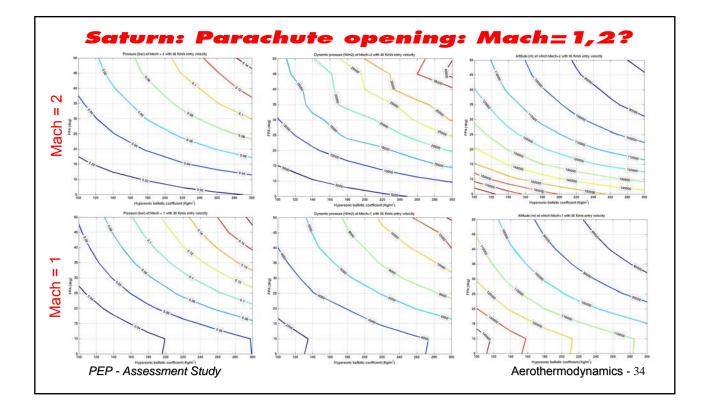


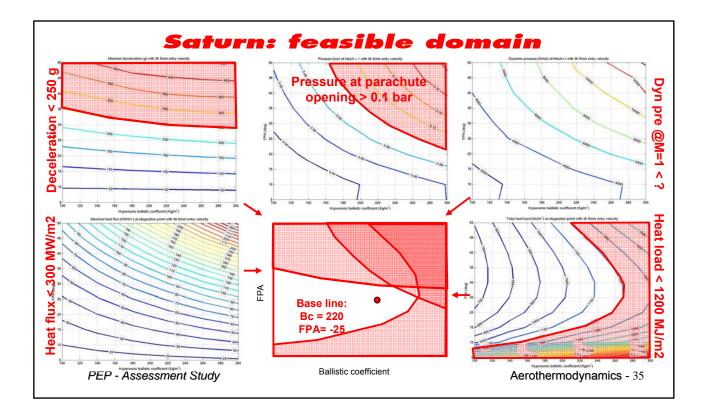


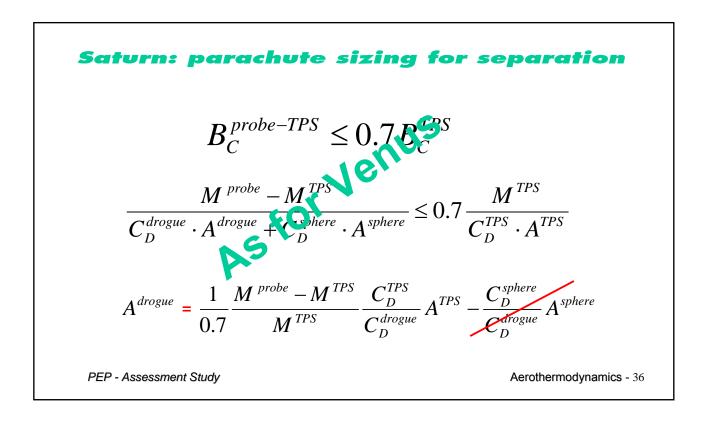


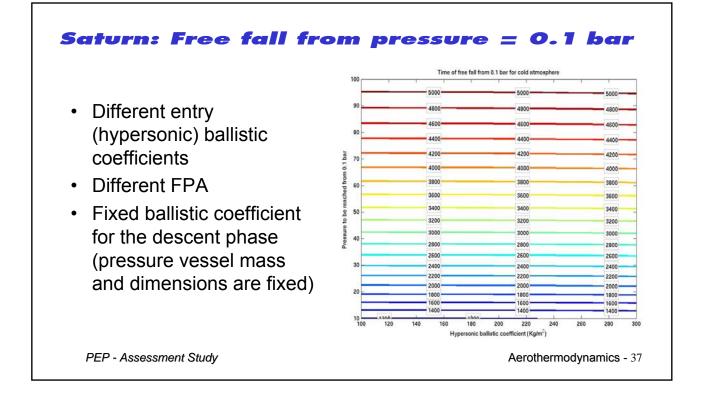


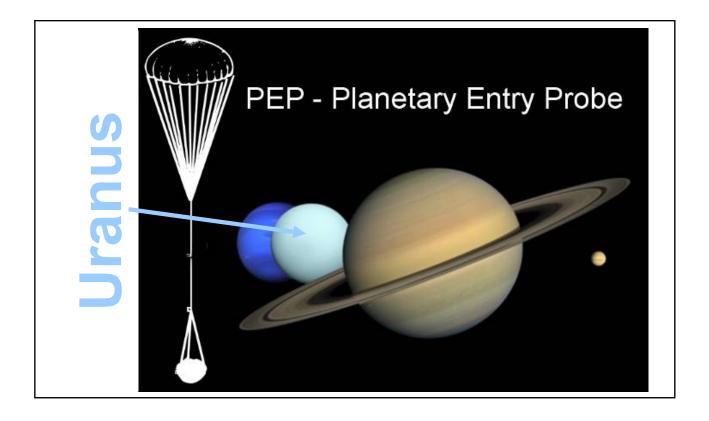

Saturn assumptions Correlations for the heat fluxes: q = c ⋅ R_n^A ⋅ ρ^B ⋅ V^C There are no correlations available in literature for Saturn (Giant planets) Due to the close similarity among the Giant planets and a wider literature available for Jupiter, correlations were derived by fitting available (Moss and Simmond AIAA-82-0874) Galileo heat flux data Convective: A = -0.5, B ≈ 0.43, C ≈ 3 Radiative: A = 1, B ≈ 1.33, C ≈ 6.76 Validation against Galileo data (and Saturn) has been performed

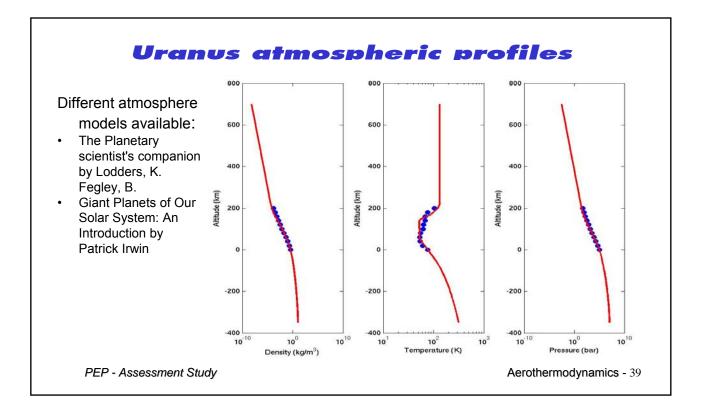


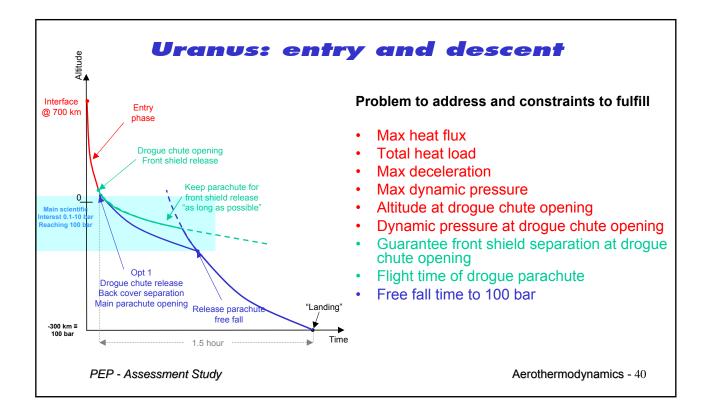

Saturn: a parametric analysis for the entry phase					
Assumptions Given atmospheres					
 Interface at 700 km altitude (entry conditions provided by m Entry velocity (36 Km/s) 	nission analysis)				
 Shape is fixed (45 deg half angle blunted cone as Pioneer-Venu Cd profile of Galileo is used 	ıs/Galileo/JEP)				
 The nose diameter is fixed (0.512m) Chosen correlations (convective flux, radiative flux) 					
 Parameters Parachute opening (at Mach=1, Mach=2 ?) FPA (5, 10, 15, 20, 25, 30, 35, 40, 45, 50) (Hypersonic) ballistic coefficient (100, 150, 200, 250, 300) 					
 Constraints Maximal heat flux? Total heat load? Maximal deceleration (at parachute opening)? Pressure (altitude) at parachute opening (Mach=1, mach=2)? Maximal dynamic (pressure at parachute opening)? 					
PEP - Assessment Study	Aerothermodynamics - 30				

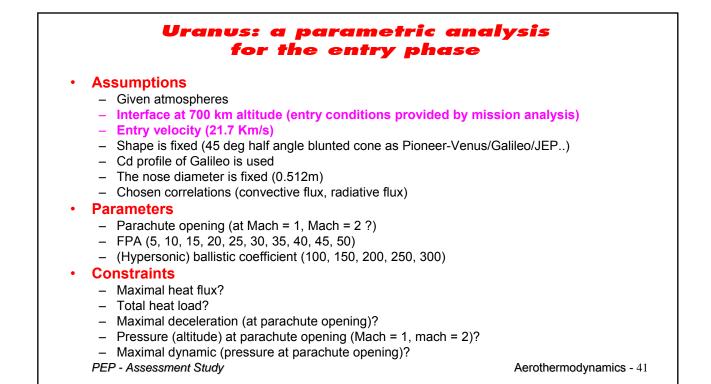


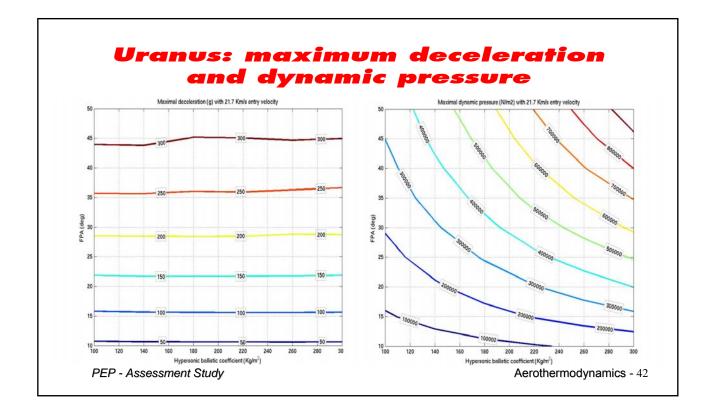


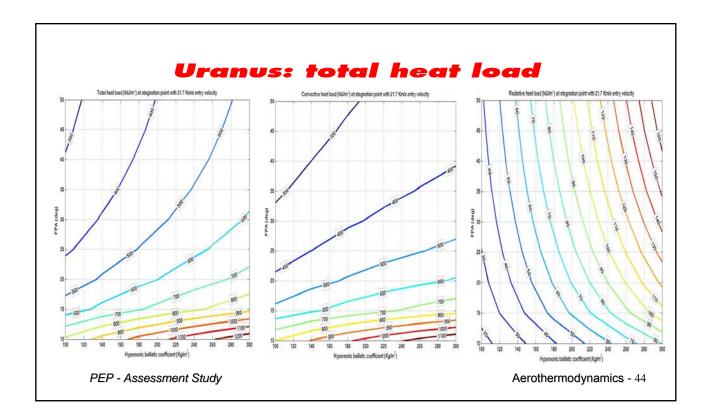


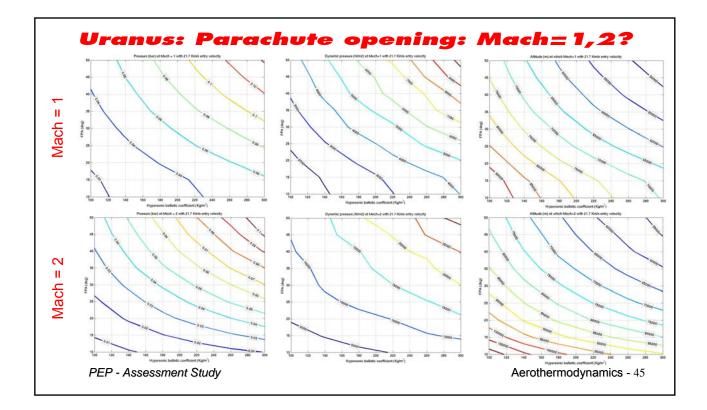


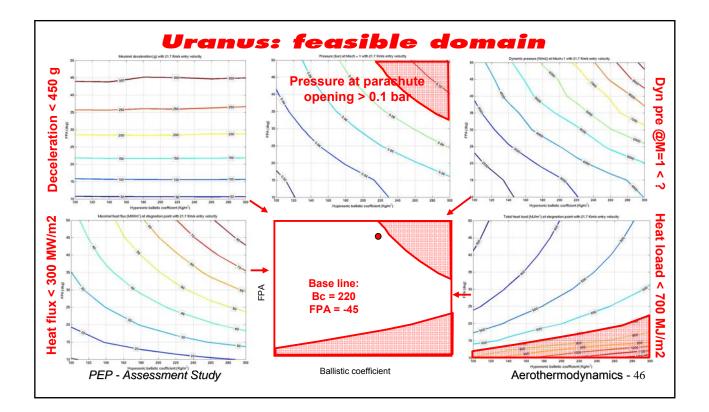


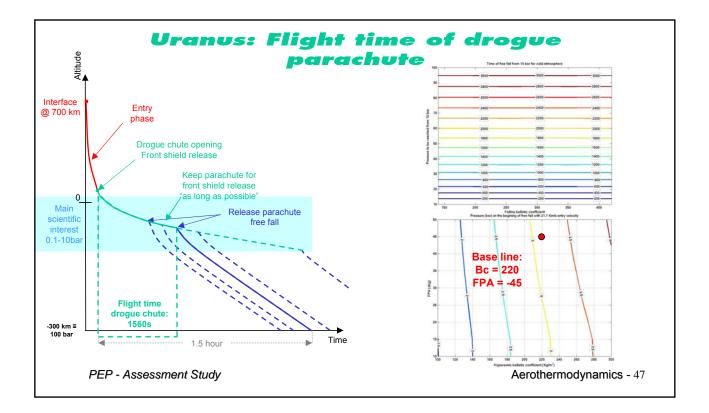


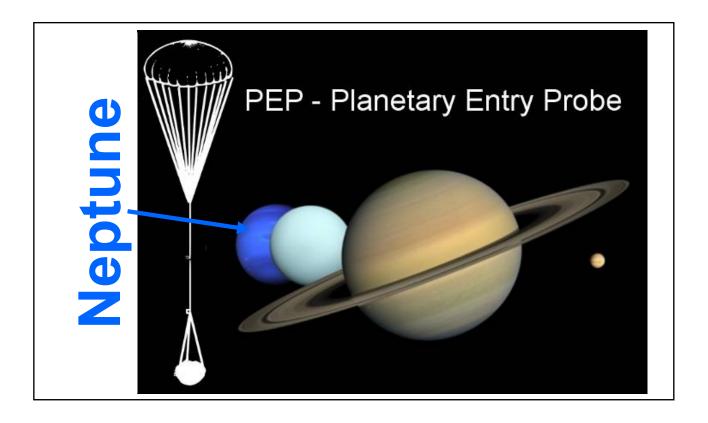


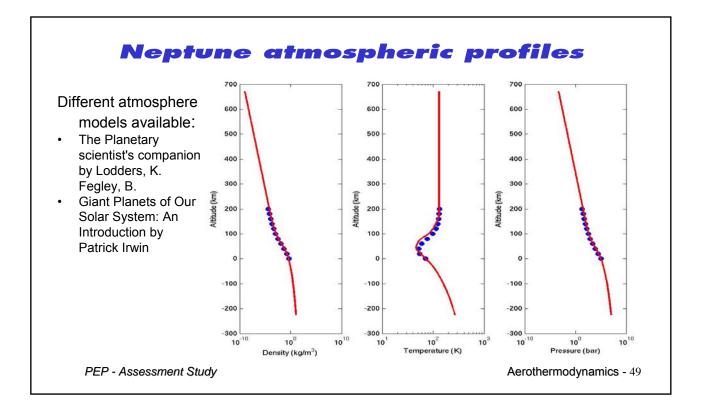


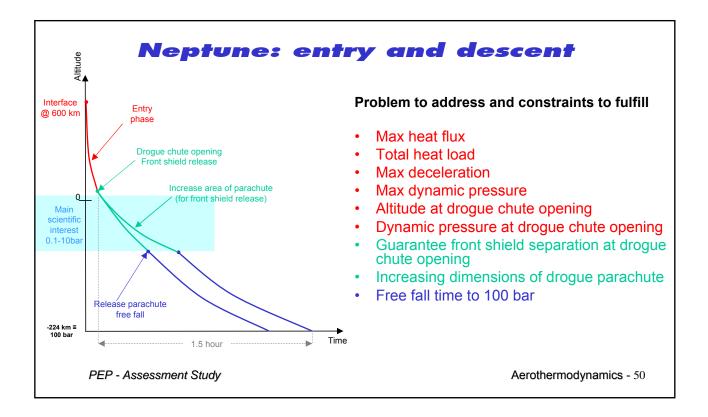


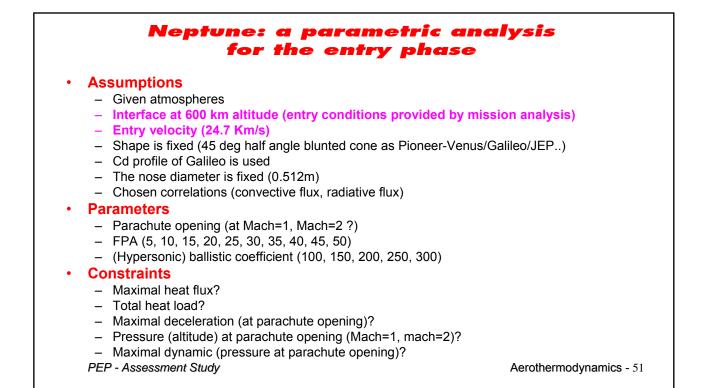


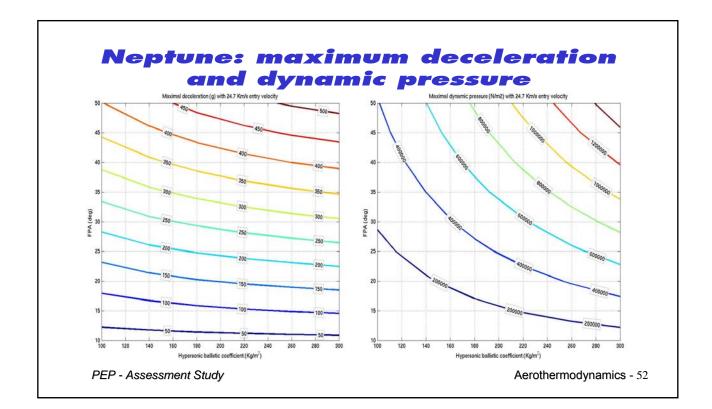


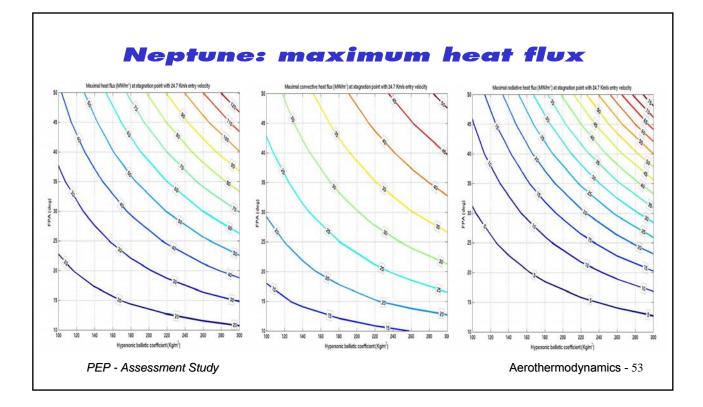


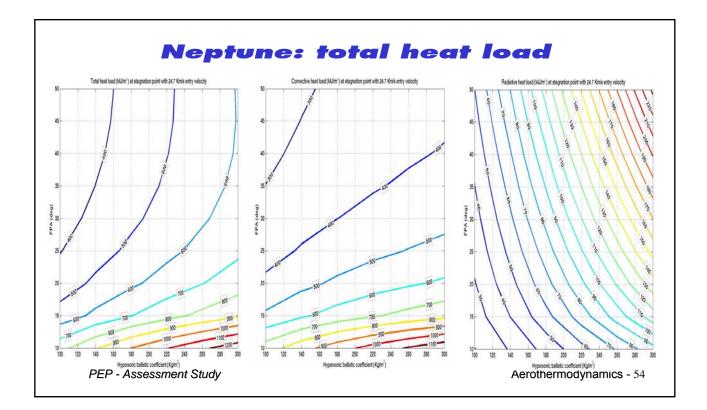


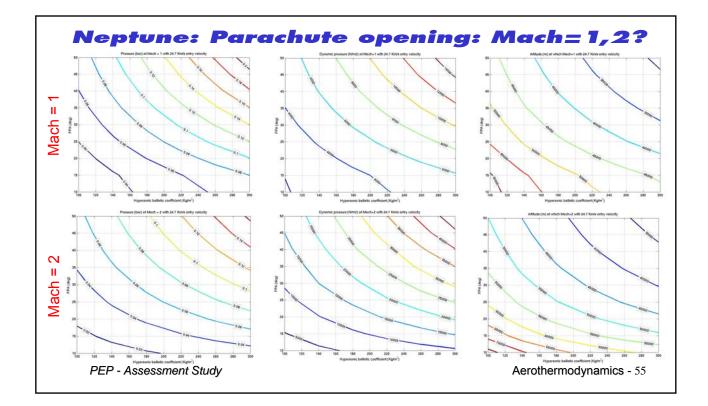


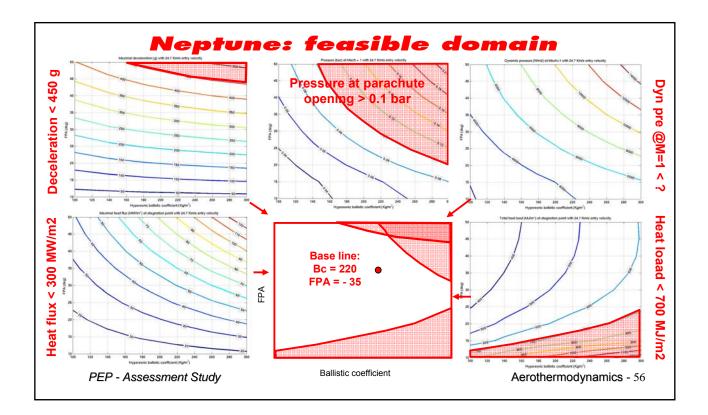


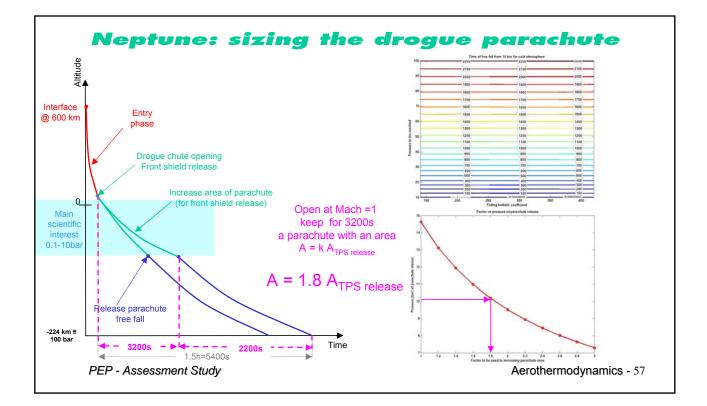


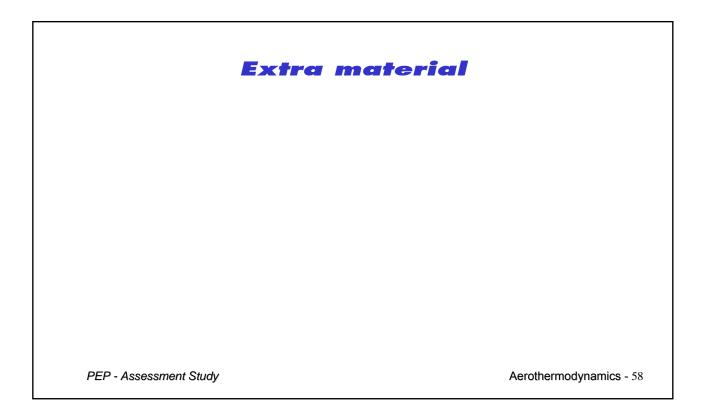


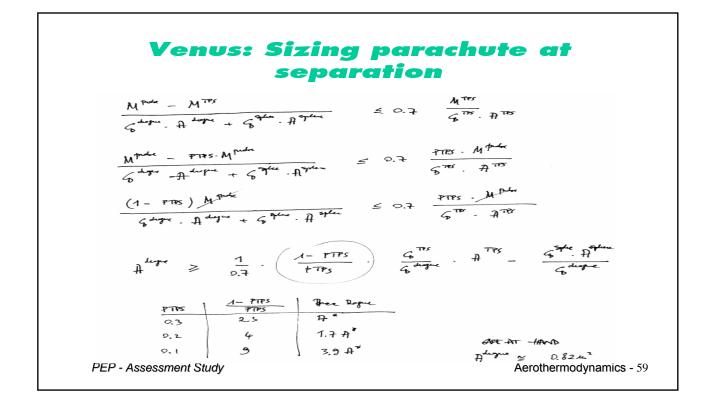


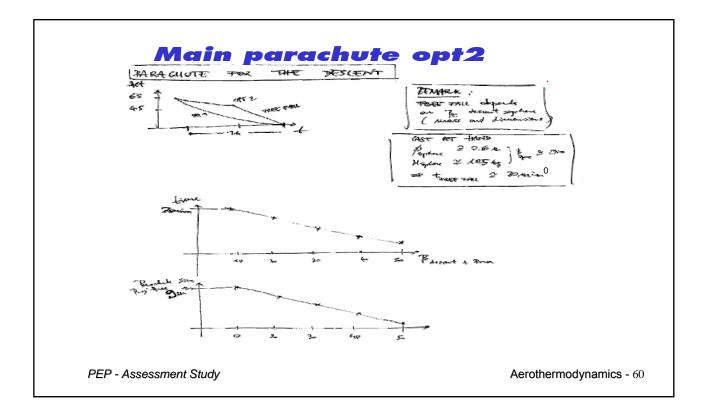


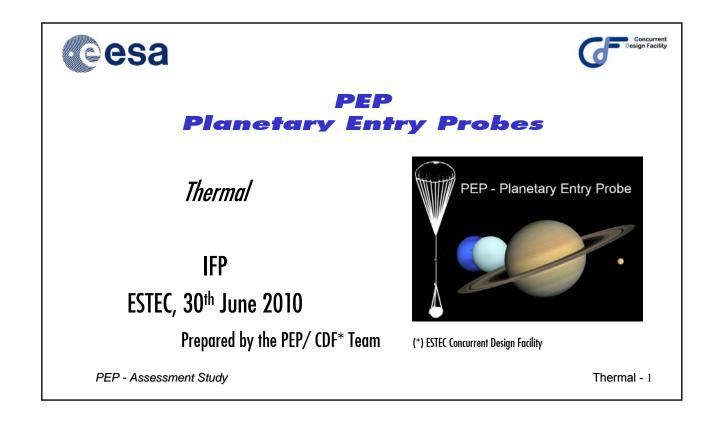


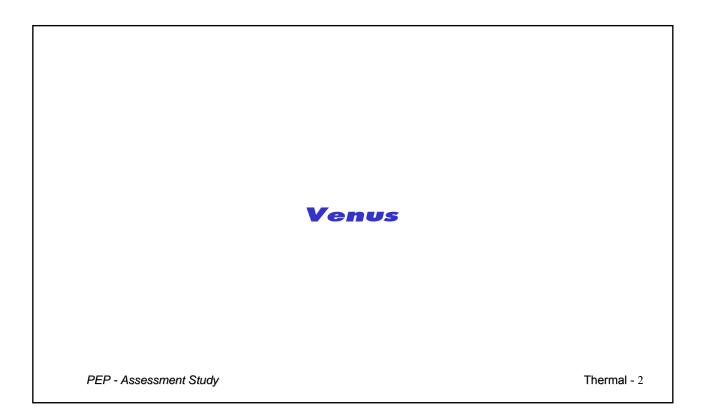


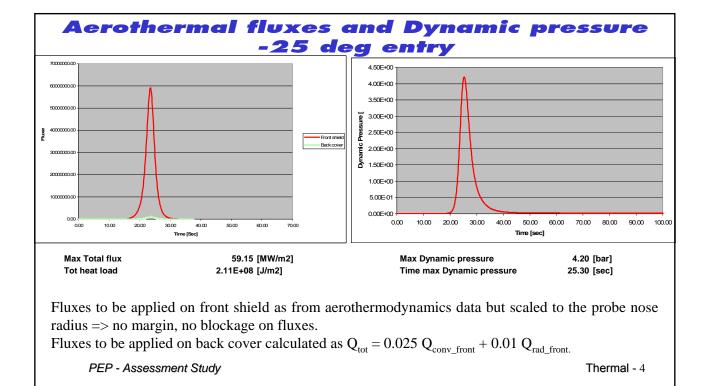


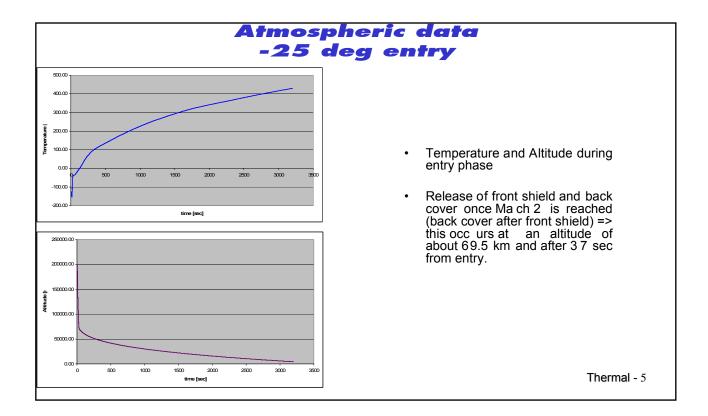


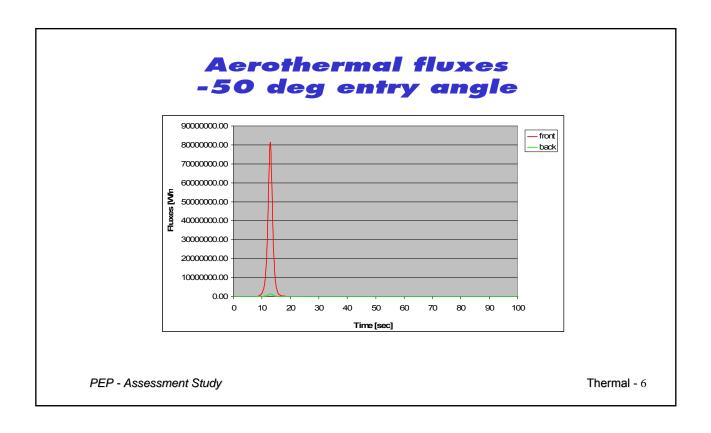


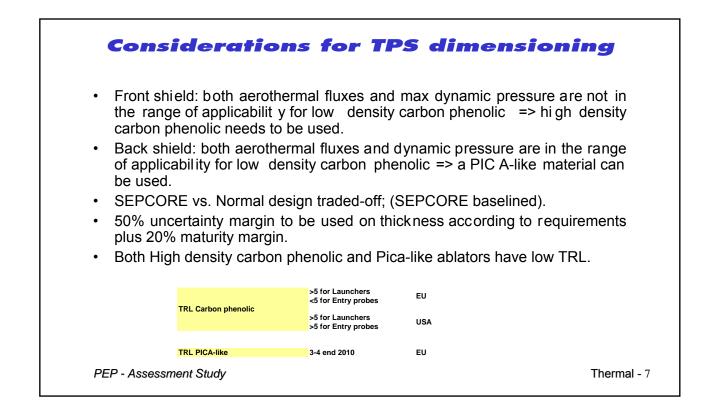




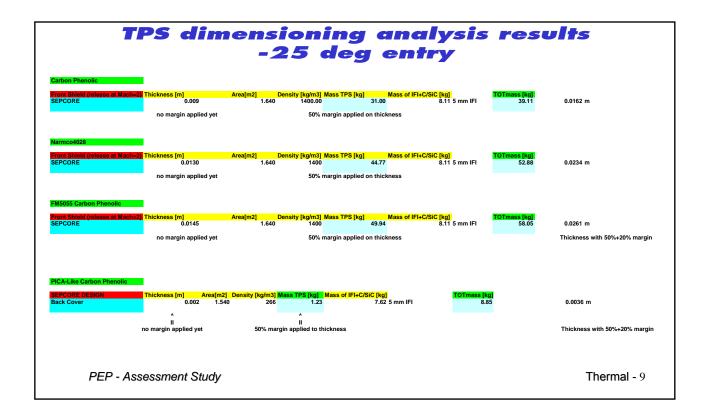

Assumptions and design drivers

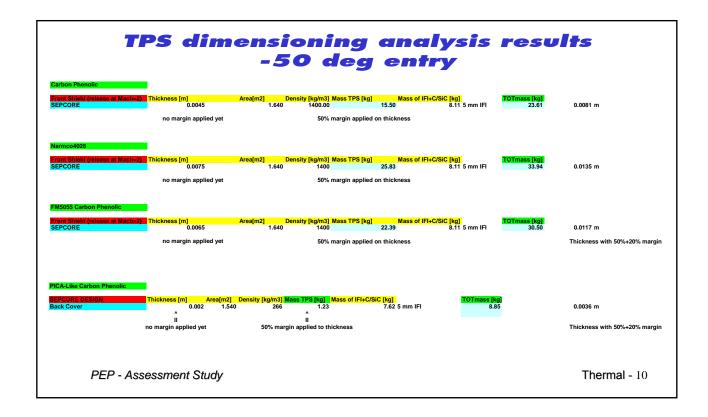

- Two entry cases for TPS sizing:
 - -25 deg entry angle.
 - -50 deg entry angle.
- Coast and descent analysed for case -25 deg entry angle
- Entry and descent environments (Fluxes vs. time, atmospheric temperature vs. time) as provided by aerothermodynamics subsystem.
- Coast environment = Planet environment (no direct solar flux and albedo considered => worst cold case).
- Power dissipations vs. time as provided by Power subsystem.
- Units within -20 / +50 C (possibly -40 / +70 C).
- Three high density ablators traded-off for front shield; one low density ablator considered for back cover.

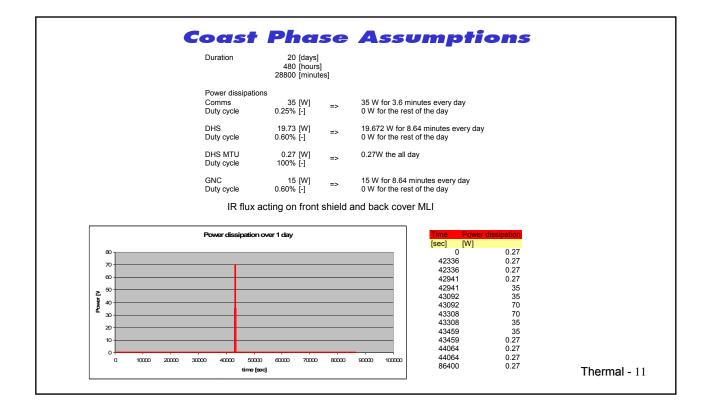

Thermal - 3

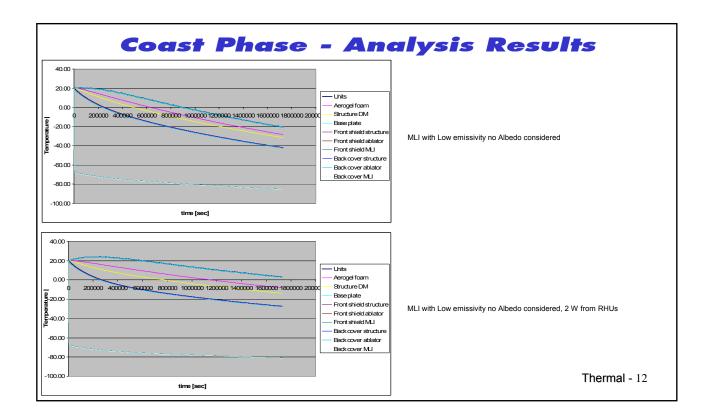

• ESATAN-Ablat and ThermXL software used for computations

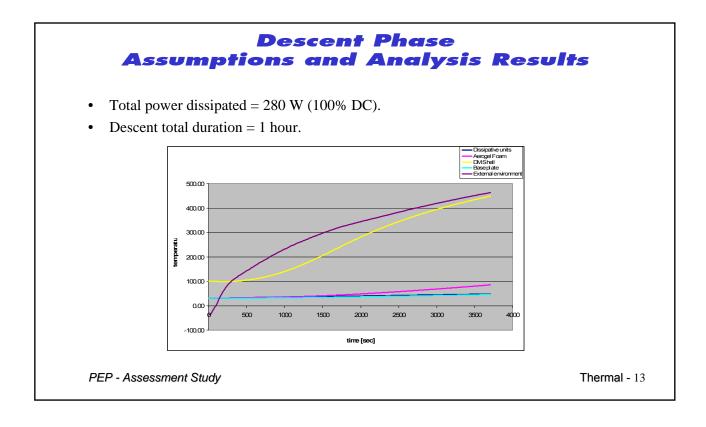
PEP - Assessment Study

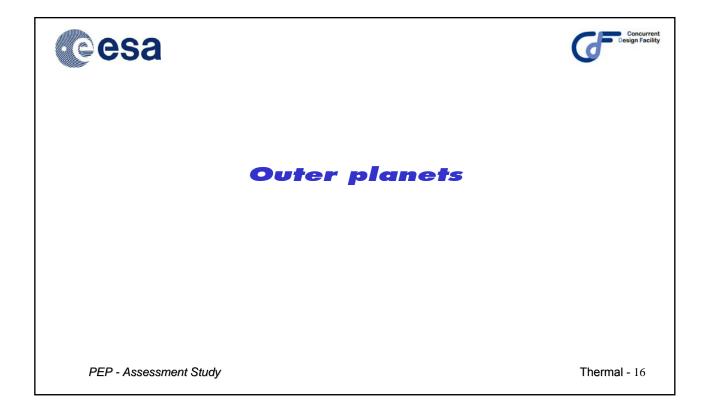








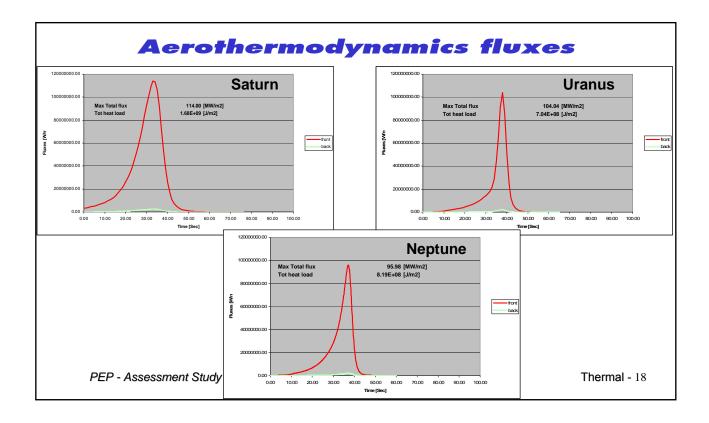

	Standard Design SEPCORE Design
	STRUCTURE AI or Ti Solution Pyrolysis charred recession AAAA HEAT
• When high fluxes (above to be used.	$e \sim 25$ MW) and high dynamic pressure (above ~ 1 bar) occur high density carbon-phenolic materials need
 In the standard design o temperature limits are 15 	one kind of material is used; part of it ablates, the rest acts as conductive insulator. Typical cold structure 50 – 180 C (250 C pushing the technology).
temperatures of up to 1	In the ablator can be used with a reduced thickness because the hot structure underneath can sustain $1100 - 1200$ C. The light weight insulator (with lower thermal conductivity than high density carbon-back acts as conductive insulator permitting the cold structure to stay below $150 - 180$ C (250 C pushing
	(ablator + hot structure + light weight insulator) permits to save 20 – 30 % mass compared to the standard carbon-phenolic material (~1400 kg/m3) has to be used even if adds complexity to the design.
0 0 ;	so when using low density carbon-phenolic materials.

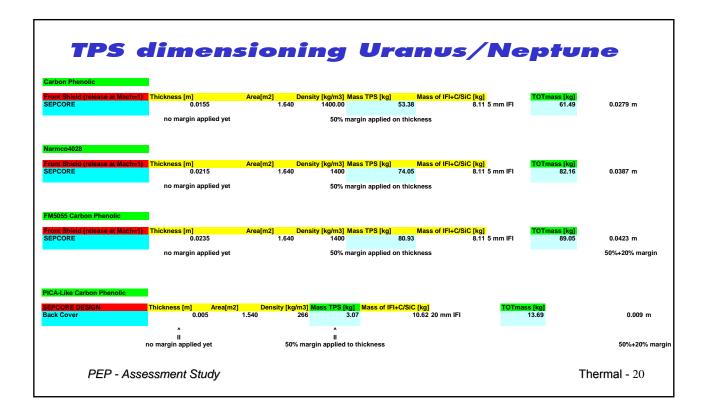

TCS and TPS design summary

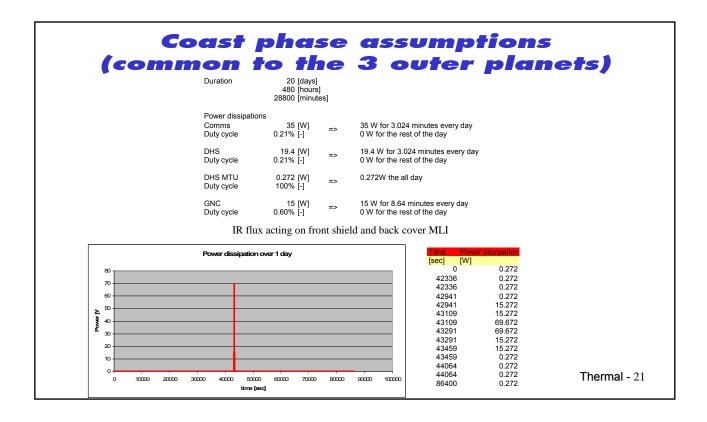
- DM dissipative units black painted and mounted on the base plate via fillers;
- Base plate finished with one layer Kapton VDA (low emissivity);
- Base plate connected to DM shell with 3 Titanium brackets (low conductive coupling);
- Internal DM s hell in sulated with 40 mm Aerogel foam finished with one layer Kapton VDA (low emissivity);
- External DM shell white painted;
- DM s hell conne cted t o f ront s hield co ld s tructure wit h 3 Titanium brackets (low conductive coupling);
- Cold structure internal surface finished with one layer Kapton VDA (low emissivity) (both fr ont shield and back cover);
- Front shield TPS: SEPCORE = 16.2 mm (9 mm + 50% +20% margins) Carbon phenolic Ablator + 2.4 mm C/SiC hot structure + 5 mm IFI Insulation
- Back cover TPS: SEPCORE = 3.6 mm (2 mm + 50% +20% margins) PICA-like Ablator + 2.4 mm C/SiC hot structure + 5 mm IFI Insulation;
- · 15 ablation detectors distributed radially and circumferentially on front shield;
- 20 layer MLI on front shield and back cover used during coasting then burned during entry.
- RHU are not baselined due to the larger temperature range of batteries. Temperature will rapidly increase during entry when units will be switched on and high heat fluxes will act on the probe. In case batteries want to be kept above 0 C then 2 RHU (2 W in total) need to be installed on the probe.

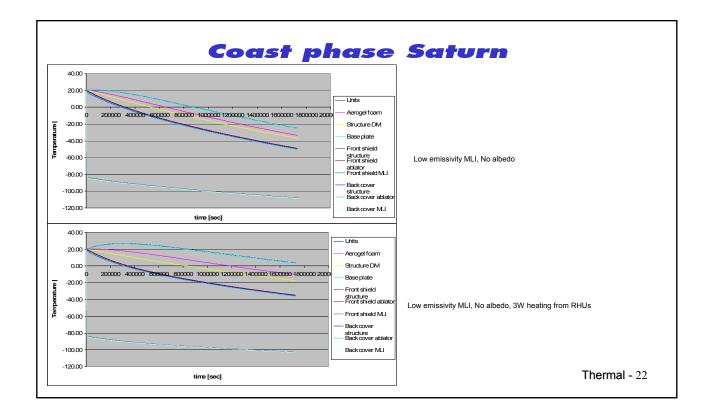
PEP - Assessment Study

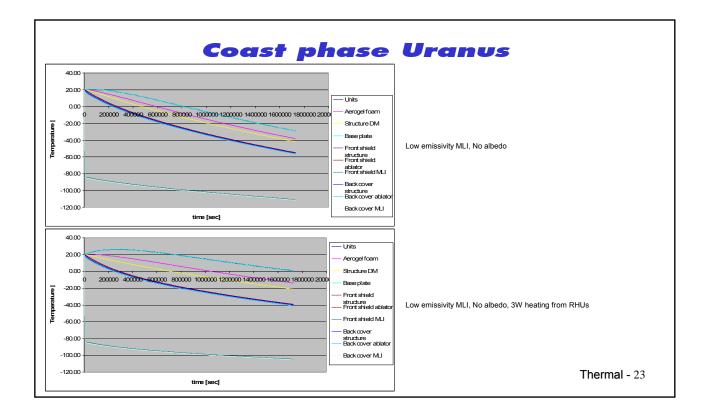
Thermal - 14

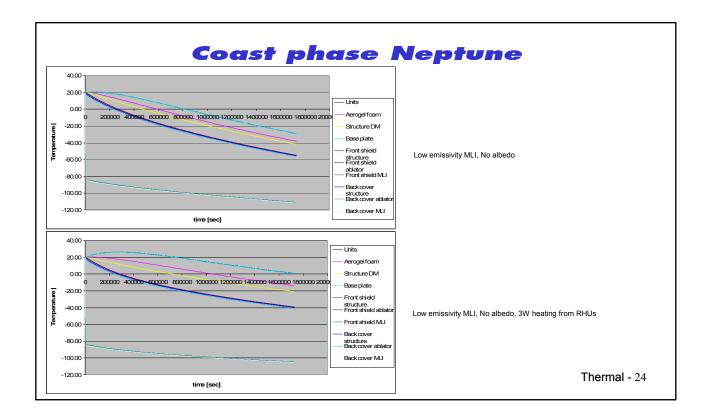

Unit					MASS [kg]		
	Unit Name	Part of subsystem	Quantity		Maturity Level	Margin	Total Mass
	Click on button above to insert new unit			quantity excl. margin			incl. margin
	and shield shlater (seeken sharelis)			-	To be developed	- 20	07.00
	ront shield ablator (carbon-phenolic)		1	31.00	To be developed	20	37.20
	ackcover ablator (PICA-like)		1	1.23 2.07	To be developed	20 10	<u>1.47</u> 2.27
	ront shield and back cover insulation (IFI)		1	13.66	To be modified To be modified	10	15.03
	front shield and back cover hot structure (C/SiC)		1	13.00		10	15.03
	hterface ylindec to DM (C/SiC)		1		To be modified		
	DM internal insulation (Aerogel) laver VDA between DM and heat shield / back cover		1	4.34	To be modified To be modified	10 10	<u>4.78</u> 0.14
			1	0.13	To be modified	10	0.14
	ILI on front shield and back cover (coast phase) blation detectors		1	0.10	To be modified	10	1.40
9 A			15	0.10	To be developed	20	0.00
	lick on button below to insert new unit			0.00	To be developed	20	0.00
- 0	SUBSYSTEM TOTAL			0.00 56.30	To be developed	20 15.7	0.00 65.15
	SUBSTSTEM TUTAL		9	56.30		15.7	65.15

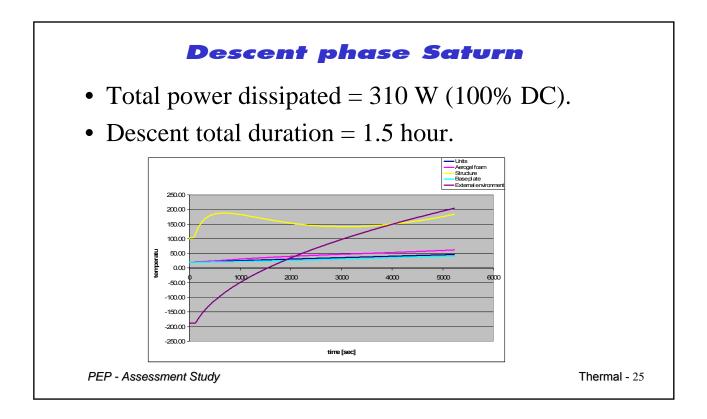

TPS, TCS design

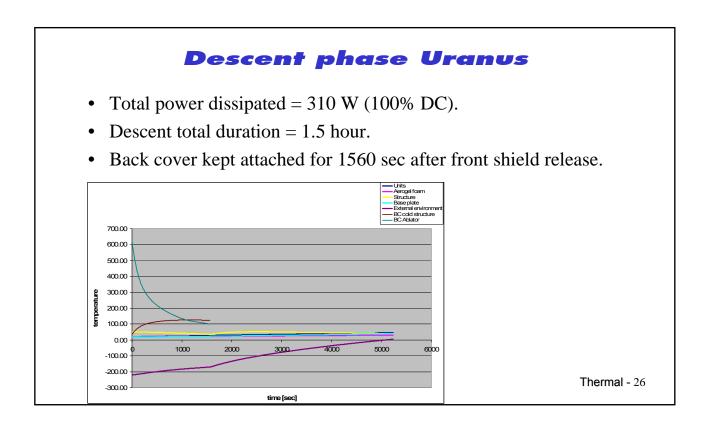

- Same TPS/TCS design principle as per Venus probe.
- Thicknesses of TPS materials differ due to different aerothermodynamics fluxes and shield release timing (Uranus and Neptune probes are identical).
- Aerothermodynamics fluxes: 100% margin + 20% blockage on both convective and radiative fluxes.
- 3 RHUs (3 W in tot) may be required if batteries want to be kept always above 0 C. (currently not baselined)

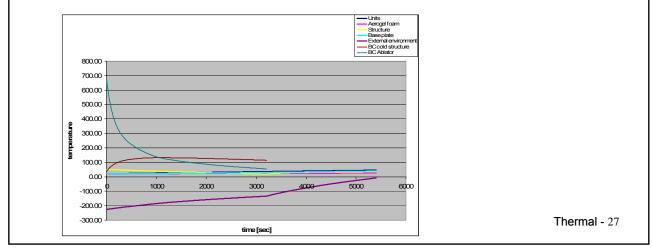

	Saturn	Uranus	Neptune
Front shield release	Mach $= 1$	Mach = 1	Mach =1
	T = 76 sec	T = 65 sec	T = 60 sec
Back cover release	Mach < 1	T = 1625 sec	T = 3260 sec
	T = 106 sec		
PEP - Assessment Study		-	Therma




	TPS c	limer	nsion	ing S	atur	'n	
Carbon Phenolic							
Front Shield (release at Mach=1) SEPCORE	Thickness [m] 0.0205	Area[m2] Densi 1.640	ity [kg/m3] Mass TPS [l 1400.00	g] Mass of IFI+C/S 70.60	<mark>iC [kg]</mark> 8.11 5 mm IFI	TOTmass [kg] 78.71	0.0369 m
	no margin applied yet		50% margin appli	ed on thickness			
Narmco4028							
Front Shield (release at Mach=1)			ity [kg/m3] Mass TPS [l			TOTmass [kg]	
SEPCORE	0.0275 no margin applied yet	1.640	1400 50% margin appli	94.71	8.11 5 mm IFI	102.82	0.0495 m
	no margin applied yet		50 % margin appir				
FM5055 Carbon Phenolic							
Front Shield (release at Mach=1) SEPCORE	Thickness [m] 0.0305	Area[m2] Densi 1.640	ity [kg/m3] Mass TPS [l 1400	g] Mass of IFI+C/S 105.04	<mark>iC [kg]</mark> 8.11 5 mm IFI	TOTmass [kg] 113.15	0.0549 m
	no margin applied yet		50% margin appli	ed on thickness			50%+20% margin
PICA-Like Carbon Phenolic							
SEPCORE DESIGN Back Cover	Thickness [m] Area[m2 0.005] Density [kg/m3] <mark>N</mark> 1.540 266	l <mark>ass TPS [kg]</mark> Mass of 3.07	IFI+C/SiC [kg] 8.62 10 mm IFI	TOTmass	<mark>s [kg]</mark> 11.69	0.009 m
	Â		A				
	no margin applied yet	50% marg	in applied to thickness				50%+20% margin
PEP - Asse	essment Study					TI	nermal - 19

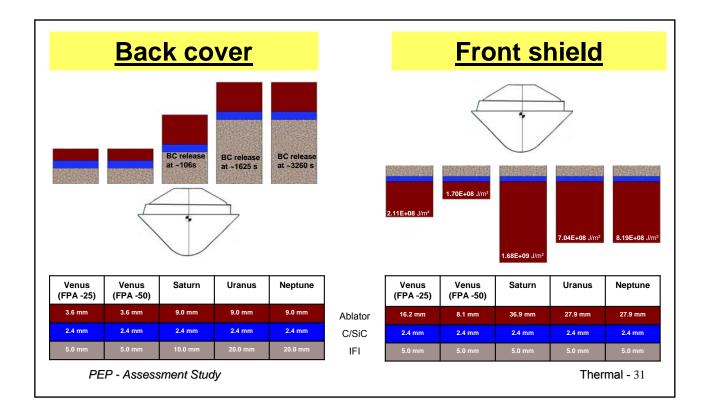


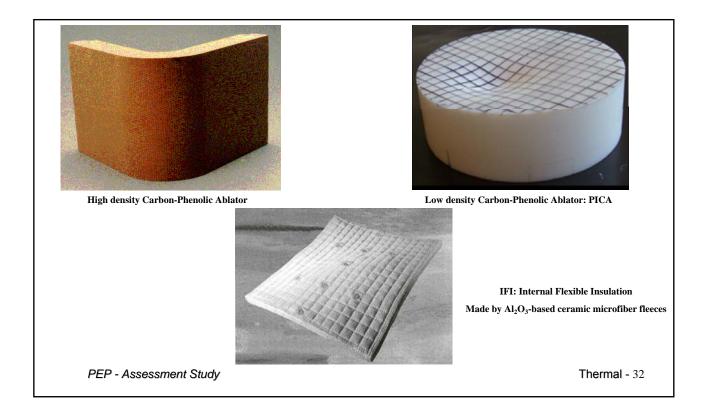


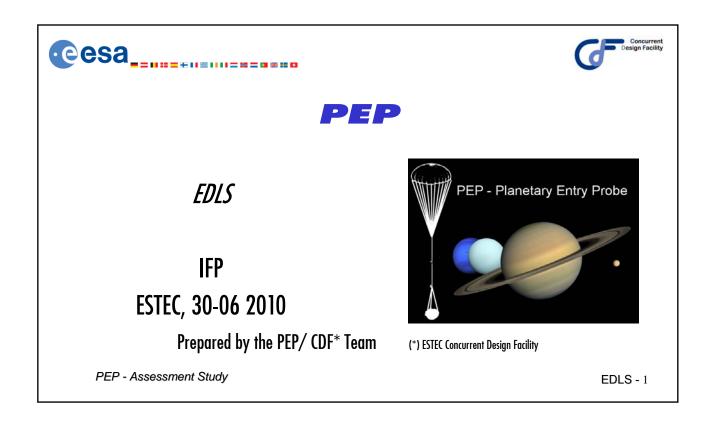


Descent phase Neptune

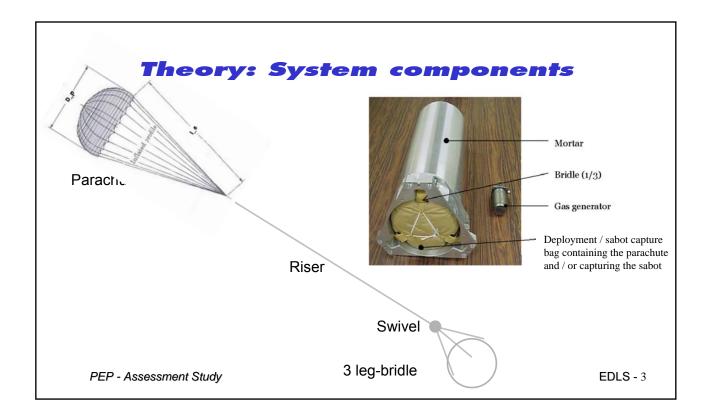
- Total power dissipated = 310 W (100% DC).
- Descent total duration = 1.5 hour.
- Back cover kept attached for 3200 sec after front shield release.

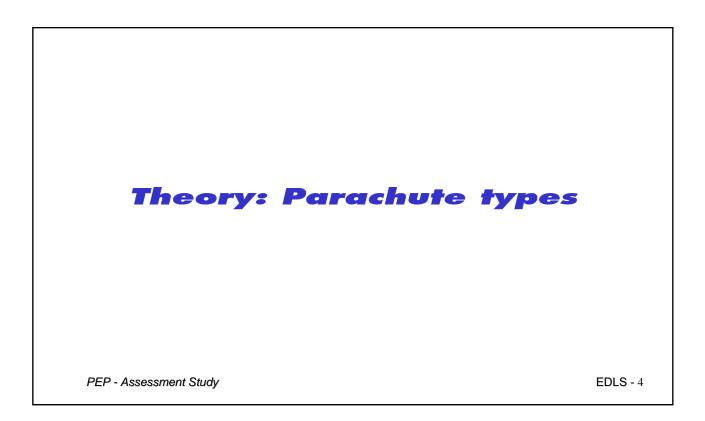


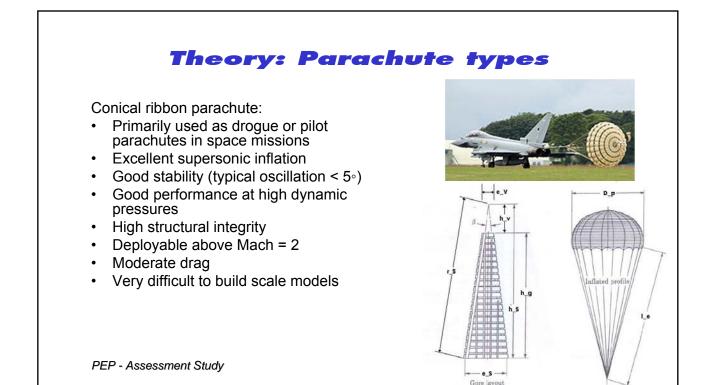

Unit	Unit Name	Part of subsystem	Quantity	Mass per	Maturity Laural		
				mass per	Maturity Level	Margin	Total Mass
	Click on button above to insert new unit			quantity			incl. margin
	Click on button above to insert new unit			excl. margin			
1 Fro	ont shield ablator (carbon-phenolic)		1	70.60	To be developed	20	84.72
2 Ba	ackcover ablator (PICA-like)		1	3.07	To be developed	20	3.69
	ont shield and back cover insulation (IFI)		1	3.07	To be modified	10	3.37
	ont shield and back cover hot structure (C/SiC)		1	13.66	To be modified	10	15.03
	terface ylindec to DM (C/SiC)		1	1.10	To be modified	10	1.21
	M internal insulation (Aerogel)		1	5.10	To be modified	10	5.61
	ayer VDA between DM and heat shield / back cover	r	1	0.13	To be modified	10	0.14
	LI on front shield and back cover (coast phase)		1	1.27	To be modified	10	1.40
	plation detectors		15	0.10	To be modified	10	1.65
10 - Cli	ick on button below to incort now unit			0.00	To be developed	20 20	0.00
- Cli	ick on button below to insert new unit SUBSYSTEM TOTAL		9	99.50	To be developed	17.4	116.82
	SUBSTSTEM TUTAL		9	99.00		17.4	110.02

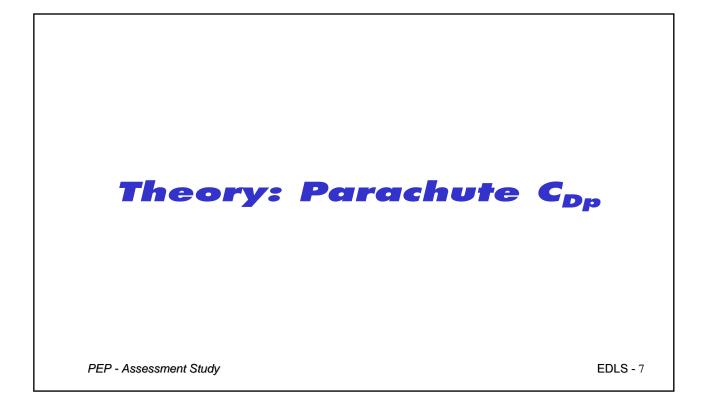

Element 1	0				MASS [kg]		
Unit	Unit Name Click on button above to insert new unit	Part of subsystem	Quantity	Mass per quantity excl. margin	Maturity Level	Margin	Total Mass incl. margin
1	Front shield ablator (carbon-phenolic)		1	53.38	To be developed	20	64.06
2	Backcover ablator (PICA-like)		1	3.07	To be developed	20	3.69
3	Front shield and back cover insulation (IFI)		1	5.07	To be modified	10	5.58
4	Front shield and back cover hot structure (C/SiC)		1	13.66	To be modified	10	15.03
5	Interface vlindec to DM (C/SiC)		1	1.10	To be modified	10	1.21
6	DM internal insulation (Aerogel)		1	5.10	To be modified	10	5.61
7	1layer VDA between DM and heat shield / back cove	r	1	0.13	To be modified	10	0.14
8	MLI on front shield and back cover (coast phase)		1	1.27	To be modified	10	1.40
9	Ablation detectors		15	0.10	To be modified	10	1.65
10					To be developed		0.00
-				0.00	To be developed		0.00
	SUBSYSTEM TOTAL		9	84.28		16.7	98.36
9 10 -	Click on button below to insert new unit SUBSYSTEM TOTAL		9		To be developed	20 20 16.7	0.00

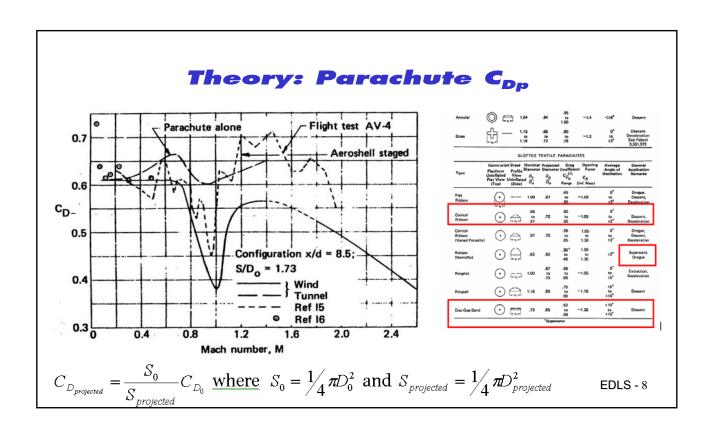

I

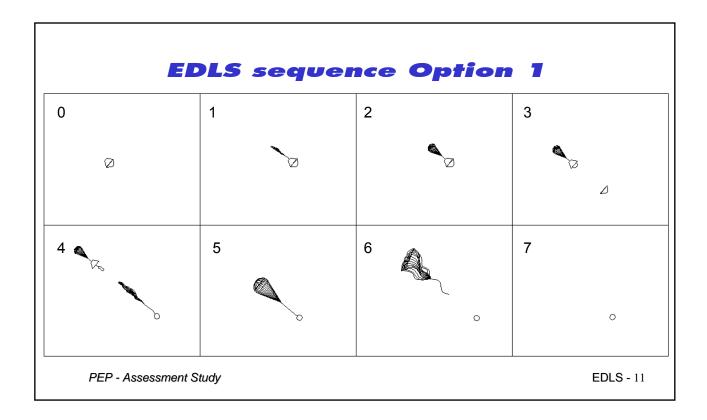

	TPS	5 Desig	n Sumn	nary					
	Venus FPA = -25°	Venus FPA = -50°	Saturn FPA = -25°	Uranus FPA = -45°	Neptune FPA = -35°				
THICKNESS									
Front Shield Ablator	CP 16.2mm (31.0kg) Narmco4028 23.4mm (44.77kg) FM5055 26.1mm (49.94)	CP 8.1mm (15.5kg) Narmco4028 13.5 mm (25.83kg) FM5055 11.7mm (22.39kg)	CP 36.9mm (70.6kg) Narmco4028 49.5 mm (94.71 kg) FM5055 54.9mm (105.04 kg)	CP 27.9mm (53.38kg) Narmco4028 38.7 mm (74.05 kg) FM5055 42.3 (80.93 kg)	CP 27.9mm (53.38kg) Narmco4028 38.7 mm (74.05 kg) FM5055 42.3 (80.93 kg)				
Front Shield C/SiC	2.4 mm	2.4 mm	2.4 mm	2.4 mm	2.4 mm				
Front Shield IFI	5 mm	5 mm	5 mm	5 mm	5 mm				
Back Cover Ablator	3.6 mm	3.6 mm	9 mm	9 mm (3.07 kg)	9 mm (3.07 kg)				
Back Cover C/SiC	2.4 mm	2.4 mm	2.4 mm	2.4 mm	2.4 mm				
Back Cover IFI	5 mm	5 mm	10 mm	20 mm	20 mm				
		M/	ISS						
Front Shield C/SiC+IFI	8.11 kg	8.11 kg	8.11 kg	8.11 kg	8.11 kg				
Back Cover C/SiC+IFI	7.62 kg	7.62 kg	8.62 kg	10.62 kg	10.62 kg				
Total Front Shield (Ablator+C/SiC+IFI)	CP 16.2mm (39.11kg) Narmco4028 23.4mm (52.88kg) FM5055 26.1mm (58.05kg)	CP 8.1mm (23.61kg) Narmco4028 13.5mm (33.94kg) FM5055 11.7mm (30.5kg)	CP 36.9mm (78.71kg) Narmco4028 49.5mm (102.82kg) FM5055 54.9 (113.15 kg)	CP 27.9mm (61.49kg) Narmco4028 38.7 mm (82.16kg) FM5055 42.3 (89.05 kg)	CP 27.9mm (61.49kg) Narmco4028 38.7 mm (82.16kg) FM5055 42.3 (89.05 kg)				
Total Back Cover (Ablator+C/SiC+IFI)	PICA-likeCP 3.6mm (8.85kg)	PICA-likeCP 3.6mm (8.85 kg)	PICA-likeCP 9mm (11.69kg)	PICA-likeCP 9mm (13.69kg)	PICA-likeCP 9mm (13.69kg)				

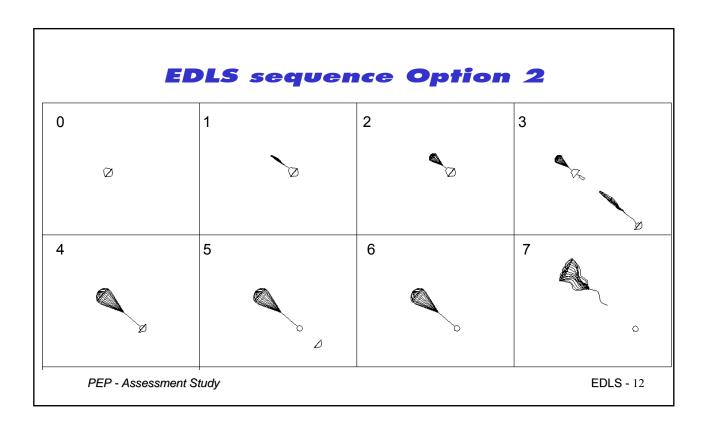


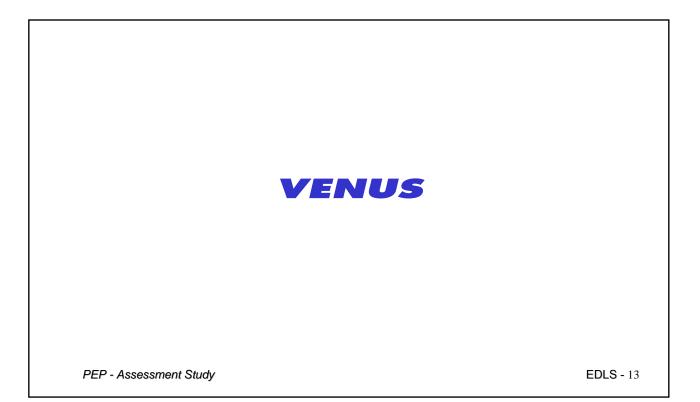


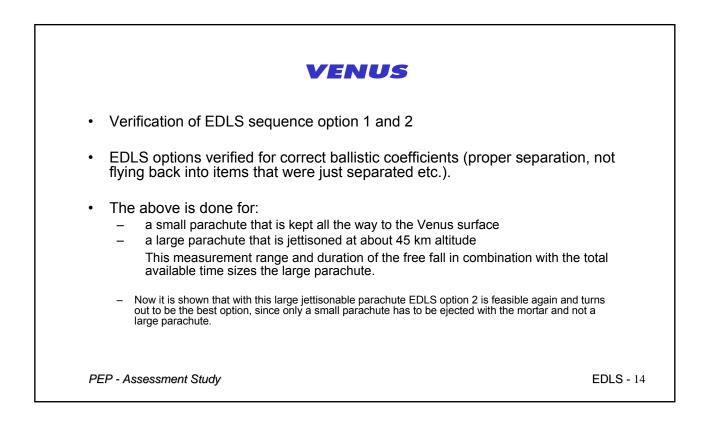


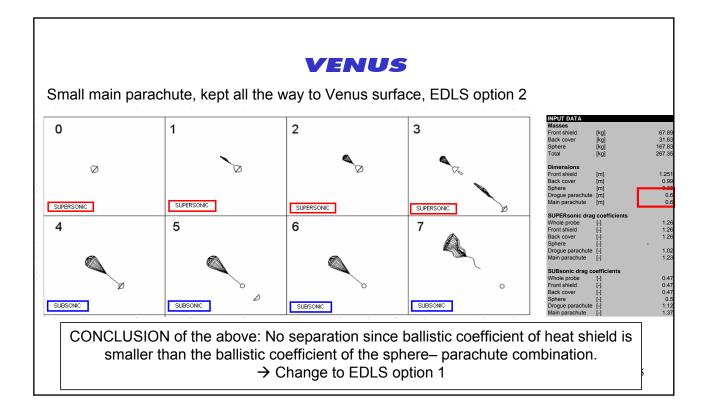


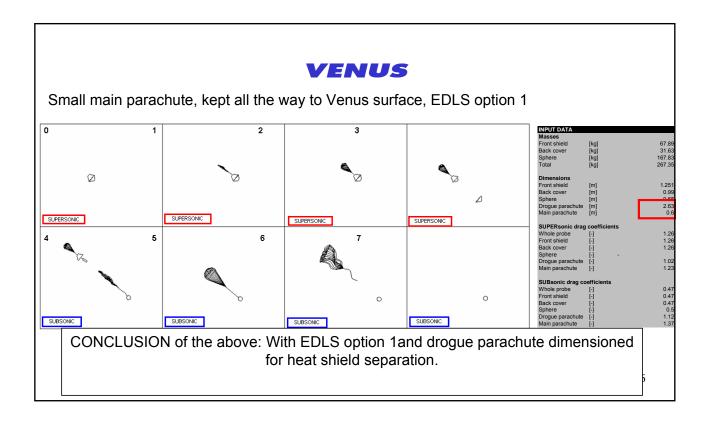

	Theory: Parach	ute types
 Us pr sp G in Ea Da Hi pa Le (ty) 	Gap Band parachute: sed frequently for Mars missions to deceler obes before landing or to control descent beed (Huygens). ood supersonic, low dynamic pressure flation asy to build small scale models eployable above Mach = 2 possible igher drag coefficient than Conical Ribbon arachute ess stable than Conical Ribbon parachute /pical oscillation < 10°) etter performance at low dynamic pressures	ate
PEP -	Assessment Study	

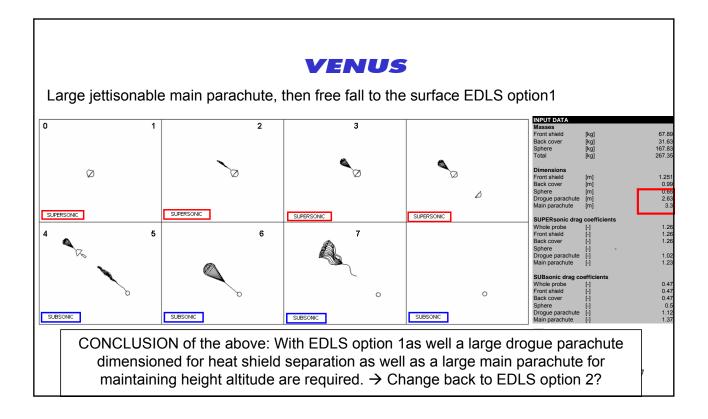




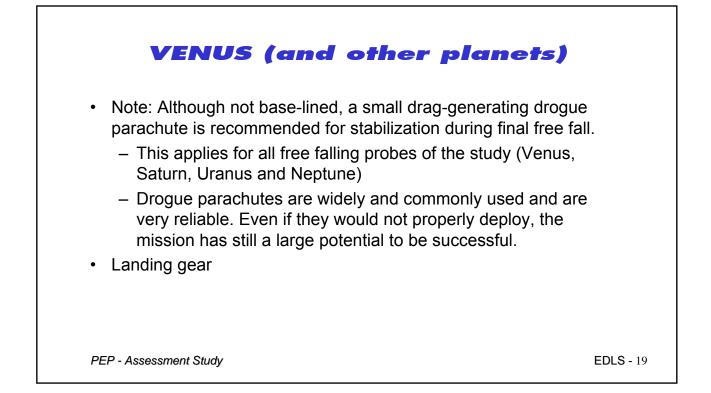

Th	eory: Parach	ute C _{Dp}	
	Conical Ribbon	Disc Gap Ban	d
Subsonic C_{D_0}	0.5-0.55	0.52-0.58	
Subsonic $C_{D_{projected}}$	1.12	1.37	
Supersonic $C_{D_{projected}}$	1.02	1.23	
β_i	$\sum_{j} (C_d S)_{ij}$ allistic coefficient and separation	$= 0.7\beta$ on requirement	EDLS - 9

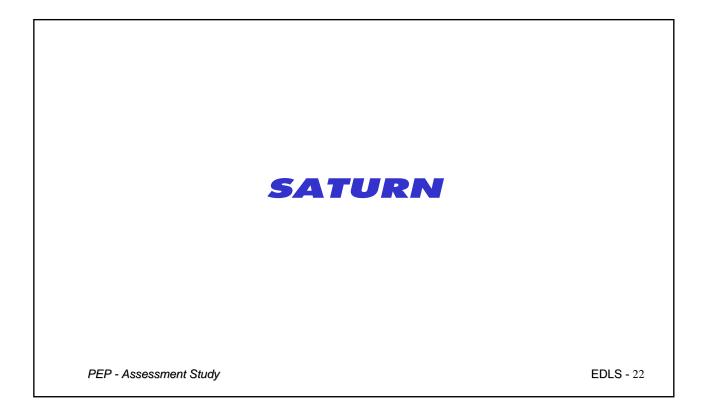


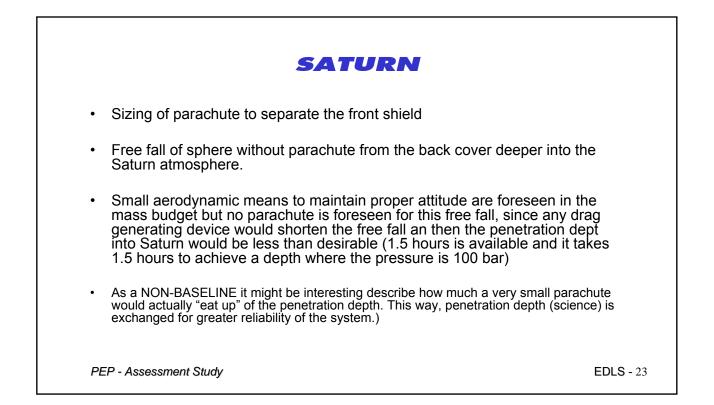




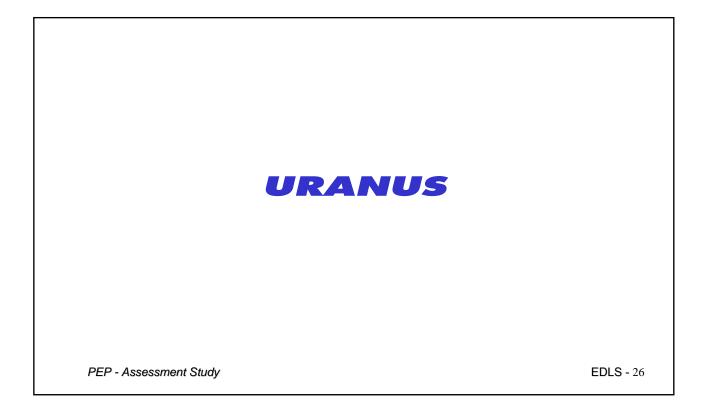


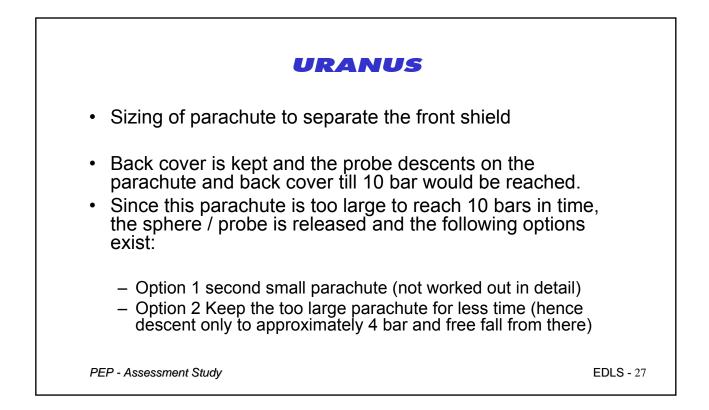


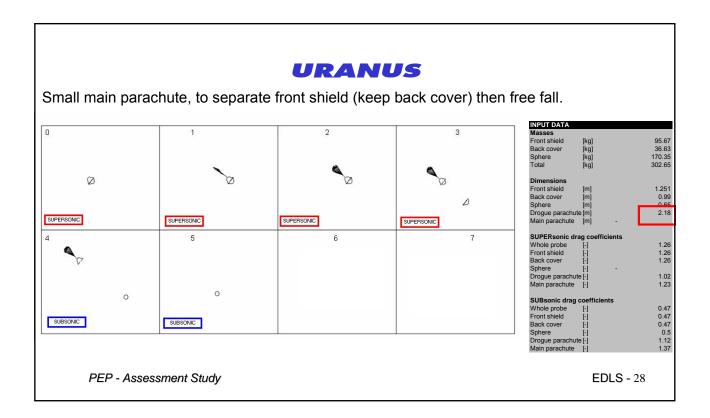




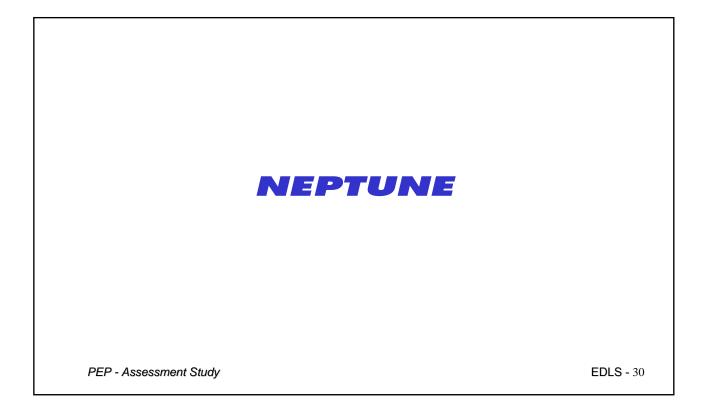
			IS ()			T-4-1 \$4
Unit	Element 1 Unit Name	Quantity	Mass per	Maturity Level	Margin	Total Mass
	Click on button below to insert new unit		quantity excl. margin			incl. margin
1	Drogue parachute canopy fabric	1	1.11	To be modified	10	1.2
2	Drogue parachute lines (split 50-50 with	1	0.35	To be modified	10	0.4
3	Drogue parachute riser (split 50-50 with	1	0.35	To be developed	20	0.4
4	Drogue parachute bridle	1	0.10	To be developed	20	0.1
5	Drogue parachute deployment bag	1	0.10	To be developed	20	0.1
6	Drogue parachute mortar	1	3.92	To be modified	10	4.3
7	Main parachute canopy fabric	1	0.10	To be developed	20	0.1
8	Main parachute lines (split 50-50 with ris	1	0.20	To be developed	20	0.2
9	Main parachute riser (split 50-50 with lin	1	0.20	To be developed	20	0.2
10	Main parachute bridle (riser-back shell)	1	0.1000	To be developed	20	0.1
11	Main parachute deployment bag	1	0.1000	Fully developed	5	0.1
12	Mass reservation for aerodynamic fins and other stabilisation means	1	1.0000	To be developed	20	1.2
13				To be developed	20	0.0
14	Parachute release mechanism (cutters)	0	0.0000	To be modified	10	0.0
15	Heat shield separation mechanism	0	0.0000	To be developed	20	0.0
16	Heat shield instrumentation	0	0.0000	To be developed	20	0.0
17	Bioseal	0	0.0000	To be developed	20	0.0
18	Clevises	0	0.0000	To be developed	20	0.0
19	MLI	0	0.00	Fully developed	5	0.0
20	Miscellaneous	0	0.00	To be developed	20	0.0
-	Click on button below to insert new unit		0.0	To be developed	20	0.0

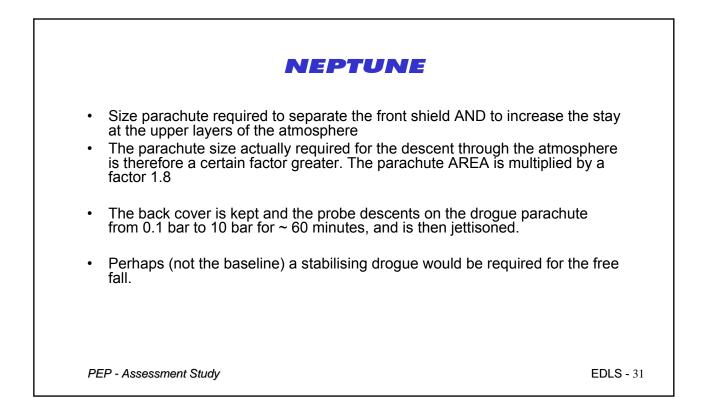

	VE	NL	5 (2	21		
Unit	Element 1 Unit Name	Quantity	Mass per	Maturity Level	Margin	Total Mass
•••••	Click on button below to insert new		quantity excl.	· · · · · · · · · · · · · · · · · · ·		incl. margin
	unit		margin			
1	Drogue parachute canopy fabric	1	0.06	To be developed	20	0.1
2	Drogue parachute lines (split 50-50 with	1	0.15	To be developed	20	0.2
3	Drogue parachute riser (split 50-50 with	1	0.15	To be developed	20	0.2
4	Drogue parachute bridle (riser-back she	1	0.10	To be developed	20	0.1
5	Drogue parachute deployment bag	1	0.10	To be developed	20	0.1
6	Drogue parachute mortar	1	2.57	To be developed	20	3.1
7	Main parachute canopy fabric	1	2.58	To be developed	20	3.1
8	Main parachute lines (split 50-50 with ris	1	0.80	To be developed	20	1.0
9	Main parachute riser (split 50-50 with lin	1	0.80	To be developed	20	1.0
10	Main parachute bridle (riser-back shell)	1	0.1000	To be developed	20	0.1
11	Main parachute deployment bag	1	0.2000	To be developed	20	0.2
	Mass reservation for aerodynamic fins		1.0000			
12	and other stabilisation means	1		To be developed	20	1.2
13				To be developed	20	0.0
14	Parachute release mechanism (cutters)	0	0.0000	To be modified	10	0.0
15	Heat shield separation mechanism	0	0.0000	To be developed	20	0.0
16	Heat shield instrumentation	0	0.0000	To be developed	20	0.0
17	Bioseal	0	0.0000	To be developed	20	0.0
18	Clevises	0	0.0000	To be developed	20	0.0
19	MLI	0	0.00	Fully developed	5	0.0
20	Miscellaneous	0	0.00	To be developed	20	0.0
-	Click on button below to insert new unit		0.0	To be developed	20	0.0
E	LEMENT 1 SUBSYSTEM TOTAL	12	8.6		20.0	10.3



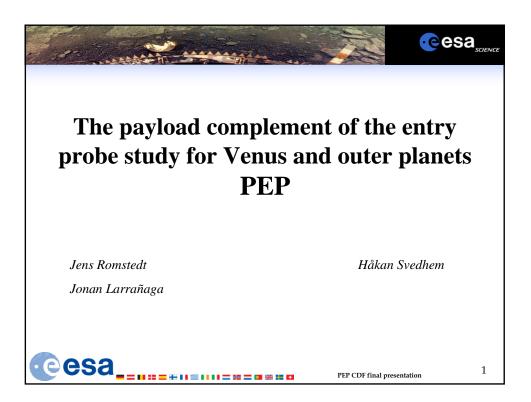


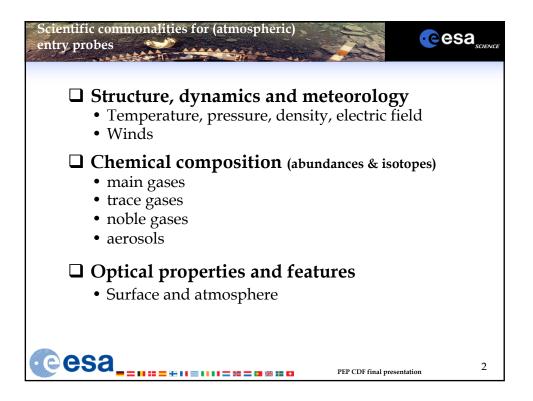
		SATURI	V	
Small parachute	to separate heat sh	nield and back cove	er, then free fall.	
0	1	2	3	INPUT DATA Masses Front shield [kg] 116.25 Back cover [kg] 34.68 Sphere [kg] 169.95 Total [kg] 320.88
0	<u>></u>	∿		Dimensions Front shield [m] 1.251 Back cover [m] 0.99 Sphere [m] 0.66 Drogue parachute (m] 1.91
4	SUPERSONIC 5	SUPERSONIC 6	SUPERSONIC 7	SUPERsonic drag coefficients Whole probe [-] 1.26 Front shield [-] 1.26 Back cover [-] 1.26 Sphere [-] 1.26 Drogue parachute [-] 1.02 Main parachute [-] 1.23
O				SUBsonic drag coefficients Whole probe [-] 0.47 Front shield [-] 0.47 Back cover [-] 0.47 Sphere [-] 0.47 Drogue parachute [-] 1.12 Main parachute [-] 1.37
(PEP - Asses	Conclusion: 1.9 m (sment Study	projected diameter) Conical Ribbon p	arachute EDLS - 24

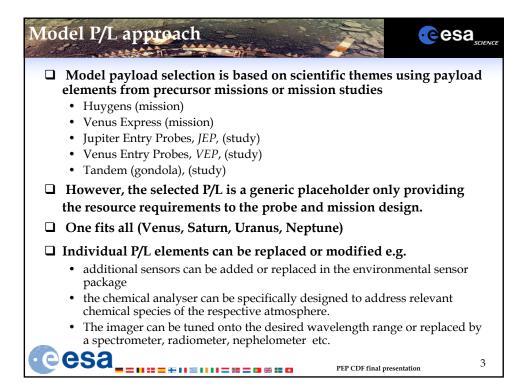

	S	ATU	RN			
Unit	Element 1 Unit Name	Quantity	Mass per	Maturity Level	Margin	Total Mass
	Click on button below to insert new unit		quantity excl. margin	· · · · · ·	- 3	incl. margin
1	Drogue parachute canopy fabric	1	0.40	To be developed	20	0.7
2	Drogue parachute lines (split 50-50 with riser)	1	0.24	To be developed	20	0.5
3	Drogue parachute riser (split 50-50 with lines)	1	0.24	To be developed	20	0.5
4	Drogue parachute bridle (riser-back shell)	1	0.10	To be developed	20	0.1
5	Drogue parachute deployment bag	1	0.10	To be developed	20	0.1
6	Drogue parachute mortar	1	3.92	To be developed	20	4.7
7	Main parachute canopy fabric	1	0.00	To be developed	20	0.0
8	Main parachute lines (split 50-50 with riser)	1	0.00	To be developed	20	0.0
9	Main parachute riser (split 50-50 with lines)	1	0.00	To be developed	20	0.0
10	Main parachute bridle (riser-back shell)	1	0.0000	To be developed	20	0.0
11	Main parachute deployment bag	1	0.0000	Fully developed	5	0.0
	Reservation for aerodynamic fins and other		1.0000			
12	stabilization means	1		To be developed	20	1.2
13		0	0.0000	To be developed	20	0.0
14	Parachute release mechanism (cutters)	0	0.0000	To be modified	10	0.0
15	Heat shield separation mechanism	0	0.0000	To be developed	20	0.0
16	Heat shield instrumentation	0	0.0000	To be developed	20	0.0
17	Bioseal	0	0.0000	To be developed	20	0.0
18	Clevises	0	0.0000	To be developed	20	0.0
19	MLI	0	0.00	Fully developed	5	0.0
20	Miscellaneous	0	0.00	To be developed	20	0.0
-	Click on button below to insert new unit		0.0	To be developed	20	0.0
	ELEMENT 1 SUBSYSTEM TOTAL	12	6.5		20.0	7.8

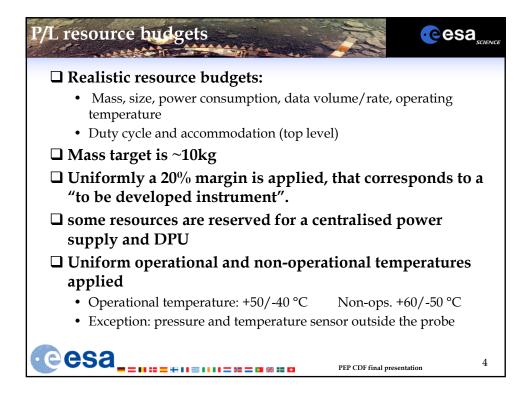


		RAN	US			
Unit	Element 1 Unit Name Click on button below to insert new unit	Quantity	Mass per quantity excl. margin	Maturity Level	Margin	Total Mass incl. margin
1	Drogue parachute canopy fabric	1	0.80	To be modified	10	0.9
2	Drogue parachute lines (split 50-50 with riser)	1	0.28	To be modified	10	0.3
3	Drogue parachute riser (split 50-50 with lines)	1	0.28	To be developed	20	0.3
4	Drogue parachute bridle (riser-back shell)	1	0.10	To be developed	20	0.1
5	Drogue parachute deployment bag	1	0.10	To be developed	20	0.1
6	Drogue parachute mortar	1	3.92	To be developed	20	4.7
7	Main parachute canopy fabric	1	0.00	To be developed	20	0.0
8	Main parachute lines (split 50-50 with riser)	1	0.00	To be developed	20	0.0
9	Main parachute riser (split 50-50 with lines)	1	0.00	To be developed	20	0.0
10	Main parachute bridle (riser-back shell)	1	0.0000	To be developed	20	0.0
11	Main parachute deployment bag	1	0.0000	Fully developed	5	0.0
12	Reservation for aerodynamic fins and other sta	1	1.0000	To be developed	20	1.2
13		0	0.0000	To be developed	20	0.0
14	Parachute release mechanism (cutters)	0	0.0000	To be modified	10	0.0
	Heat shield separation mechanism	0	0.0000	To be developed	20	0.0
16	Heat shield instrumentation	0	0.0000	To be developed	20	0.0
	Bioseal	0	0.0000	To be developed	20	0.0
-	Clevises	0	0.0000	To be developed	20	0.0
-	MLI	0	0.00	Fully developed	5	0.0
	Miscellaneous	0	0.00	To be developed	20	0.0
-	Click on button below to insert new unit		0.0	To be developed	20	0.0
	ELEMENT 1 SUBSYSTEM TOTAL	12	6.5		18.3	7.7

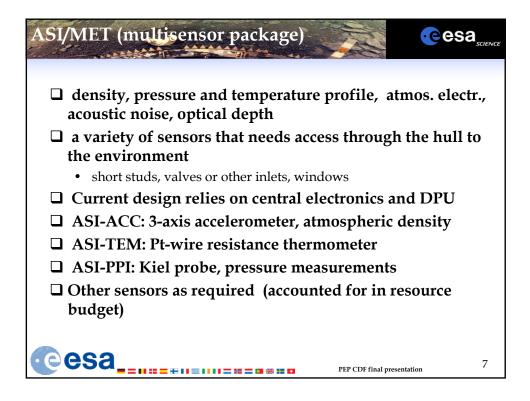


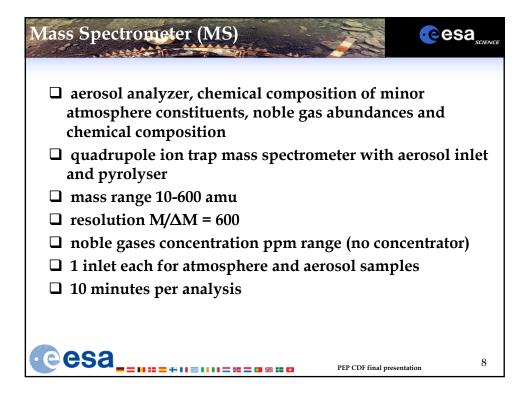


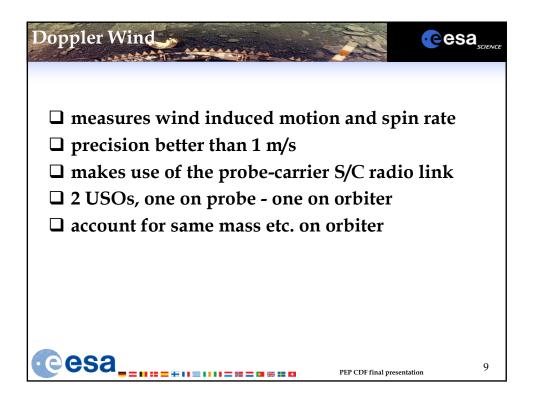

		NEPTUN	IE	
Oversized (1.8 x p cover) and to main				_
			3 Contractions SUPERSONIC	DiPUT DATA Masses Front shield [kg] 95.6 Back cover [kg] 36.6 Sphere [kg] 170.3 Total [kg] 302.6 Dimensions - Front shield [m] 1.25 Back cover [m] 0.9 Sphere [m] 95.0 Drogue parachute [m] 2.9 Main parachute [m] - SUPERsonic drag coefficients -
4 V SUBSONIC	5 Suesonic	6	7	Whole probe [-] 1.2 Front shield [-] 1.2 Back cover [-] 1.2 Sphere [-] 1.2 Drogue parachute [-] 1.0 Main parachute [-] 1.0 SUBsonic drag coefficients 1.2 Whole probe [-] 0.4 Front shield [-] 0.4 Back cover [-] 0.4 Sphere [-] 0.4 Sphere [-] 0.4 Sphere [-] 1.1 Main parachute [-] 1.1
PEP - Assess	ment Study			EDLS - 32

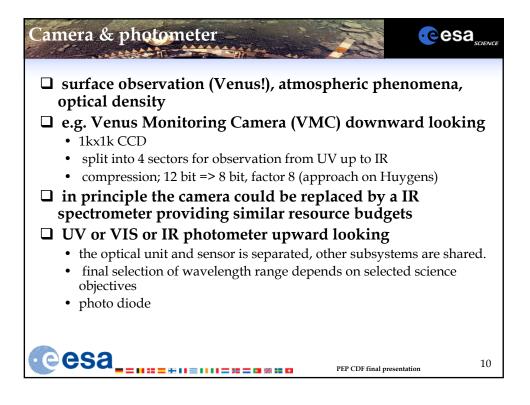

	NE	PTU	NE			
Unit	Element 1 Unit Name Click on button below to insert new unit	Quantity	Mass per quantity excl. margin	Maturity Level	Margin	Total Mass ind. margin
1	Droque parachute canopy fabric	1	1.35	To be modified	10	1.5
2	Drogue parachute lines (split 50-50 with riser)	1	0.35	To be modified	10	0.4
3	Drogue parachute riser (split 50-50 with lines)	1	0.35	To be developed	20	0.4
4	Drogue parachute bridle (riser-back shell)	1	0.10	To be developed	20	0.1
5	Drogue parachute deployment bag	1	0.10	To be developed	20	0.1
6	Drogue parachute mortar	1	3.92	To be developed	20	4.7
7	Main parachute canopy fabric	1	0.00	To be developed	20	0.0
8	Main parachute lines (split 50-50 with riser)	1	0.00	To be developed	20	0.0
9	Main parachute riser (split 50-50 with lines)	1	0.00	To be developed	20	0.0
10	Main parachute bridle (riser-back shell)	1	0.0000	To be developed	20	0.0
11	Main parachute deployment bag	1	0.0000	Fully developed	5	0.0
12	Reservation for aerodynamic fins and other sta	1	1.0000	To be developed	20	1.2
13		0	0.0000	To be developed	20	0.0
14	Parachute release mechanism (cutters)	0	0.0000	To be modified	10	0.0
15	Heat shield separation mechanism	0	0.0000	To be developed	20	0.0
16	Heat shield instrumentation	0	0.0000	To be developed	20	0.0
17	Bioseal	0	0.0000	To be developed	20	0.0
18	Clevises	0	0.0000	To be developed	20	0.0
19	MLI	0	0.00	Fully developed	5	0.0
20	Miscellaneous	0	0.00	To be developed	20	0.0
-	Click on button below to insert new unit		0.0	To be developed	20	0.0
	ELEMENT 1 SUBSYSTEM TOTAL	12	7.2		17.6	8.4

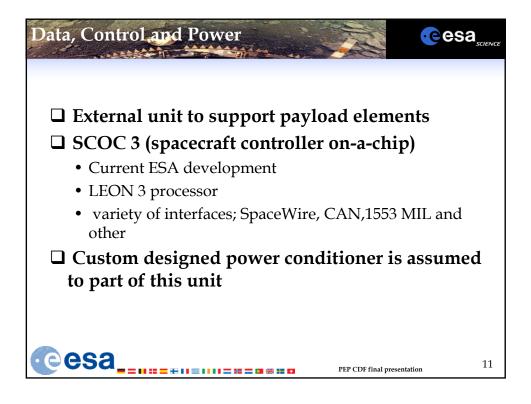
PEP-Assessment Study

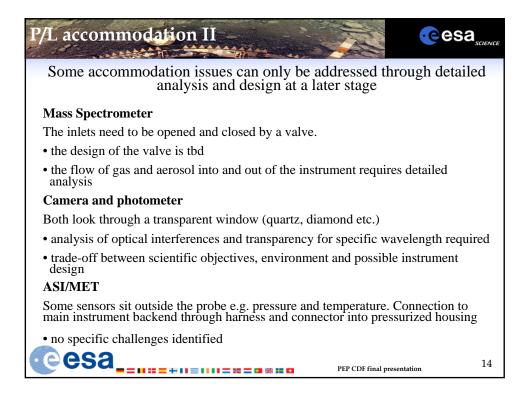


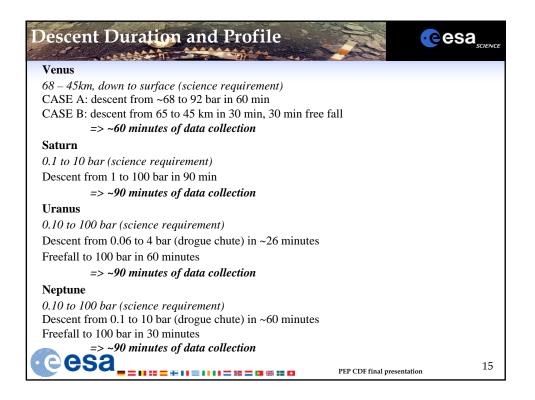


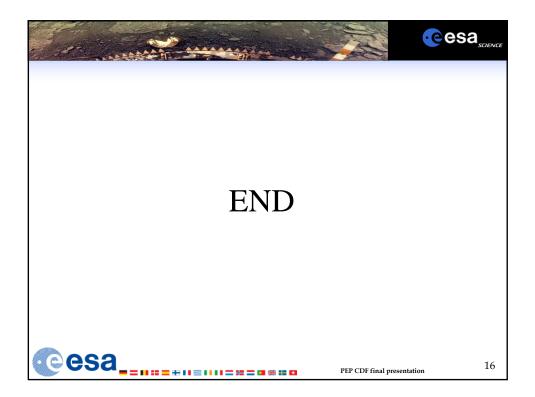


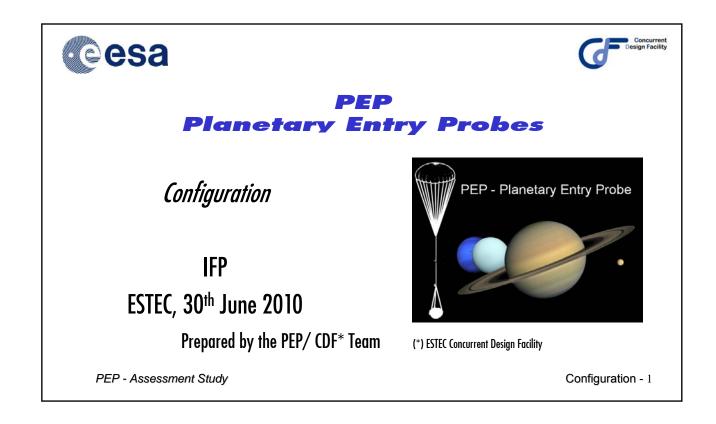

omparis	on of P/L e	lements		•	esa _{scier}
	Venus Entry Probe Aerobot (study)	TANDEM * gondola (study)	TANDEM * wet lander (study)	Huygens (mission)	Jupiter Entry Probe
GC/MS	0.8	6.0	23	17.3	5.0
Imager		2.0	1	8.1	
Imaging spec.		3.0			
Aerosol analysis	0.3			6.3	
Solar & IR flux	0.2			part of imager	0.3
Atmosph. Struc.	0.05	1.0	1.5	6.3	0.7
Inertial package	0.05				
Radar altimeter	1.0	8.0			
E-environ.		1.0		in atm. struc	
Magnetometer		0.5			
Radio science				1.9	0.5
Nephelometer	0.2				0.2
Surface science			1.5	9.0	
Speed of sound					1
DPU	0.1				0.5
Structure	0.3				
TOTAL	3.0	21.5	27 *Payload Definition Doc., Nov. 2001, Iss.1 rev. 2-1	48.90	8.2

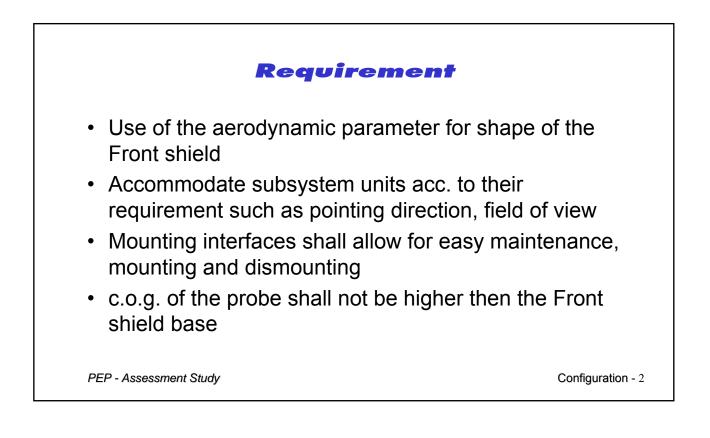

P/L elements PEP	
□ Atmospheric Structure	
• ASI/MET (Tandem)	1.25 kg
□ Chemical composition and isotopes	
• MS (Tandem)	5.00 kg
Position and Drift	
Doppler Wind (Huygens)	1.50 kg
□ Camera incl. UV/VIS/IR photometer	
• VEx & Huygens	1.50 kg
Data, Control and power	
• this study	1.00 kg
TOTAL incl. 20% margin	10.25 kg 12.30 kg
cesa	CDF final presentation 6

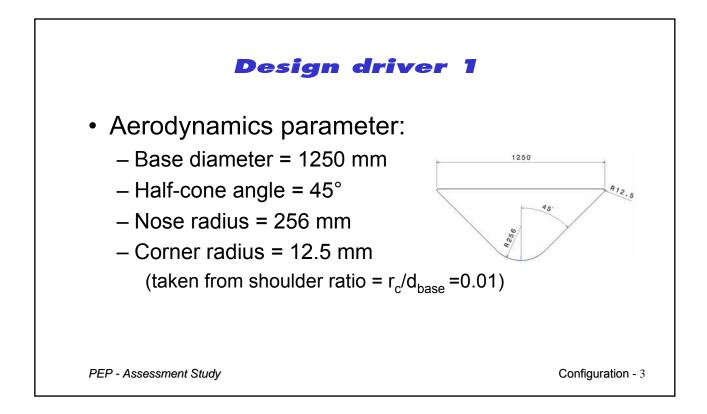


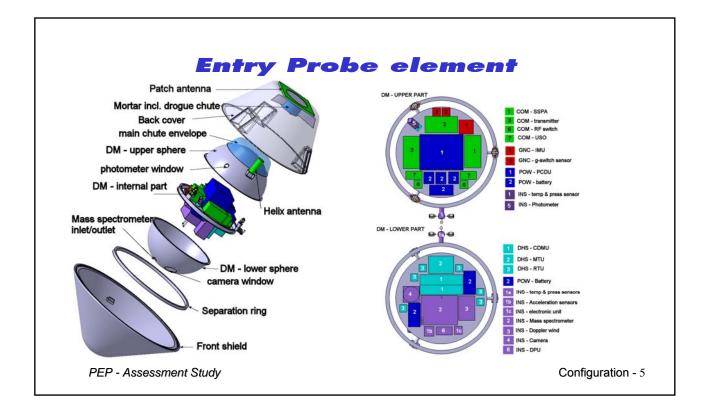


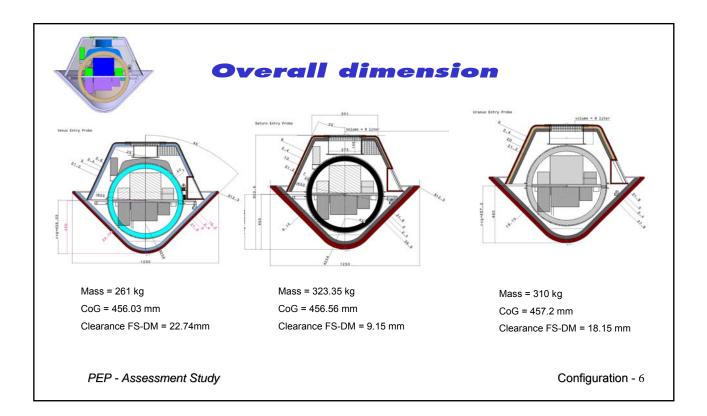


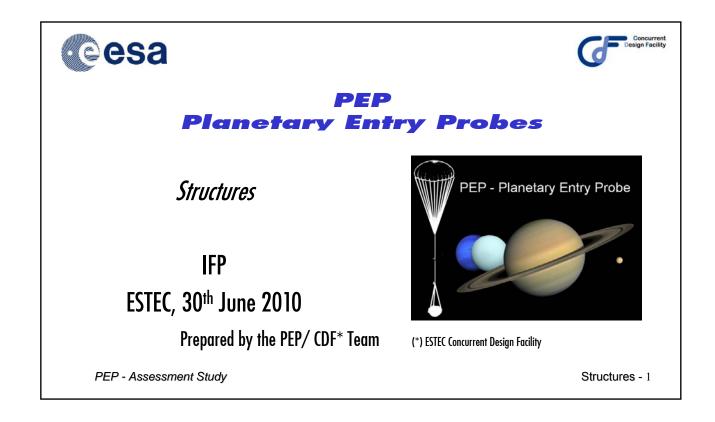

/L resourc	e bud	get sumn	hary		•	esa _{sa}
	Mass [kg] ^{w/o margin}	X*Y*X [mm]	Power [W]	Data rate [kb/s]	Data vol. [kb]	Duty cycle in 1 h
ASI/MET	1.25	TEM, PPI 205x30Ø (outside) ACC 79x58x68 50x50x50 other	1 sby. 5 ave. 10 max.	0.16 CANbus	5900/h 590 compressed	cont.
MS	5.0	250x200x100	4 sby. 8 ave. 10 max.	0.13 CANbus	4800/h (6 samples) 480 compressed	1/10′
Doppler Wind	1.5	150x150x118	2 sby. 10 ave. 18 max.	-	-	cont.
Camera	1.2	100x100x200	4 sby. 8 ave. 10 max.	1.747 Spacewire	75.5 Mb/h 6290 kbit comp.	1/10′
Photometer	0.3	30x30x80	1 sby. 1 ave. 2 max.	0.00026	16 bit/minute 0.96 kbit/h	cont.
DPU and power conv.	1.0	50x50x100	3	-	-	cont
Σ	10.25		35 ave.	2.037	7360.5 comp.	
esa_			•	PEP CD	F final presentation	1

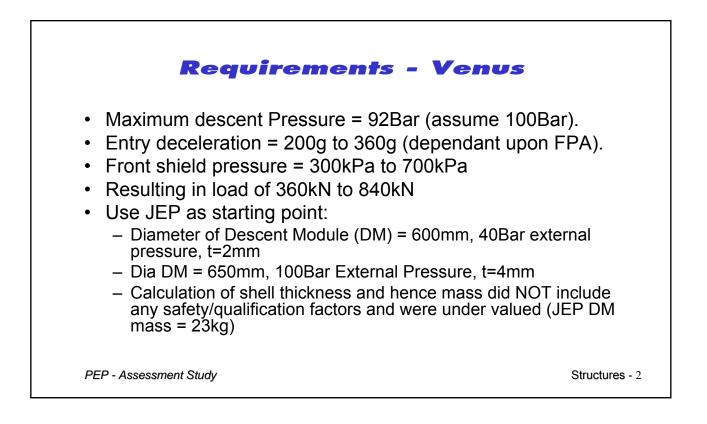

	A	ACOOMMODATION REQUIREMENTS				
	ACC	Close to the center of mass				
ASI/MET	TEM	Combined with PPI in one external stud				
	PPI	See above				
MS		2 INLETS				
Doppler Wind	NONE					
Camera	Downward looking, 15° field of view					
Photometer	Upward looking, 30° field of view					
DPU and power conv.		none				

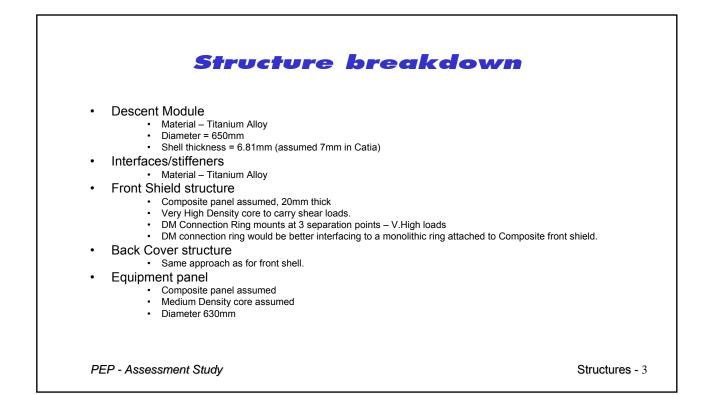


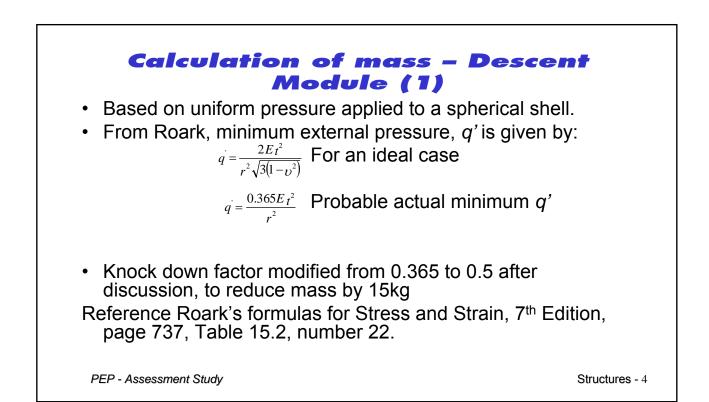


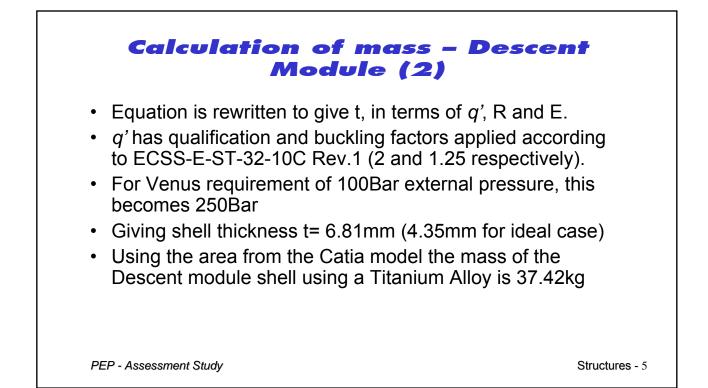


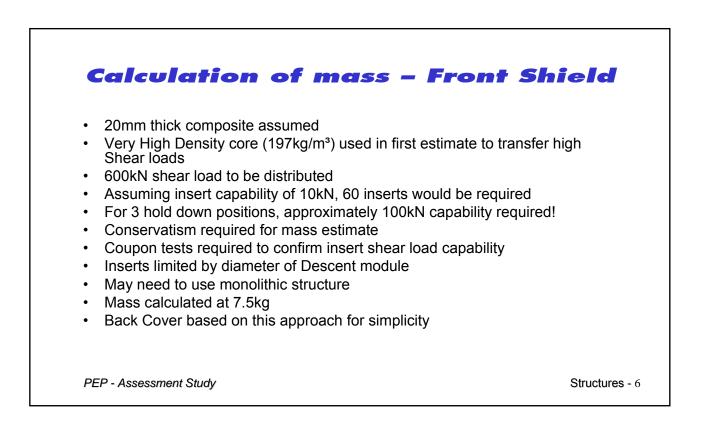


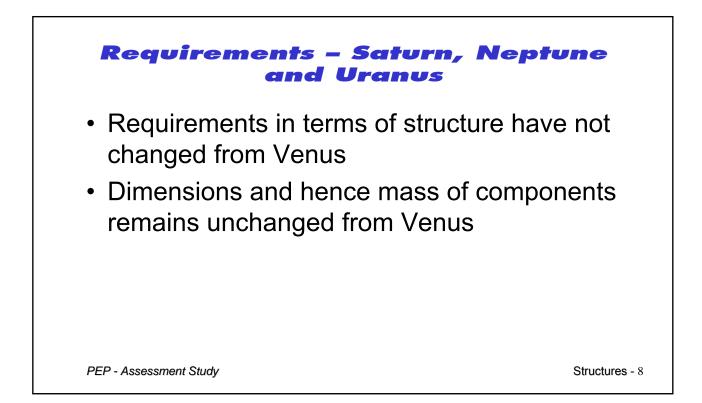


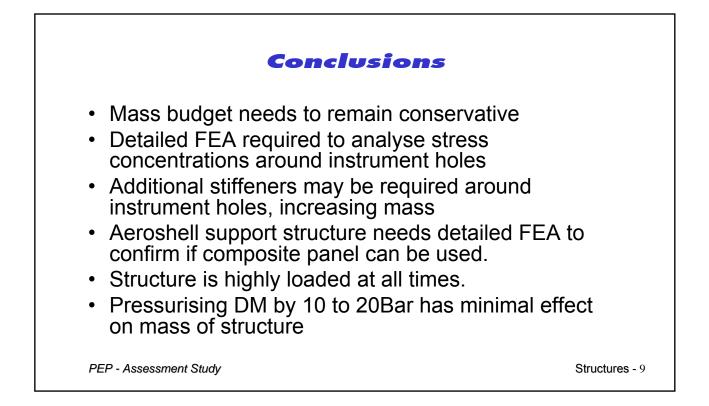

• TDC	. The				Iriver 2 ystem:
		1			ystem.
FS-thickness in mm	Venus	Saturn	Uranus	Neptune	
Ablator	16.2	36.9	27.9	27.9	Backover: Descent module TFS (ablator+C/SiC+foam) Descent module structure: CFRP skin/AL honeycomb thermal:4 doma Aeroge:
C/Sic	2.4	2.4	2.4	2.4	
IFI	5	5	5	5	
Sandwich	21.8	21.8	21.8	21.8	0650
BC-thickness in mm	Venus	Saturn	Uranus	Neptune	2 c.o.g
Ablator	3.6	9	9	9	a a
C/Sic	2.4	2.4	2.4	2.4	
IFI	5	5	10	20	Front shield: TPS (ablator+C/SiC+foam) _structure: CFAP skin/AL honeycomb
Sandwich	21.2	21.2	21.2	21.2	2

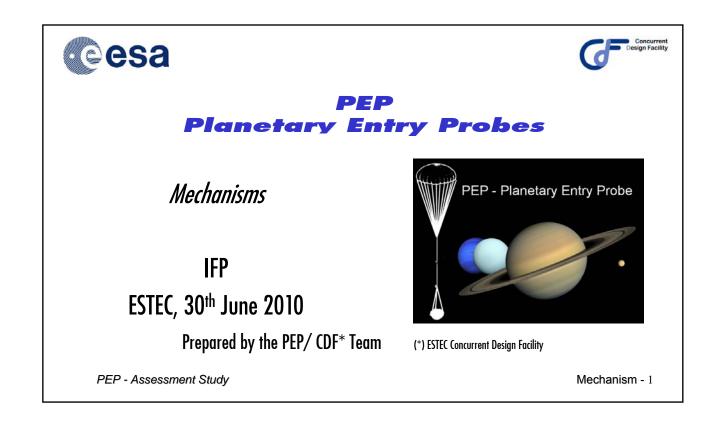


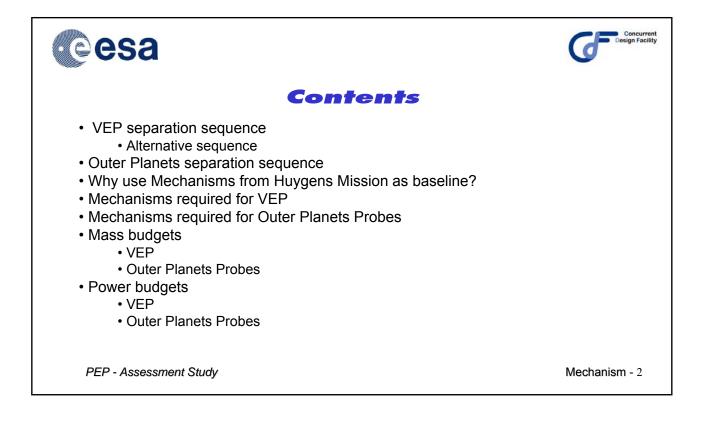


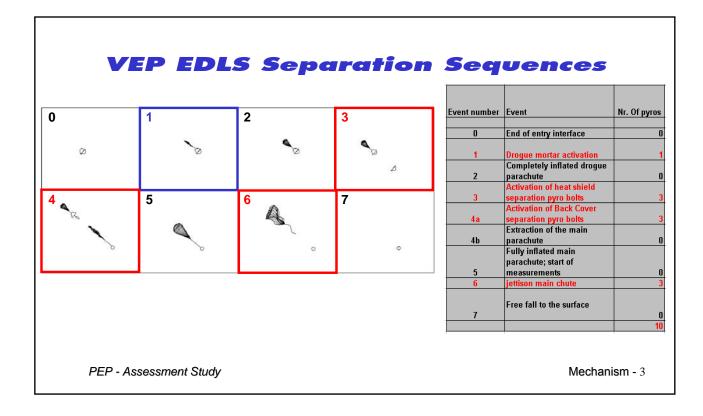


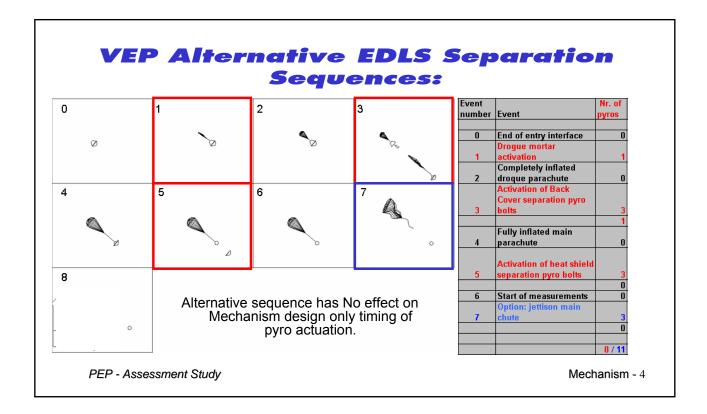


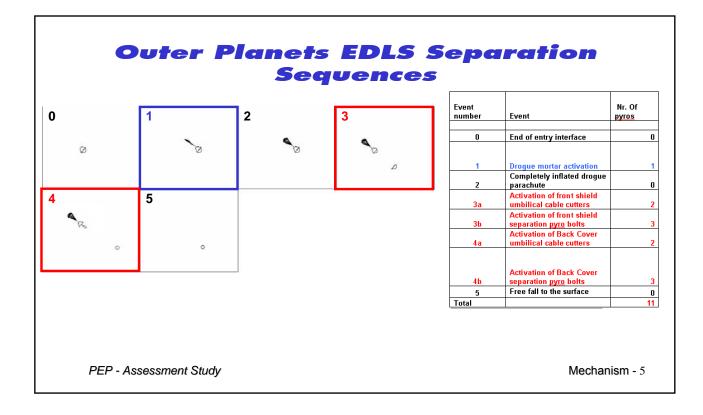


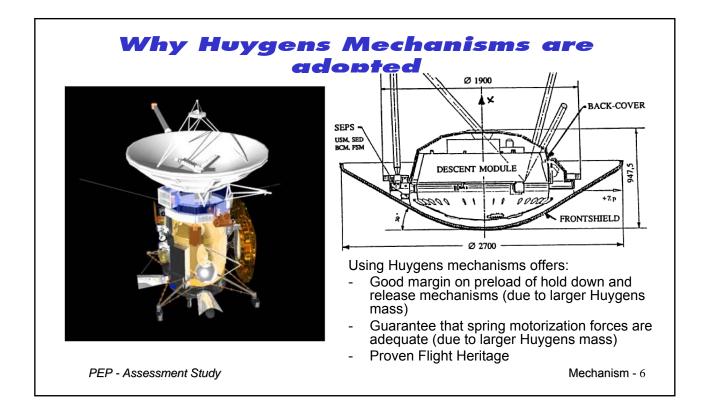


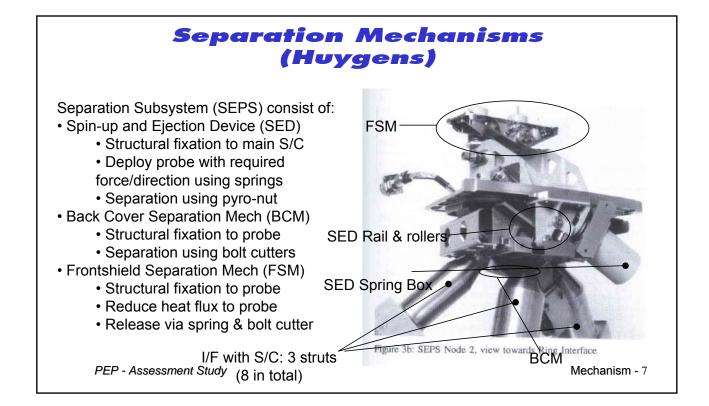


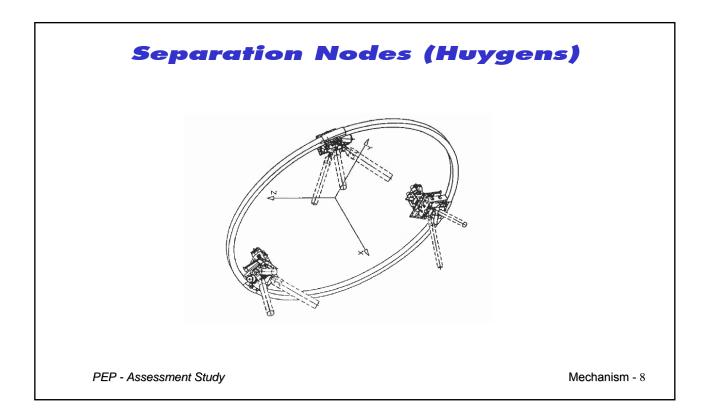

							Unit mass with margin
	Nr.	Item mass	M_struct	Material	Maturity	Unit Margin	[kg]
Item		[kg]	[kg]			[%]	[kg]
FS - cold structure	1	7.495	7.50	sandwich	New dev.	20	8.99
FS - IF bracket	3	1.323	1.32	TITANIUM	New dev.	20	1.59
BS - cold structure	1	4.047	4.05	sandwich	New dev.	20	4.86
BS - DM - IF - bracket	3	1.323	1.32	TITANIUM	New dev.	20	1.59
BS - ribs (mortar support)	3	1.000	1.00	TITANIUM	New dev.	20	1.20
DM - upper shell	1	18.711	18.71	TITANIUM	New dev.	20	22.45
DM - lower shell	1	18.711	18.71	TITANIUM	New dev.	20	22.45
DM - connection ring	1	5.665	5.66	TITANIUM	New dev.	20	6.80
DM - mounting platform	1	1.034	1.03	sandwich	New dev.	20	1.24
DM - main parachute support structure	3	1.679	1.68	TITANIUM	New dev.	20	2.01
miscellaneous	1	5.000	5.00	TITANIUM	New dev.	20	6.00
11			76.64			20.0	91.97

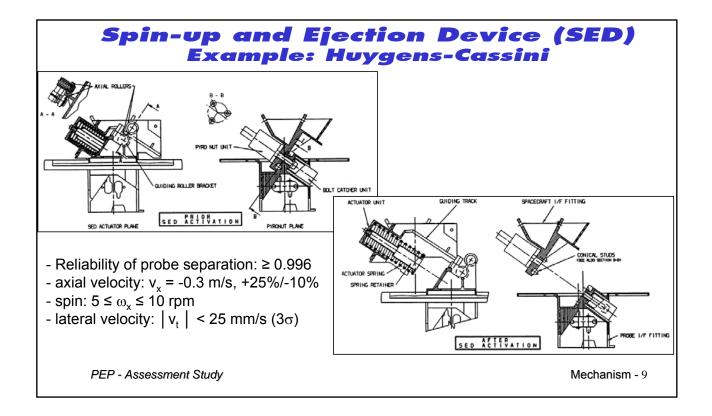


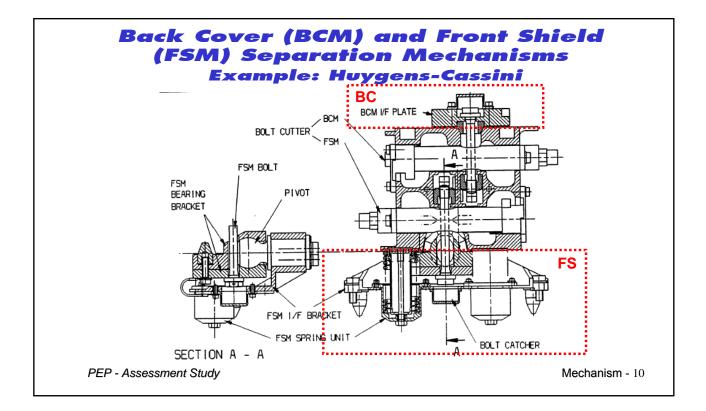




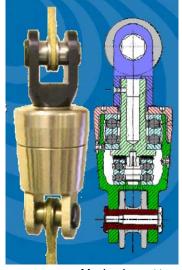








Parachute Jettison Mechanism (PJM) and Main Parachute Swivel (MPS) Example: Huygens-Cassini


PJM:

PEP - Assessment Study

MPS:

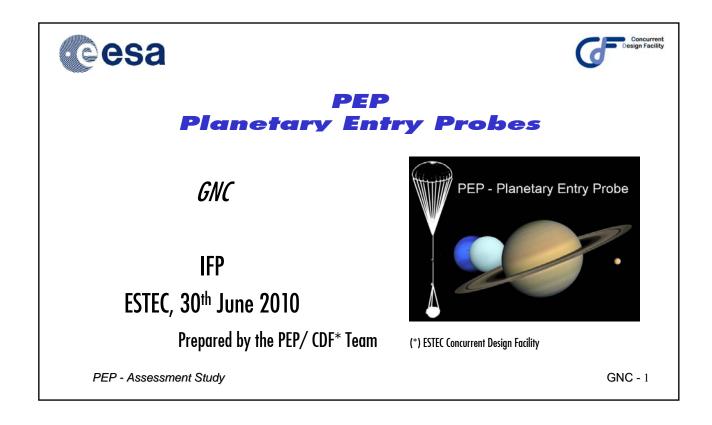
- Redundant main thrust bearings
 Redundant preload
- bearings
- MoS₂ Coating on races - TiC and MoS₂ coating
- on balls

Mechanism - 11

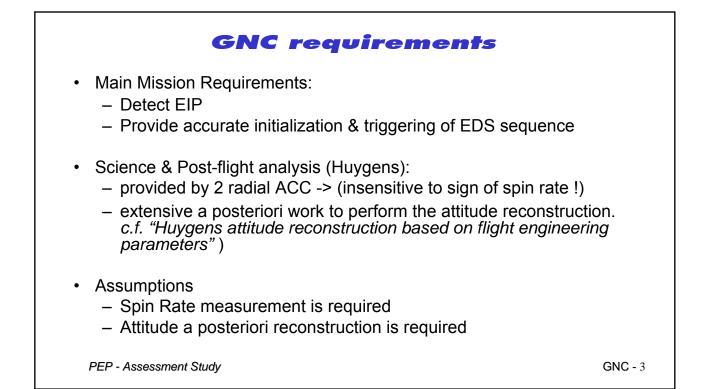
• • • • • • • • • • • • • • • • • • • •	ss 325 kg > VEP	mass 2	35 ka			
				S Ø 1.25 m		
-					-	
utton above to insert	Part of custom subsystem	Quantity	Mass per quantity excl. margin	Maturity Level	Margin	Total Mass incl. margir
SED, FSM & BC I/F		3	1.3	To be modified	10	4.3
separation		3	0.8	To be modified	10	2.6
separation		3	0.3	To be modified	10	1.1
lettison mech'sm		3	0.3	To be modified	10	0.8
		4	0.3	To be modified		1.1
		1	0.5	To be modified	10	0.5
	w unit	_				
					10.0	10.4
	Juit Name utton above to insert new unit SED, FSM & BC I/F I separation separation lettison mech'sm r nute swivel tton below to insert new TOTAL	- Part of custom subsystem SED, FSM & BC I/F separation separation Idettison mech'sm r nute swivel tton below to insert new unit TOTAL	Juit Name Part of custom Subsystem Quantity subsystem SED, FSM & BC I/F 3 I separation 3 separation 3 lettison mech'sm 3 r 4 hute swivel 1 tton below to insert new unit	Jait Name Part of custom subsystem Quantity Mass per quantity Juit nabove to insert new unit Part of custom subsystem Quantity Mass per quantity SED, FSM & BC I/F 3 1.3 Iseparation 3 0.8 separation 3 0.3 lettison mech'sm 3 0.3 r 4 0.3 nute swivel 1 0.5 tton below to insert new unit 6 9.5	Unit Name Part of custom subsystem Quantity Mass per quantity excl. margin Maturity Level SED, FSM & BC I/F 3 1.3 To be modified separation 3 0.8 To be modified separation 3 0.3 To be modified r 4 0.3 To be modified nute swivel 1 0.5 To be modified TOTAL 6 9.5 9.5	Jnit Name Part of custom subsystem Quantity Mass per quantity excl. margin Maturity Level Margin SED, FSM & BC I/F 3 1.3 To be modified 10 I separation 3 0.8 To be modified 10 Jettison mech'sm 3 0.3 To be modified 10 r 4 0.3 To be modified 10 nute swivel 1 0.5 To be modified 10

	SEP Mass budget and list of equipments								
Element 1	-		MASS [kg]						
Unit	Unit Name	Part of custom	Quantity	Mass per	Maturity Level	Margin	Total Mass		
	Click on button above to insert	subsystem		quantity			incl. margir		
	new unit			excl. margin					
1	Probe, incl. SED, FSM & BC I/F		3	1.3	To be modified	10	4.3		
2	Front shield separation		3	0.8	To be modified	10	2.6		
3	Back cover separation		3	0.3	To be modified	10	1.1		
4	Cable cutter		4	0.3	To be modified	10	1.1		
-	Click on button below to insert new UBSYSTEM TOTAL	v unit	4	8.3		10.0	9.1		
3	UBSTSTEM TOTAL		4	0.J		10.0	9.1		

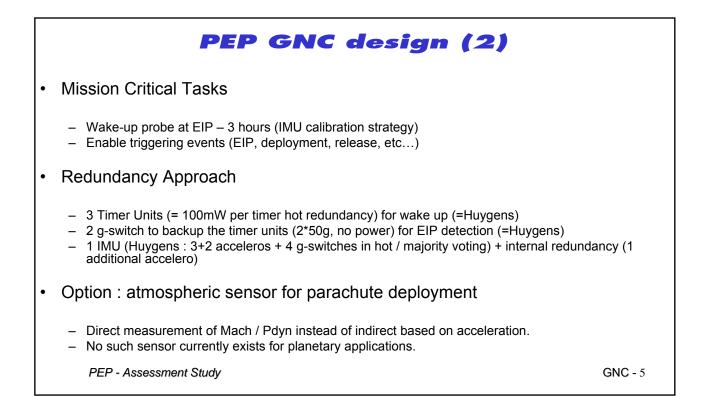
UEP and NEP Mass budget and list of equipments

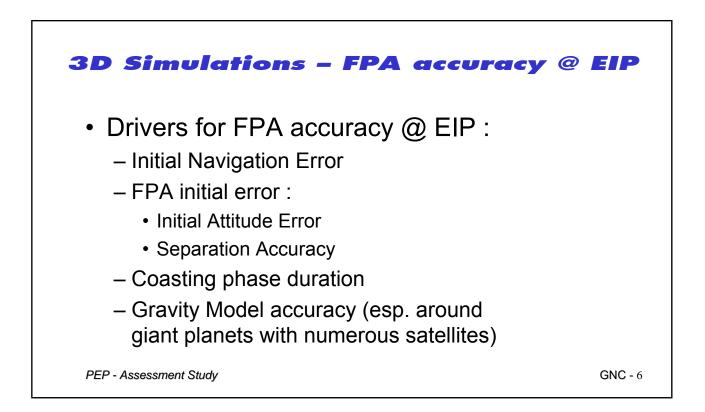

Element 1	-				MASS [kg]	
Unit	Unit Name	Part of custom subsystem	Quantity	Mass per quantity	Maturity Level	Margin
	Click on button above to insert new unit	Subsystem		excl. margin		
1	Probe, incl. SED, FSM & BC I/F		3	1.3	To be modified	10
2	Front shield separation		3	0.8	To be modified	10
3	Back cover separation		3	0.3	To be modified	10
4	Cable cutters		4	0.3	To be modified	10
5	Drogue Parachute Swivel		1	0.5	To be modified	10
-	Click on button below to insert new	w unit				
SU	JBSYSTEM TOTAL		5	8.7		10.0

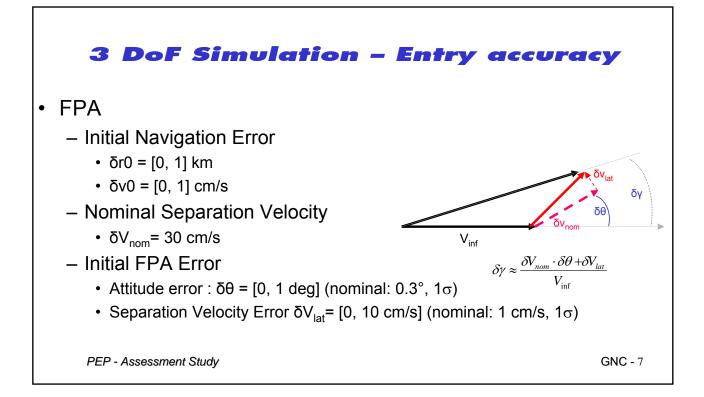
PEP - Assessment Study

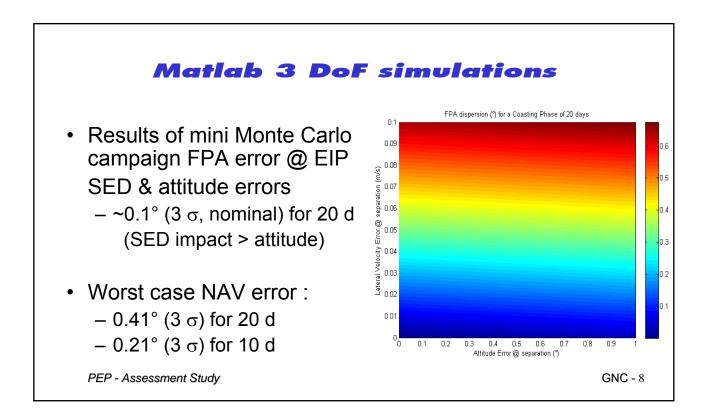

Mechanism - 14

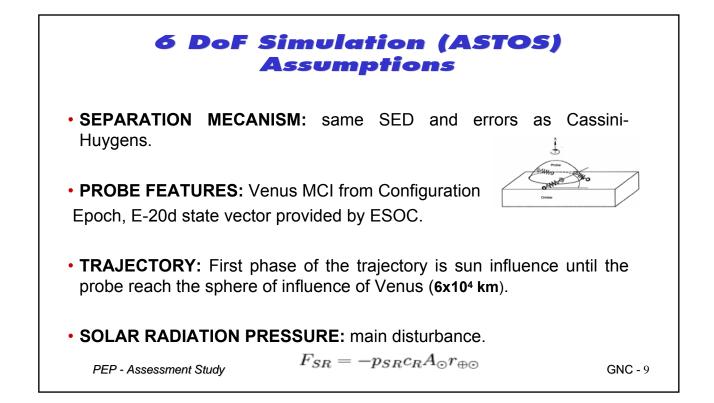
	Nr. Of	Nr. of ESI (2	Per ESI (European Star Initiator) Unit (2x Pyro):
Mechanism	pyros	per Pyro)	E=0.15 J total energy
Drogue Deployment	1	2	T = 10 ms max peak du P= E/t= 15W average po
Front shield Separation	5	10	I = 5 A initiation current
Back cover Separation	5	10	
Main Parachute Jettison	3	6	
<u>Total</u>	<u>14</u>	28	N.B: Separation from
			S/C: firing of 3 pyros included in Orbiter po budget

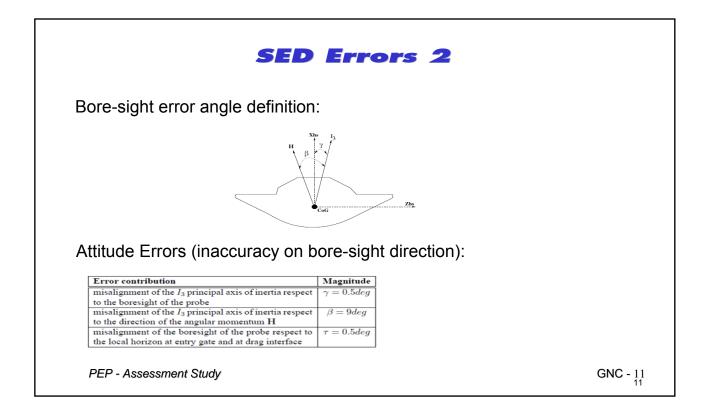

				Per ESI (European Standarc Initiator) Unit (2x Pyro):
	Mechanism	Nr. Of pyros	Nr. of ESI (2 per <u>Pyro</u>)	E=0.15 J total energy T = 10 ms max peak duratio
	Drogue Deployment	1	2	P= E/t= 15W average power I = 5 A initiation current
	Front shield Separation	5	10	
	Back cover Separation	5	10	
	<u>Total</u>	11	22	
				N.B: Separation from the S/C: firing of 3 pyros to be included in Orbiter power budget
P.	- Assessment Study			Mechanism - 16

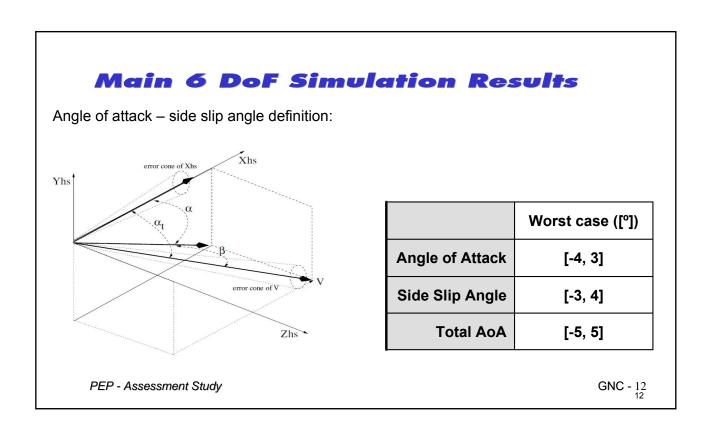


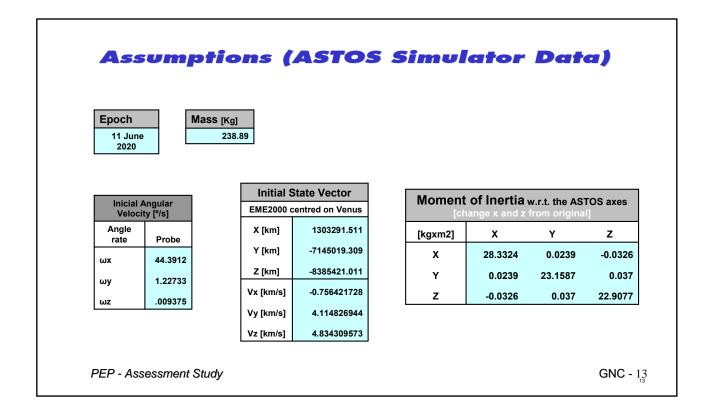

PEP GNC Results	
 Requirements & design drivers Passive attitude control (spin-stabilized Entry, no powered of Limited GNC role: triggering events, trajectory reconstruction SED performance & coasting phase duration 	,
 Baseline Design GNC equipment list and trade-offs 	
 Simulations Probe ejection accuracy (3 DoF) Coasting disturbance analysis (6 DoF) 	
PEP - Assessment Study	GNC - 2

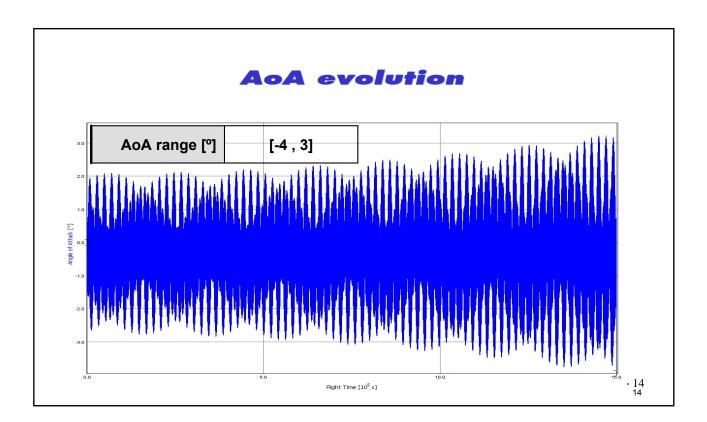


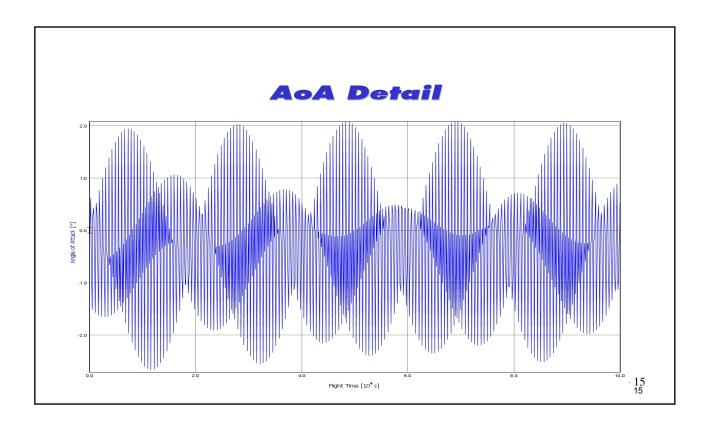

PEP GNC design (1)	
 Trade-offs : Radial Accelerometers (Huygens like) (+) radial accelerometers = mass effective (~80 g per accelero) (-) only 1-axis angular rate sensing (spin axis) (-) spin rate sign is unknown IMU (JEP-like) (+) 3-axis attitude and angular rate knowledge during all entry & descent (-) mass : 750g for LN200S (-) power : 12W for LN200S (TBD for European IMU) Baseline GNC equipment: IMU LN200-S incl. 3 gyroscopes (1°/hr) & 3 acceleros (300µg, range > 70g). TRL 7. Alternative : European IMU (based on SEA MEMS gyroscope) (10°/hr)– feasibility study on-going (TRP). TRL 3-4. 	
PEP - Assessment Study	GNC - 4

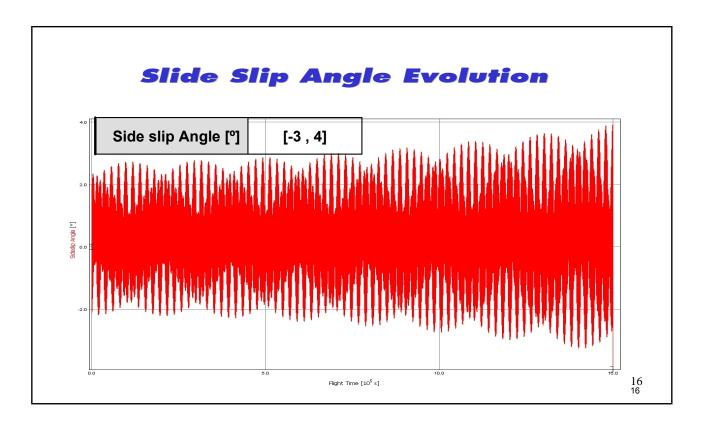


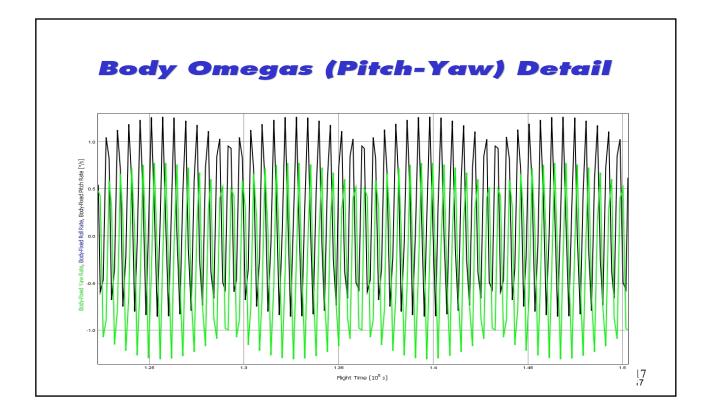


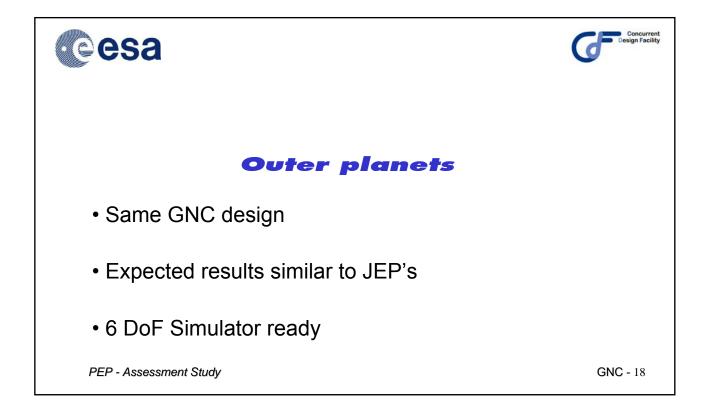


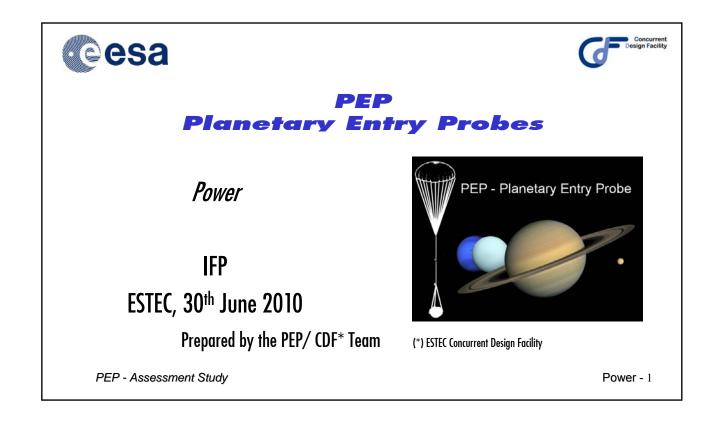


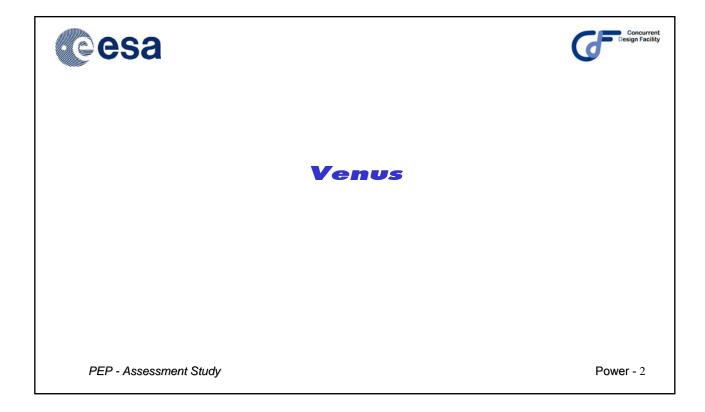

SED	Errors 1		
/ Orbiter plane Z axis			
Orbiter/Probe interface pl	ane axi		
Separation mechanism release a			
ν γ η	Errors on the dire		
	Error contribution	Direction	Magnitude
	Compound spacecraft state vector accuracy at separation time	$\pi = 1.9 deg$	$\Delta V_{\pi} = 0.001 m/s$
	Interface plane between Cassini and Huygens	$\eta = 0.12 + 2.0 deg$., ,
	Separation mechanism mis- alignment	$\mu = 0.05 deg$	$\Delta V_{\mu} = 0.032m/s$
PEP - Assessment Study			10

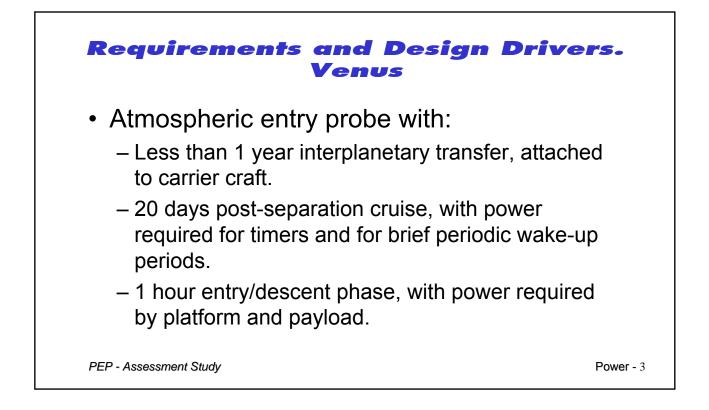


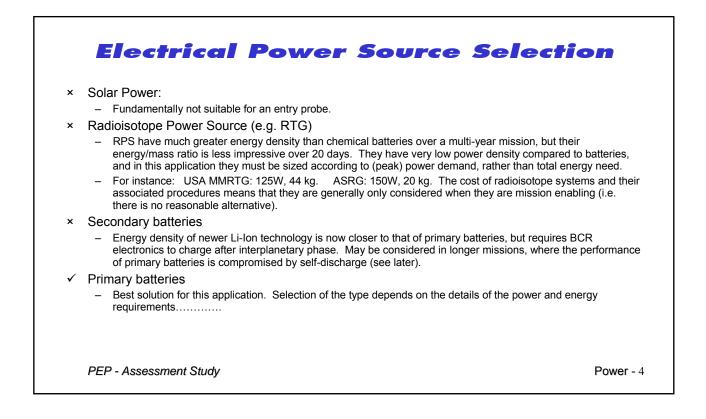




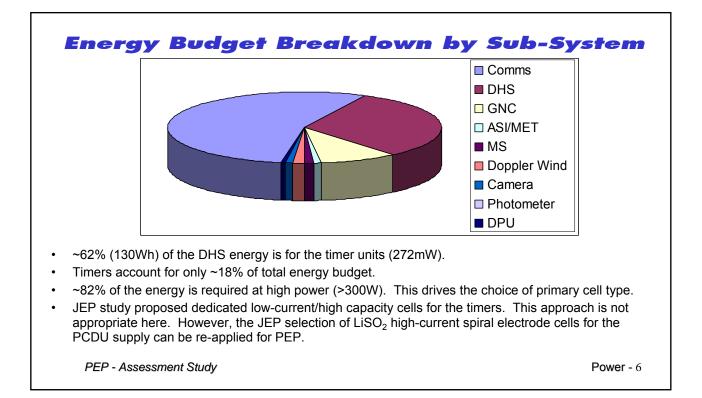


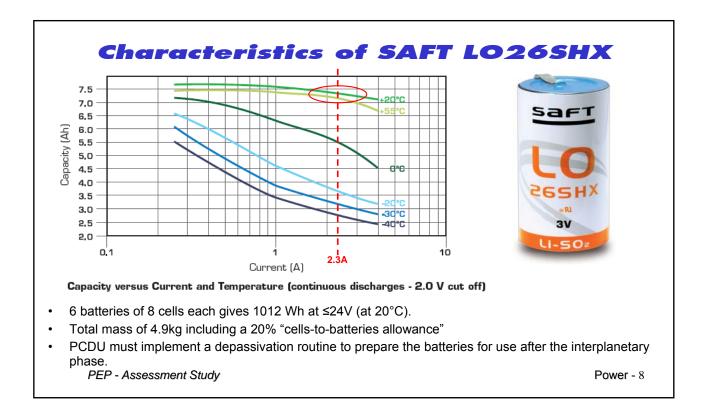


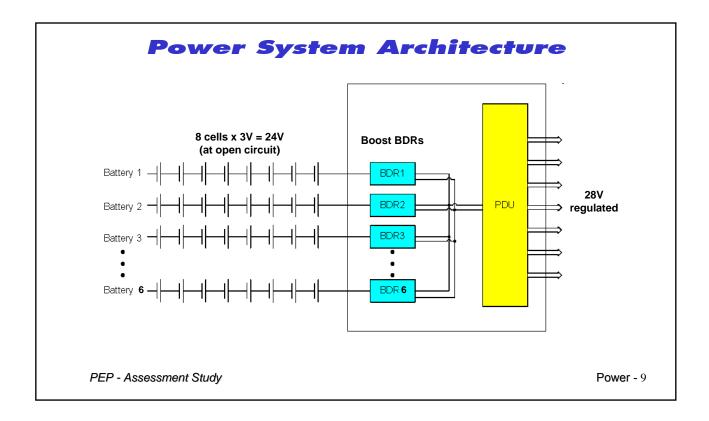




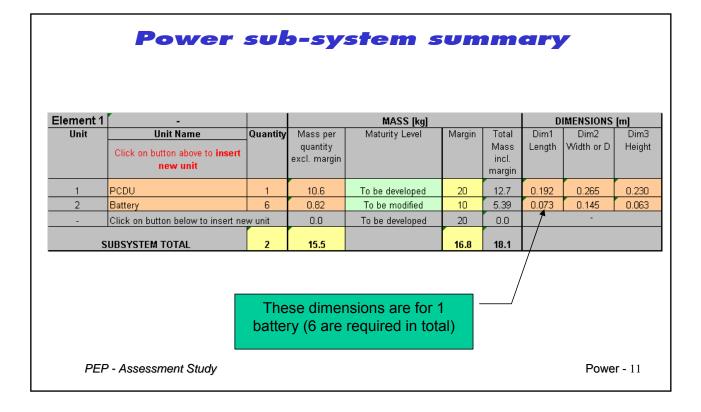
Element 1				MASS [kg]			
Unit	Unit Name Click on button above to insert new unit	Part of custom subsystem	Quantity	Mass per quantity excl. margin	Maturity Level	Margin	Total M incl. ma
1	Inertial Measurement Unit		1	0.750	To be modified	10	0.8
2	g-switch sensors		2	0.050	Fully developed	5	0.1
-	Click on button below to insert new	unit					
	SUBSYSTEM TOTAL		2	0.9		9.4	0.9

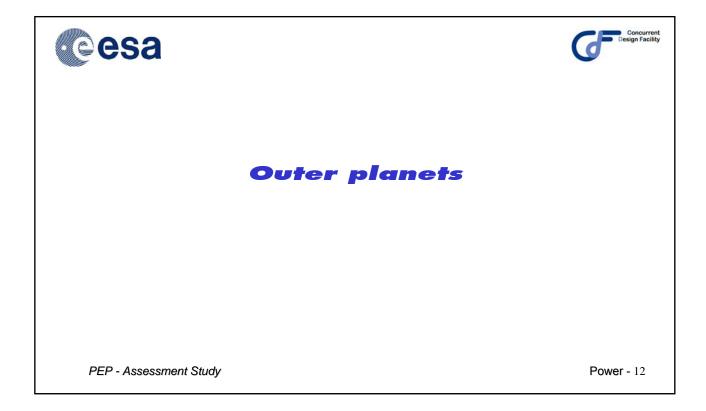


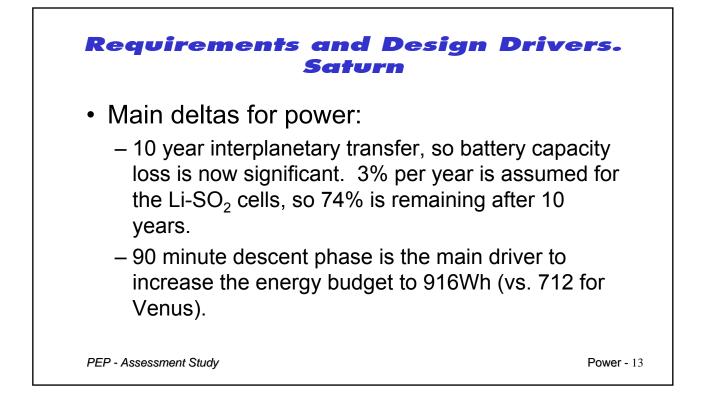


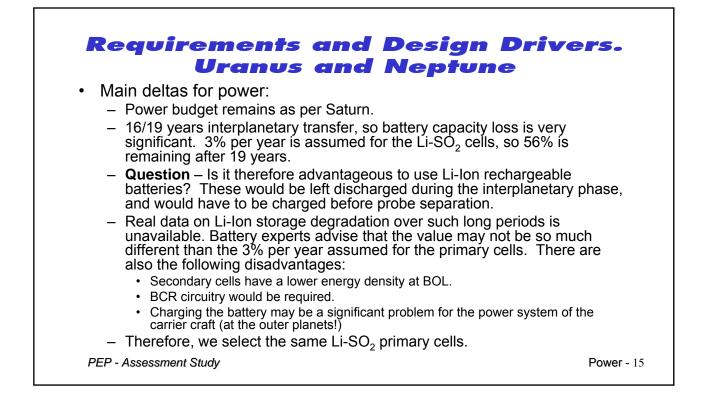


			Pov	vei	.		erg		Bu	Jd	get.			
		Comms	DHS	GNC	ASI/MET	MS	Doppler Wind	Camera	Photom eter	DPU	Harness (excl. PSS)	TOTAL CONSUMPTION	TOTAL CONSUMPTI ON INC. PCDU	Power Provided By
	Ppeak	linked 315 W	linked 0 W	linked 15 W	linked 10 W	linked 10 W	linked 18 W	linked 10 W	linked 2 W	linked 3 W	8 W	391 W	1	
	греак	515 44	UVV	10 44	10.44	10.44	10 44	10.44	2 99	3 44	0 99	331 1		
Coast Mode	Pon	45 W	19.672 W	15 W	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	2 W	81 W	86 W	
Coast Mode	Pstdby	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	
	Duty Cycle	0.22 %	1.97 %	0.63 %	0%	0 %	0 %	0%	0%	0 %				Battery
	Paverage	0.1 W	0.4 W	0.1 W	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0.01 W	0.6 W	0.6 W	
Tref 28800 min	Total Wh	47 Wh	- 186 Wh	45 Wh	0 Wh	0 Wh	0 Wh	0 Wh	_0 Wh_	0 Wh	6 Wh	284 Wh	299 Wh	
	Pon	15 W	19 W	15 W	0 W 0	٥w	0 W	0 W	0 W 0	0 W	1 W	50 W	53 W	
Entry Mode	Pstdby	ow	0 W	0 W	0W	0 W	0 W	0 W	0W		ow	0 W	0 W	
	Duty Cycle	0 %	100 %	100 %	0%	0%	0 %	0%	0%	0%				Battery
	Paverage	0 W 0	19 W	15 W	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0 W 0	0.69 W	35 W	37 W	1 - T
Tref 2 min	Total Wh	0.00 Wh	0.6 Wh	0 Wh	0 Wh	0 Wh	0 Wh	0 Wh	0 Wh	0 Wh	0 Wh	1 Wh	1 Wh	
	_													
Descent Mode	Pon	315 W	23 W	15 W	5 W	8 W 4 W	10 W 2 W	8 W	1 W	3 W	8 W	395 W 13 W	416 W 13 W	
	Pstdby Duty Cycle	0 VV 100 %	0 VV 100 %	0 VV 100 %	1 W 100 %	4 W 100 %	100 %	4 W 10 %	1 W 0.0 %	1 W 100 %	0 W	13 W	13 W	Battery
	Paverage	315 VV	23 W	15 VV	5 W	8 W	10 W	4 W	1 W	3 VV	7.68 W	392 W	412 W	Battery
Tref 60 min	Total Wh	315 Wh	23 Wh	15 Wh	5 Wh	8 Wh	10 Wh	4 Wh	1 Wh	3 Wh	8 Wh	392 Wb	412 Wh	
Wh TOTA	LS:	362 Wh	210 Wh	60 Wh	5 Wh	8 Wh	10 Wh	4 Wh	1 Wh	3 Wh	13 Wh	677 Wh	712 Wh]
Ρ	EP - Ass	essmei	nt Study										Powe	er - 5




Electrical cha	aracteristics		
Nominal capacit (at 1 A + 20°C)	r cells stored for one year or less) y 2.0 V cut off. The capacity restored by the cell varies rrent drain, temperature and cut off)	7.5 Ah	
Open circuit volt	age (at + 20°C)	3.0 V	Heritage: MEF
Nominal voltage	(at 0.8 A +20°C)	2.8 V	descent phase
	nmended continuous current eating. Higher currents possible, consult Saft)	4 A	
Pulse capability	: Typically up to 15 A.		
(The voltage rea the temperature	ings may vary according to the pulse characteristics, and the cell's previous history. Fitting the cell with a recommended in severe conditions. Consult Saft)		Saft
(The voltage rea the temperature	dings may vary according to the pulse characteristics, , and the cell's previous history. Fitting the cell with a	+ 30°C (+ 86°F) max - 60°C / + 85°C (-76°F / + 185°F)	Saft
(The voltage rea the temperature capacitor may b	dings may vary according to the pulse characteristics, , and the cell's previous history. Fitting the cell with a le recommended in severe conditions. Consult Saft) (recommended) (possible without leakage)	-60°C / +85°C [-7 6°F / +485°E] -60°C / +70°C	Saft
(The voltage rea the temperature capacitor may b Storage Operating tempe	dings may vary according to the pulse characteristics, , and the cell's previous history. Fitting the cell with a le recommended in severe conditions. Consult Saft) (recommended) (possible without leakage)	-60°C / +85°C (-76° F / +185°E)	
(The voltage rea the temperature capacitor may b Storage Operating tempe	dings may vary according to the pulse characteristics, , and the cell's previous history. Fitting the cell with a le recommended in severe conditions. Consult Saft) (recommended) (possible without leakage) arature range as up to +85°C possible at currents below 1 A)	-60°C / +85°C [-7 6°F / +485°E] -60°C / +70°C	
(The voltage rea the temperature capacitor may b Storage Operating tempo (Short excursion	dings may vary according to the pulse characteristics, , and the cell's previous history. Fitting the cell with a le recommended in severe conditions. Consult Saft) (recommended) (possible without leakage) arature range as up to +85°C possible at currents below 1 A)	-60°C / +85°C [-7 6°F / +485°E] -60°C / +70°C	eRI 3V
(The voltage rea the temperature capacitor may b Storage Operating temper (Short excursion Physical char Diameter (max)	dings may vary according to the pulse characteristics, , and the cell's previous history. Fitting the cell with a le recommended in severe conditions. Consult Saft) (recommended) (possible without leakage) arature range as up to +85°C possible at currents below 1 A)	-60°C / +85°C [-76°F / +195°F] -60°C / +70°C [-76°F / +158°F]	• FL

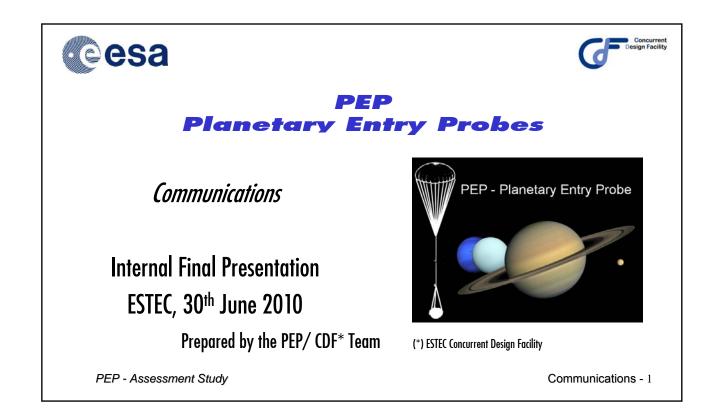



			P	DU			
TERMA generic Power System" of to estimate PCD – It is assumed th unit can be mod BDR unit of sim	comp U siz nat a ⁻ dified	oonents e & ma TERMA into a d	s used ass. BCDR	A REAL			
Module/PCB		bility per odule	Number of modules Required	Weight per module [Kg]	Total Weight [Kg]		Mass: 10.6 kg
Module/PCB BDR (2 per board)		odule	modules	module	[Kg]	•	Mass: 10.6 kg
	M 225	odule	modules	module [Kg]	[Kg] 1.65 0.7	•	Mass: 10.6 kg Dimensions:
BDR (2 per board)	225 22 32	odule W required lines 1.5A	modules Required 3 2	module [Kg] 0.55	[Kg]	•	Dimensions:
BDR (2 per board) Command Module	225 22 32	odule W required	modules Required 3 2	module [Kg] 0.55 0.35	[Kg] 1.65 0.7	•	U
BDR (2 per board) Command Module Distribution Module 1.5A	225 2 32 16	odule W required lines 1.5A	modules Required 3 2	module [Kg] 0.55 0.35 0.55	[Kg] 1.65 0.7 0.55 0.55 0.5	•	Dimensions:
BDR (2 per board) Command Module Distribution Module 1.5A Distribution Module 5A	225 2 32 16	odule W required lines 1.5A lines 5A	modules Required 3 2	module [Kg] 0.55 0.35 0.55 0.55	[Kg] 1.65 0.7 0.55 0.55	•	Dimensions:
BDR (2 per board) Command Module Distribution Module 1.5A Distribution Module 5A Pyro Control	225 2 32 16	odule W required lines 1.5A lines 5A	modules Required 3 2 1 1 1 1	module [Kg] 0.55 0.35 0.55 0.55	[Kg] 1.65 0.7 0.55 0.55 0.5	•	Dimensions:

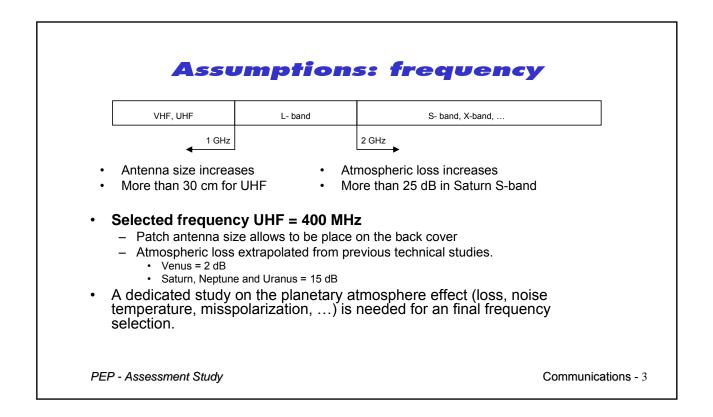
	Power	r su	ubsy	stem ·	- 50	atu	rn		
•	Battery – Cell selecti proposed, each com connected to BDRs i PCDU – Same archit 1/6 th of the power sys Long transfer phase	prising n pairs tecture stem is	g 7 cells ir s. e as Venu s redunda	n series. Thes us, 6 BDRs. ant.	e are p	ackag	jed an	d	n
-	is essential. This sho	ould no	ot be a pr	oblem – expe	rience	from h	Huyge	ns	
ement	is essential. This she	ould no	ot be a pr	oblem – expe	rience	from H	Huyge		
lement Unit	is essential. This sho		ot be a pr	MASS [kg]	rience	from H	Huyge	ns	
	is essential. This sho	ould no	ot be a pr	oblem – expe MASS [kg]	rience	from H	luyge D	IMENSIONS	[m]
	is essential. This sho 1 - Unit Name Click on button above to insert	ould no	ot be a pr Mass per quantity	oblem – expe MASS [kg]	rience	from H	Huygei	IMENSIONS	[m] Dim3
	is essential. This sho <u>Unit Name</u> Click on button above to insert new unit	ould no	Mass per quantity excl. margin	MASS [kg] Maturity Level	Margin	from H Total Mass incl. margin	Huyge Dim1 Length	IMENSIONS Dim2 Width or D	[m] Dim3 Height
Unit 1	is essential. This sho 1	Quantity	Mass per quantity excl. margin	To be developed	Margin 20	from F Total Mass incl. margin	Dim1 Length	IMENSIONS Dim2 Width or D	[m] Dim3 Height 0.230

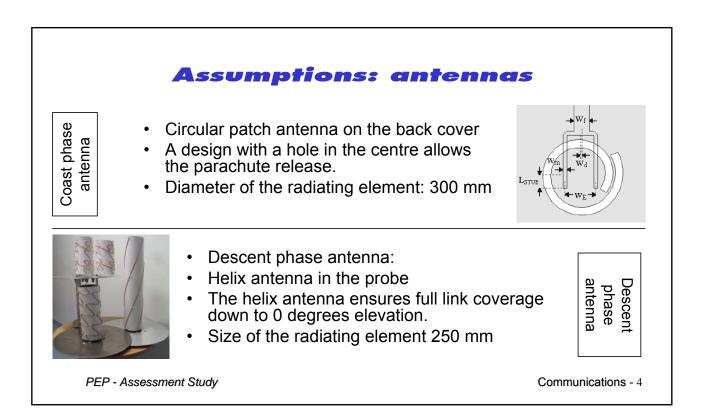
	Power su	bs	yste	- U	rai	IUS		nd	
			Nep	tune					
	Battery –12 batteries are packaged and co PCDU – Same archit 1/6 th of the power sys	ecture	as Venu	s, 6 BDRs.	ng 9 c	ells in	series	. These	
	Long transfer phase i separation is essentia Huygens	means	that batt is should	ery depassiva not be a probl	tion be em – e	efore p experie	orobe ence fr	om	
	Long transfer phase is separation is essentia Huygens	means	s that batt is should	not be a probl	tion be em – e	efore p experie	ence fr		ſm]
•	Long transfer phase is separation is essentia Huygens	means	is should	ery depassiva not be a probl MASS [kg] Maturity Level	tion be em – e	Total Mass incl. margin	ence fr	OM IMENSIONS Dim2 Width or D	[m] Dim3 Height
• Element 1	Long transfer phase is separation is essentia Huygens Unit Name Click on button above to insert	means al. Thi	is should Mass per quantity	not be a probl	em – 6	Total Mass incl.	ence fr	MENSIONS Dim2	Dim3
• Element 1	Long transfer phase is separation is essentia Huygens Unit Name Click on button above to insert new unit	means al. Thi Quantity	Mass per quantity excl. margin	not be a probl MASS [kg] Maturity Level	em — 6	Total Mass incl. margin	Dim1 Length	MENSIONS Dim2 Width or D	Dim3 Height
• Element 1 Unit	Long transfer phase is separation is essentia Huygens Unit Name Click on button above to insert new unit PCDU	means al. Thi Quantity	Mass per quantity excl. margin	NOT be a probl MASS [kg] Maturity Level To be developed	em – e ^{Margin}	Total Mass incl. margin 12.7	Dim1 Length	MENSIONS Dim2 Width or D 0.265	Dim3 Height 0.230

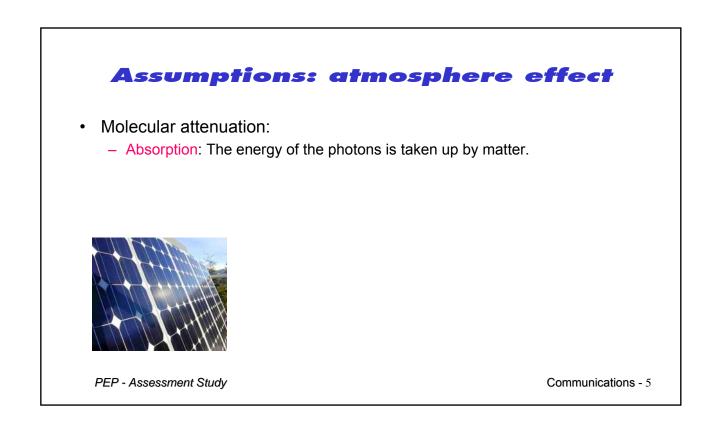
RHU aspects

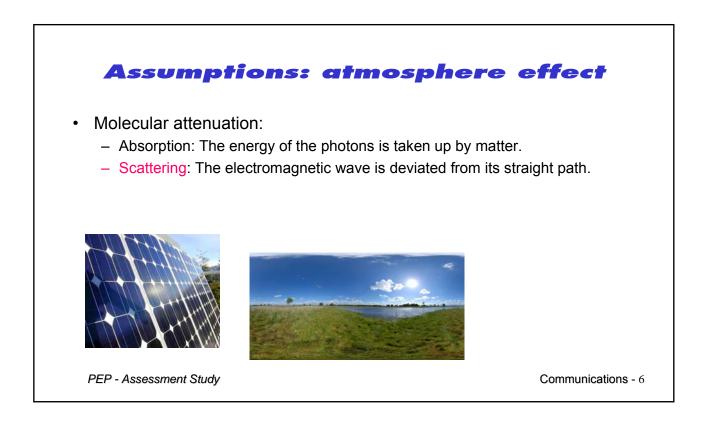

- RHUs are not baselined for the PEP design, but we should consider the option and the potential impacts if they are required:
- RHU:
 - USA LWRHU may be available if NASA is a partner. 1W output, 40g, 32 x 26mm.
 - Russian Angel RHU may be purchased this option was examined for Exomars. 8.5W, 180g, 40 x 60mm.
 - ESA nuclear power roadmap aims to have a European RHU at TRL 6 by 2016.
- Mech interface:
 - Both designs are plain cylinders, and some form of holder(s) needs be included in the spacecraft design. Add 50% of the RHU mass?
 - Spacecraft design can be significantly driven by the requirement for RHU installation on the launchpad.

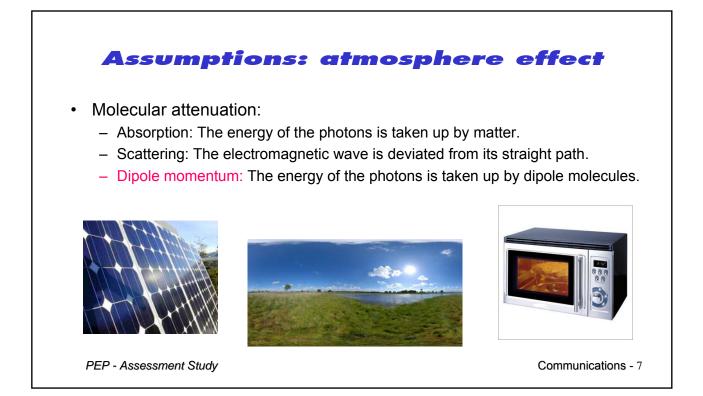
Launch safety approval:

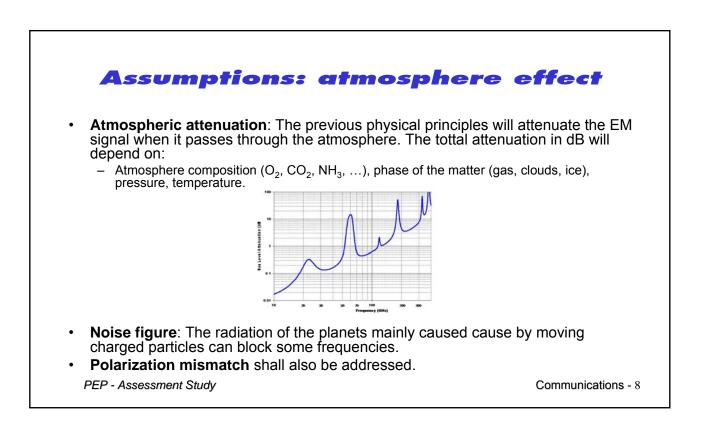

 A major project in itself. If USA LWRHU are used with a USA launch, then the risk is reduced due to prior experience. Likewise for Russian Angel RHU with a Russian launch.

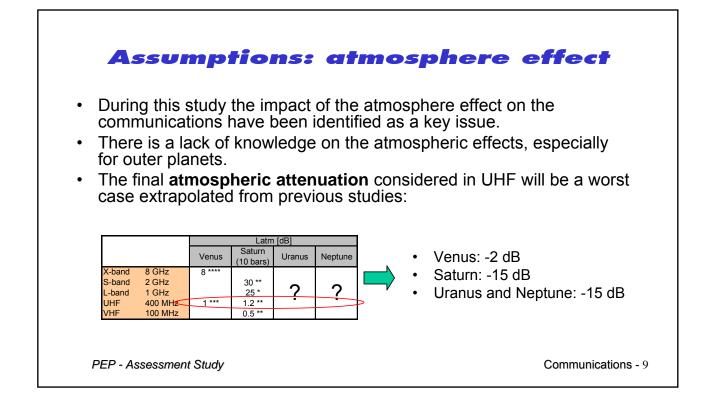

PEP - Assessment Study

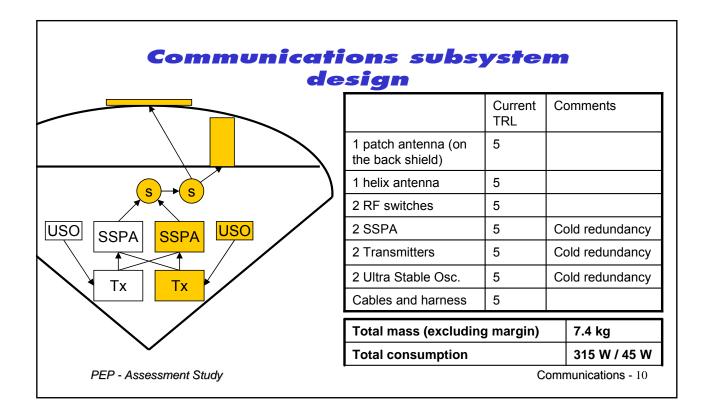

Power - 17

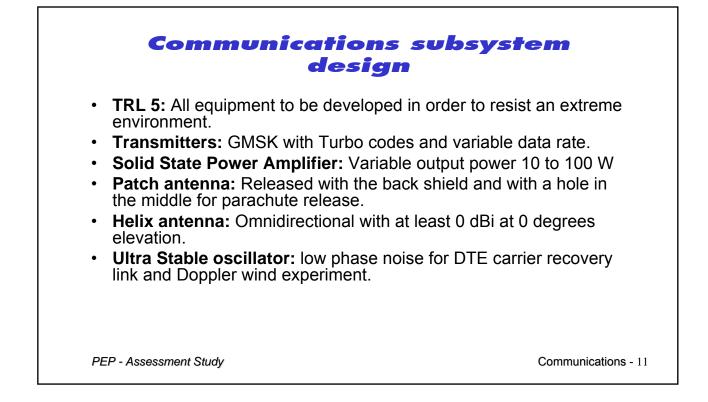


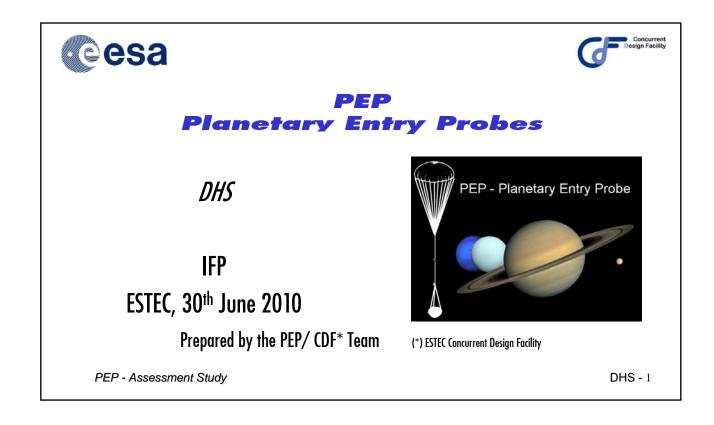

Require	ments
 Telecommands link (carrier to probe) is not required. During coast phase the telemetry link shall be available during one hour over 20 days (power ON duty cycle = 0.2%). During descent phase the telemetry link shall be able to transmit real time data at 2kbps. The probe shall be able to transmit telemetry at elevations higher than zero degrees 	No TC 2 kbps DTE? DTE?
PEP - Assessment Study	Communications - 2



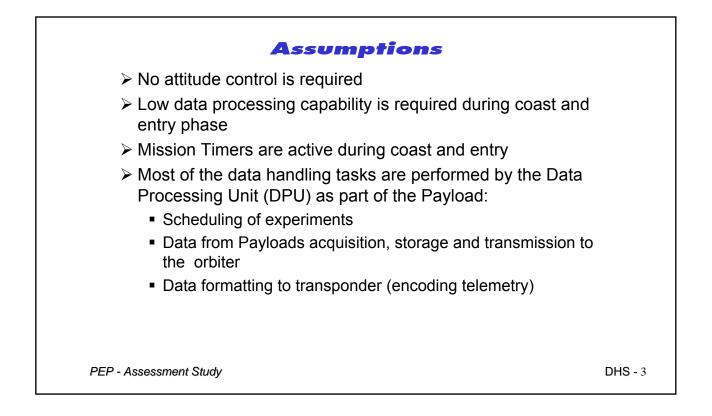


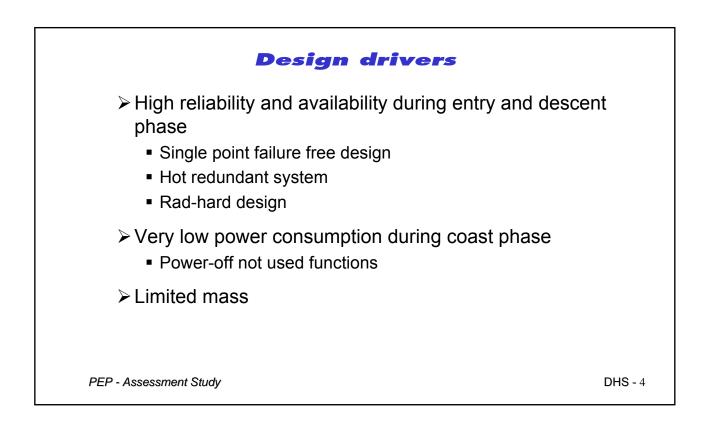


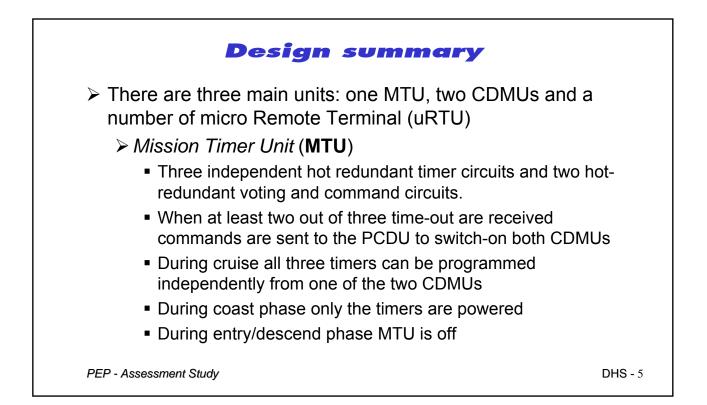


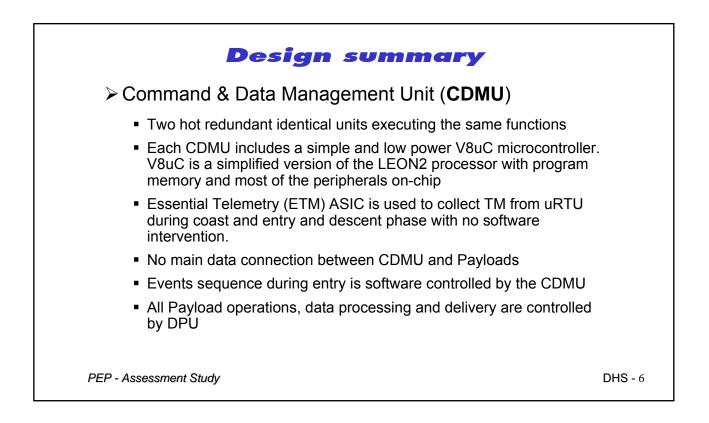

		99	et te	elei	ne	try	rel	ay
	Telemetry relay	Data rate	RF output power	Atm loss	Slant range	Rx antenna	•	
	Coast	[kbps] 0.2	[W] 10	[dB] 0	[km] 38000	[m]	[dB] 3.05	
Venus	Start of descent	0.2 2	100	0	38000	0.2	3.05 3.05	
>	End of descent	2	100	2	22000		5.80	
E	Coast	2	10	0	90000		3.07	
Saturn	Start of descent	2	100	0	90000	1.5	13.07	
ů.	End of descent	2	100	15	60000		1.59	
IS	Coast	2	10	0	100000		2.15	
Uranus	Start of descent	2	100	0	100000	1.5	12.15	
2	End of descent	2	100	15	40000		5.11	
ne	Coast	2	10	0	80000		4.09	
Neptune	Start of descent	2	100	0	80000	1.5	14.09	
Ne	End of descent	2	100	15	25000		9.19	

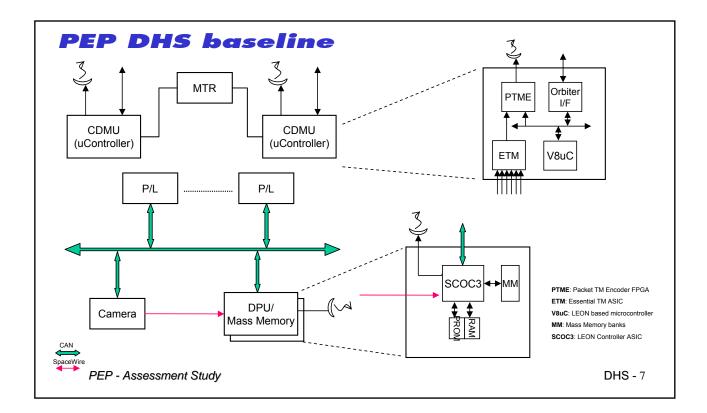
	nk bu	dge	+ D1		cari	rier	r recovery
	Carrier Recovery DTE	RF output power	Atm loss	Slant range	Rx antenna	Link margin	
		[W]	[dB]	[AU]	[m]	[dB]	
S	Coast	10	0			6.91	Telemetry link also
ent	Start of descent	100	0	0.4	35	16.91	possible for Venus with SKA or VLBI
>	End of descent	100	2			14.91	
n.	Coast	10	0			-5.30	• 5 – 7 dB can be gained
atur	Start of descent	100	0	10	SKA	4.70	by using VLBI techniques.
ŝ	End of descent	100	15			-10.30	teeninques.
IS	Coast	10	0			-11.35	
anı	Start of descent	100	0	20	SKA	-1.35	
Ŀ	End of descent	100	15			-16.35	
ne	Coast	10	0			-15.21	
ptu	Start of descent	100	0	30	SKA	-5.21	
Ne	End of descent	100	15			-20.21	
	Neptune Uranus Saturn Venus	Since A coast and	Carrier Recovery DTERF output powerSTCoast10Start of descent100End of descent100Start of descent100Start of descent100Start of descent100Start of descent100Start of descent100End of descent100End of descent100Start of descent100Start of descent100Start of descent100Start of descent100End of descent100Start of descent100Start of descent100	Carrier Recovery DTERF output powerAtm lossgrueIW[dB]smallCoast100Start of descent1000End of descent1002Coast100End of descent1000Start of descent1000End of descent10015SmallCoast100Start of descent10015SmallCoast1000Start of descent10015SmallCoast1000Start of descent1000Start of descent1000SmallCoast100SmallCoast100SmallSmall00	Carrier Recovery DTERF output powerAtm loss rangeSlant rangeImageImageImageImageImageImageImageImageImageImageImageImageStart of descent10000.4End of descent1002ImageStart of descent100010End of descent10015ImageStart of descent100020Start of descent10015ImageEnd of descent1001520End of descent10015ImageEnd of descent100030Start of descent100030	Carrier Recovery DTERF output powerAtm lossSlant rangeRx antenna[W][dB][AU][m][dB][AU][m]Start of descent10000.4End of descent10020Start of descent10000.4End of descent100010Start of descent100010Start of descent100010End of descent100150Start of descent100020Start of descent100150Start of descent100155KAEnd of descent100020Start of descent10030SKAEnd of descent100030	Carrier Recovery DTEpower [W]Atm loss [dB]range [AU]antenna [m]margin [dB]groupCoast100[AU][m][dB]Start of descent10000.43516.91End of descent100214.9114.91Coast10010SKA4.70Start of descent10015-10.30-10.30Start of descent100020SKA4.70End of descent10015-11.35-16.35Start of descent10015-16.35-16.35Start of descent10015-16.35End of descent100030SKA-15.21Start of descent100030SKA-5.21

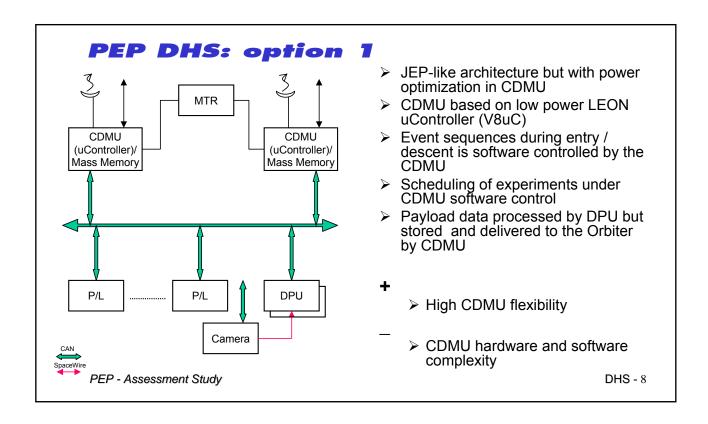

PEP - Assessment Study

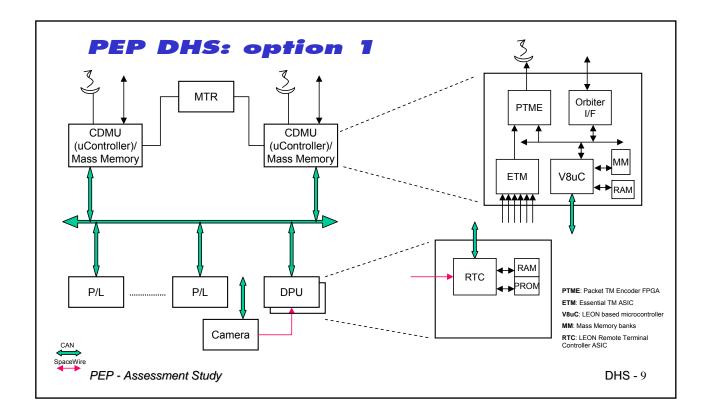

Communications - 13

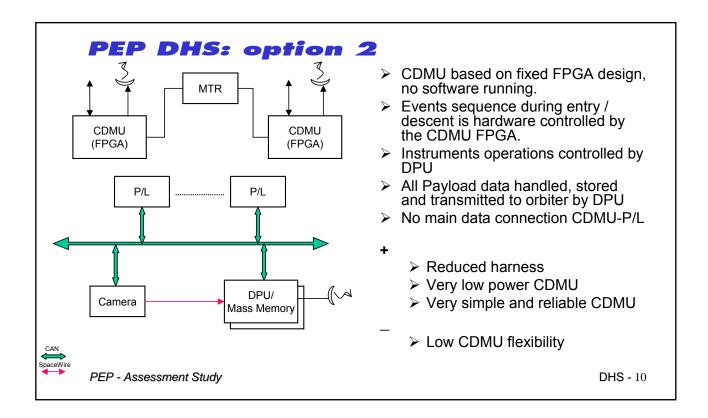

COL	nclusi	ons		
Atmosphere effect needs t Subsystem design: Flexible data return (2 kbps) and po Telemetry and carrier reco	e power ar ower consi	nd data ra umption (ate to opt > 300 W	imise the).
	Venus	Saturn	Uranus	Neptune
Telemetry relay	Venus OK	Saturn OK	Uranus OK	Neptune OK
Telemetry relay Carrier recovery DTE				

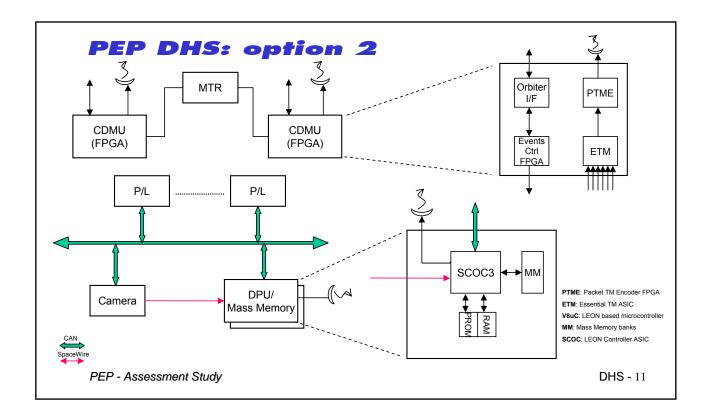


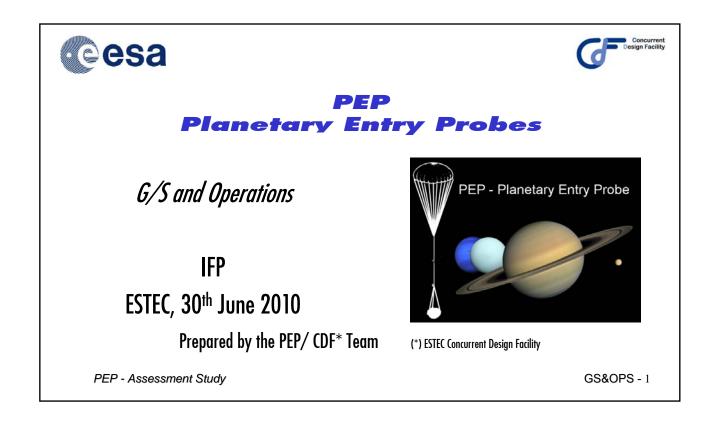

Requirements	
Pre-separation	
Probe DHS shall provide a connection with the Orbiter for periodic health check, DHS and DPU software patches, Missio Timers update	on
Coast	
Probe DHS shall be able to periodically wake up Communication system and GNC	
• Entry	
Probe DHS shall be in charge to control timing events (Parachute deployment etc.)	
Descent	
Probe DHS shall trigger the initial Payload DPU switch-on	
Probe DHS shall collect and transmit basic telemetry to the orbiter to indicate probe status and sequence phase	
PEP - Assessment Study	DHS - 2

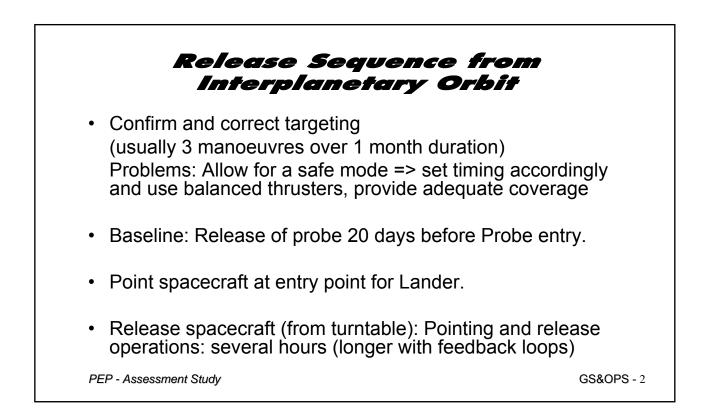


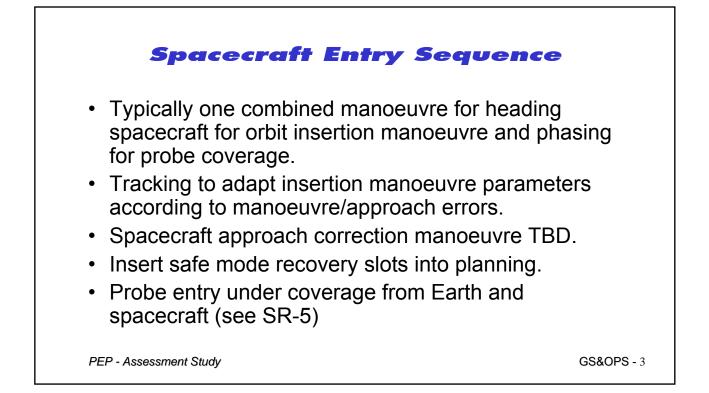


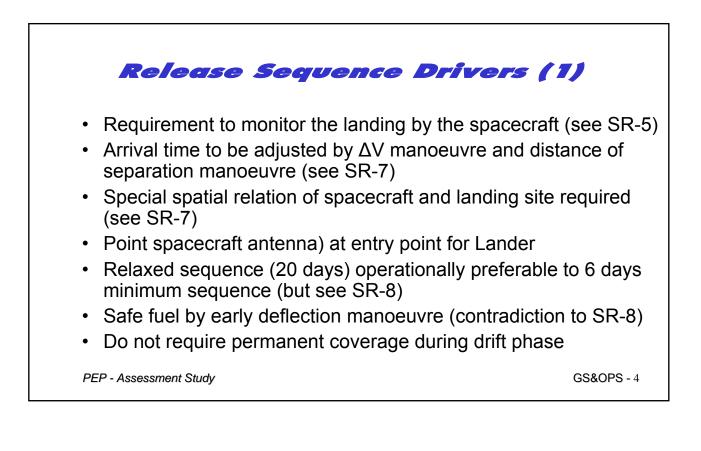


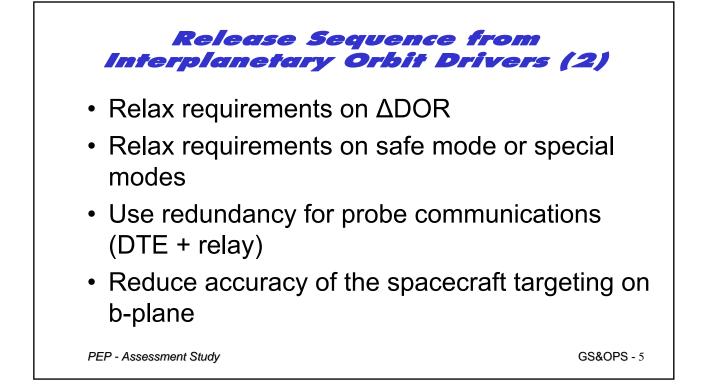


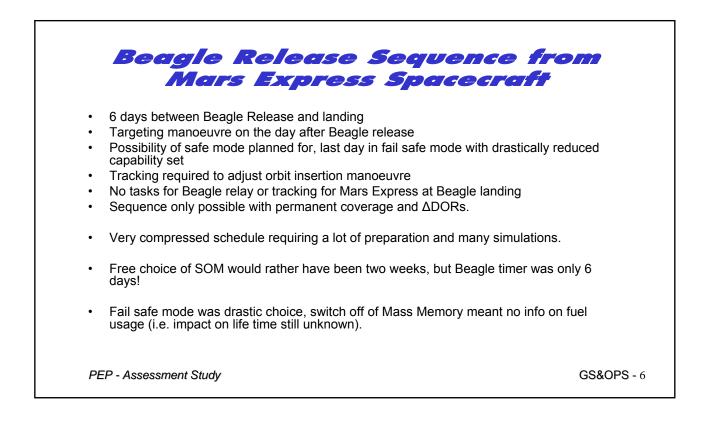


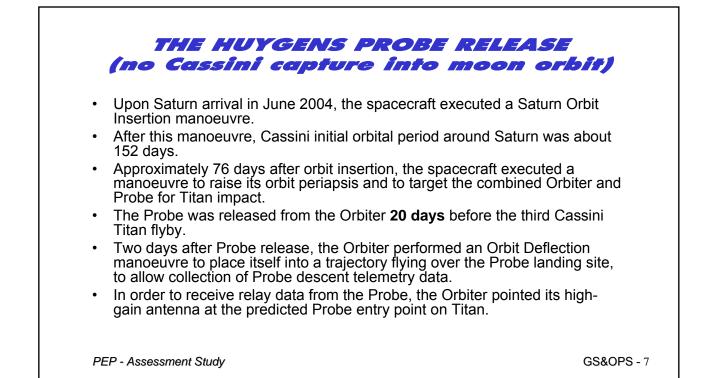


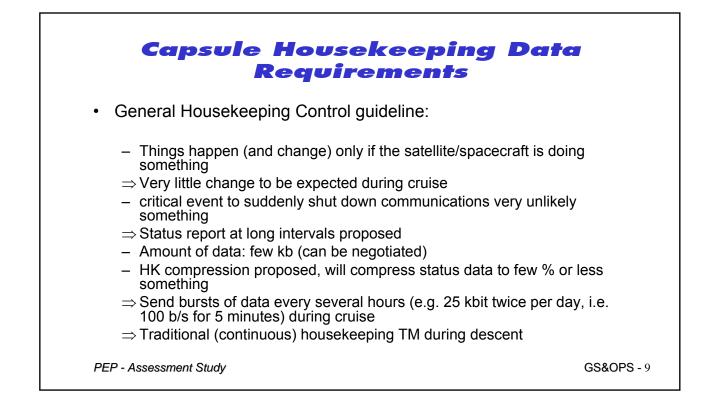


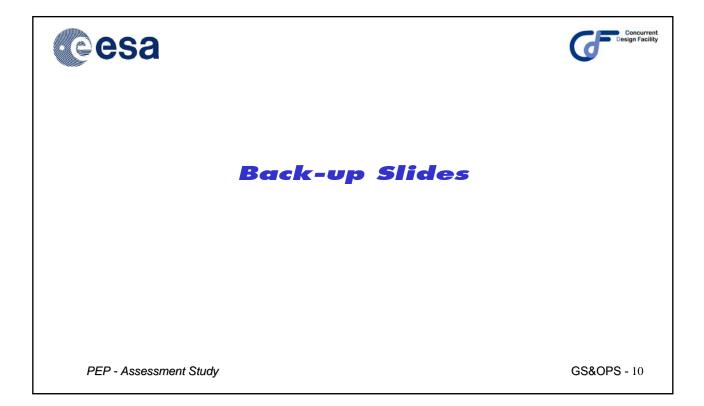



Mass											
iviass											
Elemen	4		_				_		ACC II	1	
Unit	Unit Name		Part of c	uctom	Quantity	Mass p	oor I	Maturity	ASS [kg	I Margir	II Total Mass
onit	Click on button above		subsys		Quantity	quanti excl. ma	ty	maturity	/ Level	Iviargi	incl. margir
	new unit						agin				
1	CDMU				2	3.4		To be m		10	7.5
2	MTU				1	2.3		To be de		20	2.8
3	URTU					0.2		To be m		10	1.3
	- 272222-2-5				6	0.2	_	TO De II	loumeu	10	1.0
-	Click on button below to		t		100			TO DE II	loumeu		
-	- 272222-2-5		t		3	10.3				12.2	11.6
	Click on button below to		t	-	3	10.3					
Element 1	Click on button below to SUBSYSTER	M TOTAL			3 D POWER SPI	10.3 CIFICATIO	N PER M	40DE		12.2	11.6
	Click on button below to SUBSYSTE		Quantity	Ppeak (3	10.3 CIFICATIO Coast			Entry Dc	12.2	
Element 1 Unit	Click on button below to SUBSYSTER ET CONSUMPTION Unit Name Click on button above to insert new unit CDMU	M TOTAL		Ppeak (3 D POWER SPI Coast Coast Pon Pstby 17.8 0.0	10.3 CIFICATIO Coast Dc 0.6	N PER M Entry Pon 17.8	10DE Entry Pstby 0.0	Entry Dc 100.0	Descent Pon 17.8	Descent Descent Pstby Dc 0.0 100.0
Element 1 Unit	Click on button below to SUBSYSTER Pr CONSUMPTION Unit Name Click on button above to insert new unit CDMU MTU	M TOTAL	Quantity 2	Ppeak (3 DPOWER SP Coast Coast Pon Pstby 17.8 0.0 0.3 0.0	10.3 CIFICATIO Coast Dc 0.6 100.0	N PER M Entry Pon 17.8 0.0	tODE Entry Pstby 0.0 0.0	Entry Dc 100.0 0.0	Descent Pon 17.8 0.0	Descent Descent Pstby Dc 0.0 100.0 0.0 0.0
Element 1 Unit	Click on button below to SUBSYSTER Per consumption Unit Name Click on button above to insert new unit CDMU MTU URTU	M TOTAL Part of custom subsystem	Quantity	Ppeak (3 D POWER SPI Coast Coast Pon Pstby 17.8 0.0	10.3 CIFICATIO Coast Dc 0.6	N PER M Entry Pon 17.8	10DE Entry Pstby 0.0	Entry Dc 100.0	Descent Pon 17.8	Descent Descent Pstby Dc 0.0 100.0
Element 1 Unit	Click on button below to SUBSYSTER Pr CONSUMPTION Unit Name Click on button above to insert new unit CDMU MTU	M TOTAL Part of custom subsystem	Quantity 2	Ppeak (3 DPOWER SP Coast Coast Pon Pstby 17.8 0.0 0.3 0.0	10.3 CIFICATIO Coast Dc 0.6 100.0	N PER M Entry Pon 17.8 0.0	tODE Entry Pstby 0.0 0.0	Entry Dc 100.0 0.0	Descent Pon 17.8 0.0	Descent Descent Pstby Dc 0.0 100.0 0.0 0.0





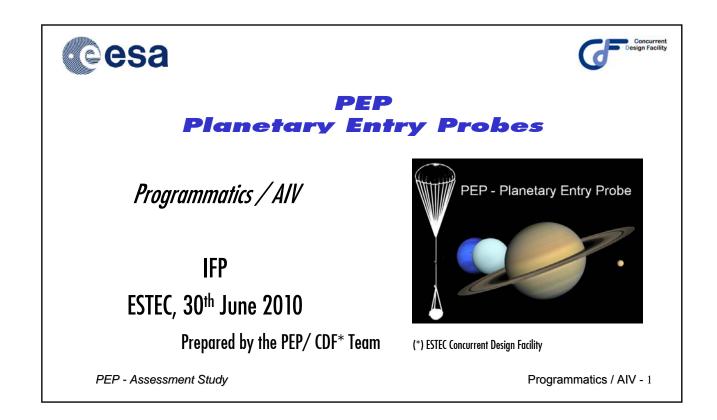


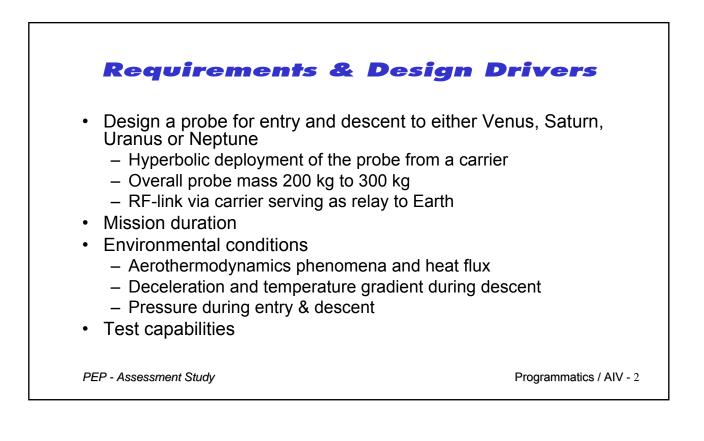

Possible	Sequences	Overview	Table

Sequence Type	Tracking Campaigns	Tracking Duration	Manoeuvre after day	Number of manoeuvres (TCR + touch up TBC)	Manoeuvre Duration (incl. pointing/ repointing)	Manoeuvre Calculation with tracking info	Wait for Manoeuvre Uplink	(Safe Mode) Recovery Slot	Total
	[number]	[days]	[days]	[number]	[hours]	[hours]	[hours]	[days]	[days]
Probe Release and Descent and Landing Communications	1	7	2	1	4	0	0	3	12
Probe Release and Descent and Landing Communications Correction Manuoevre	2	6	2	2	4	8	12	3	19

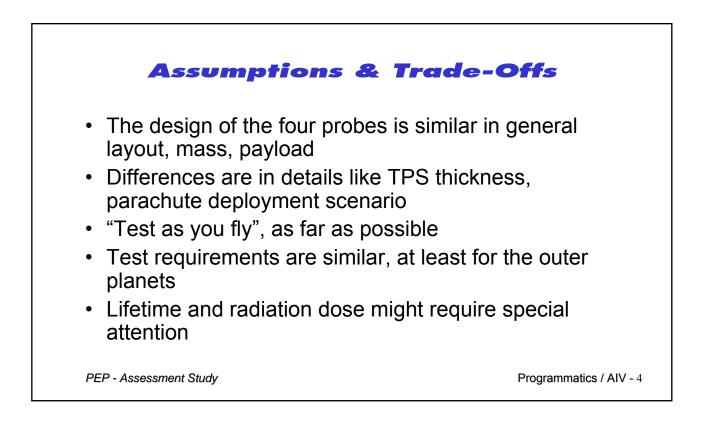
The sequence is driven by the number of manoeuvres, because they require tracking slots in between. A single deterministic manoeuvre is compatible with the accuracy requirements for spacecraft capsule communications during capsule EDL.

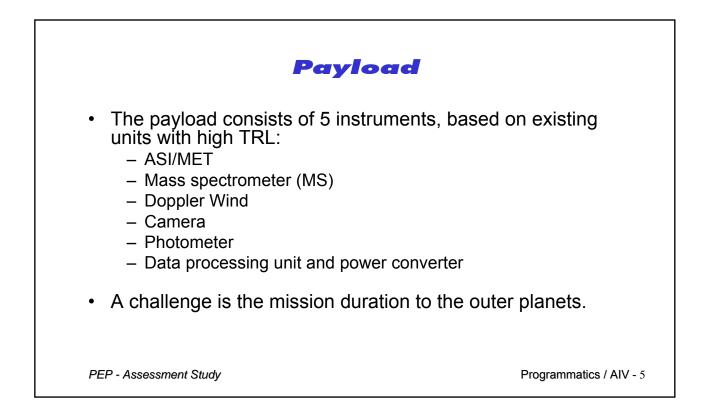
PEP - Assessment Study

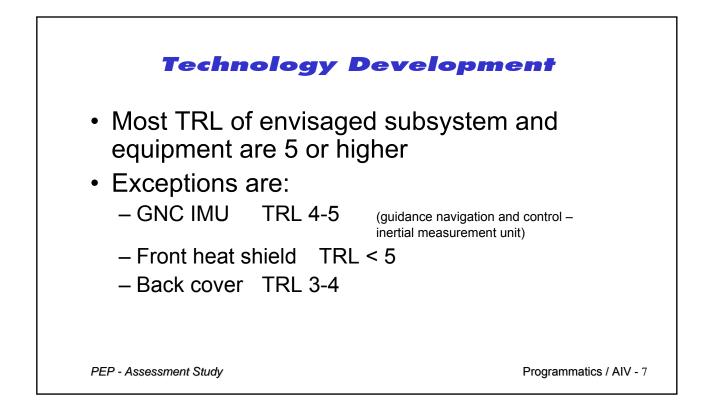


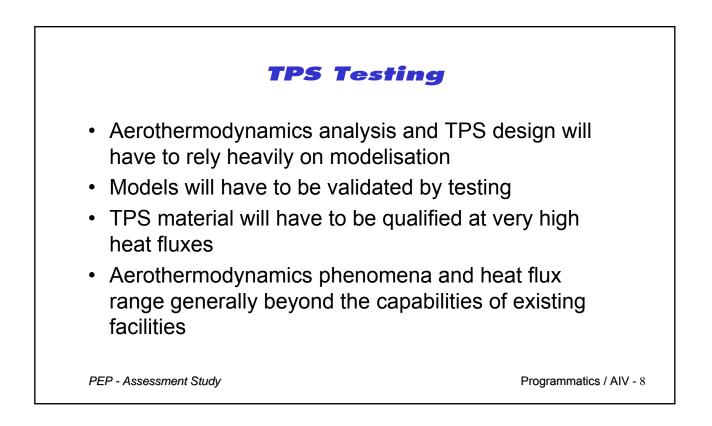

Possible Sequences Overview Table

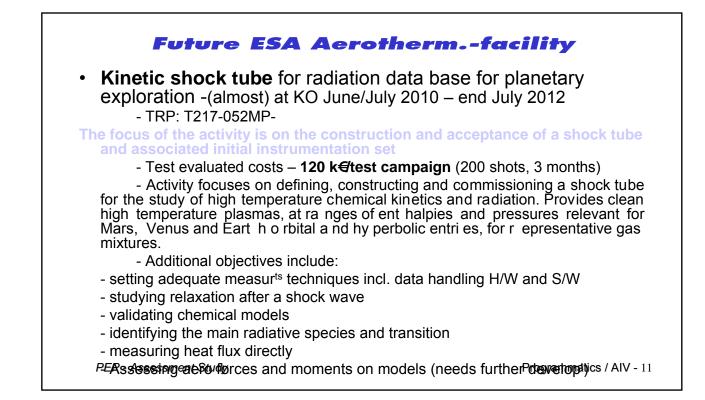
Sequence Type	Tracking Campaigns	Tracking Duration	Number of manoeuvres (TCR + touch up TBC + insertion)	Manoeuvre Duration (incl. pointing/ repointing)	Manoeuvre Calculation with tracking info	Wait for Manoeuvre Uplink	(Safe Mode) Recovery Slot	Total	Comment
	[number]	[days]	[number]	[hours]	[hours]	[hours]	[days]	[days]	
ΔDOR Single Manoeuvre	1	3.5	2	4	8	4	1.5	6.0	very time pressed, permanent coverage
Doppler Single Manoeuvre	1	7.0	2	4	8	16	3.0	12.0	Feasible, but baseline is operationally preferred
Doppler Double Manoeuvre	2	7.0	3	4	8	16	3.0	20.2	Baseline, reduces insertion error

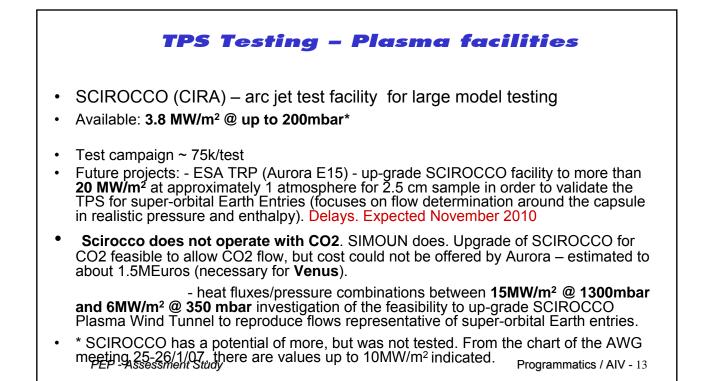

PEP - Assessment Study

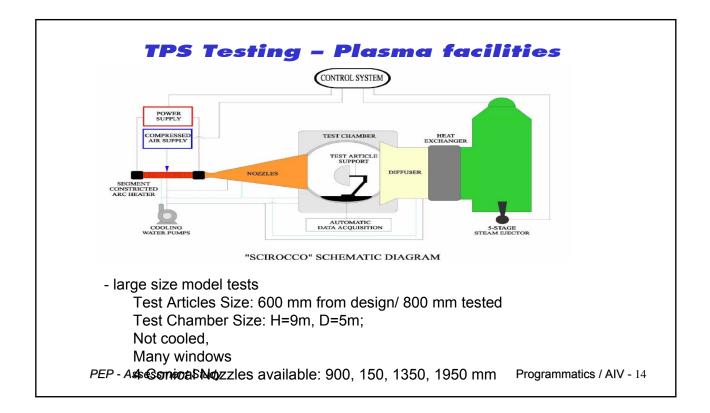

GS&OPS - 11

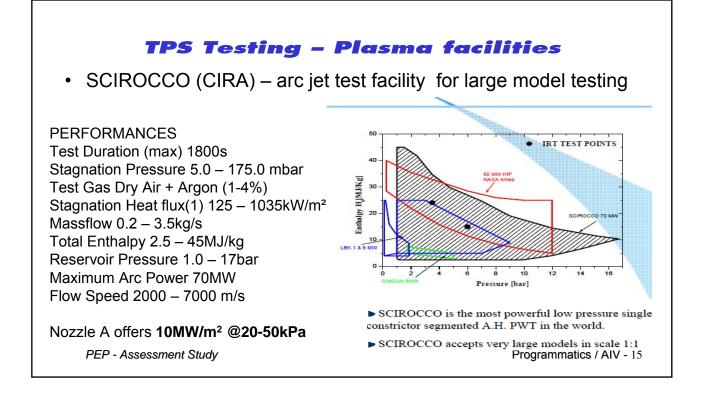


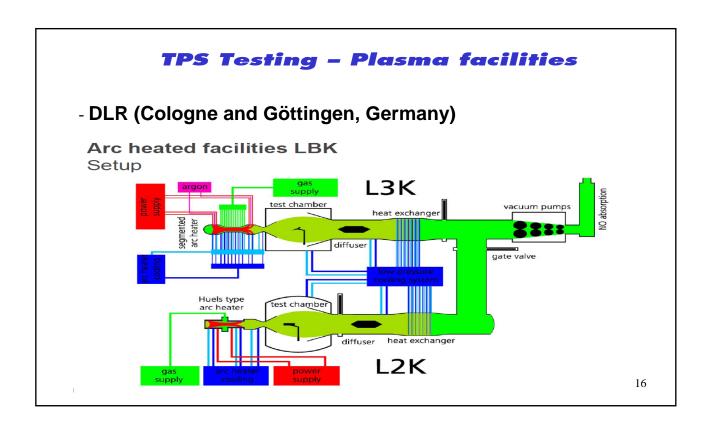

-			
Comparison	of the	Four Ca	ISES
Subject Venus Transfer time [year] ¹ 0.33-0.5	Saturn 9 18.5	Uranus	Neptune 19.3
Coast time [days] 20	20	20	20
Entry time [minutes] 1.77	1.77	1.77	1.77
Descent ime min. t60 [90	90	90]
Atmosphere CO	He, H+	He, H+	He, H+
Entry velocity [km/s] 11.8	36.0	21.7	24.7
Max. heat flux [MW/m2] 59 (81) ²	114	104	109
Max. deceleration [g] -250 (-360) ²	-200	-300	-325
Structure T [deg. C] < 450	< 190	< 50	
Pressure [bar] 92	1 – 100	4 – 100	10 - 100
¹) worst scenario assumed ²) flig	ht path angle =	-50 instead of -25	5
PEP - Assessment Study		Pro	ogrammatics / AIV - 3

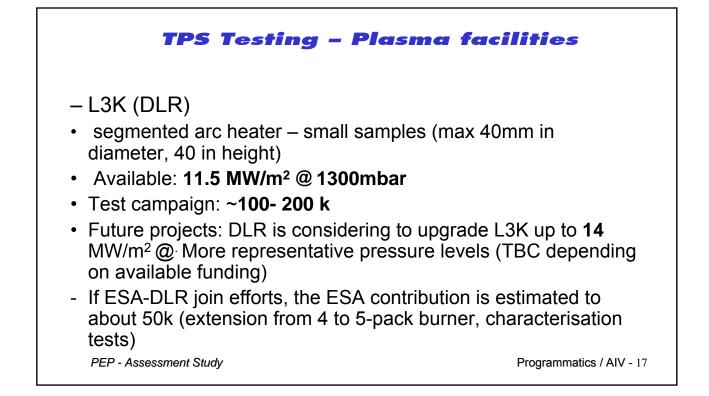

Optic	ons
 Alternative equipment or condeveloped, providing better e.g. TPS batteries 	
PEP - Assessment Study	Programmatics / AIV - 6

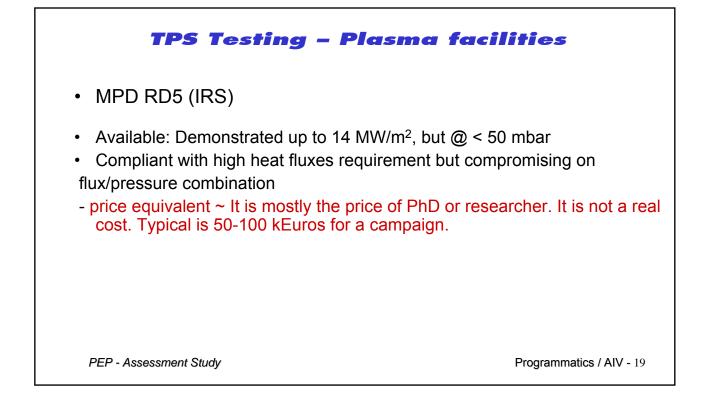


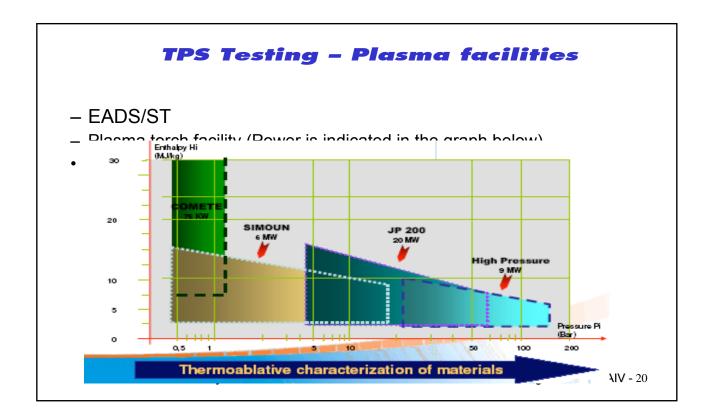


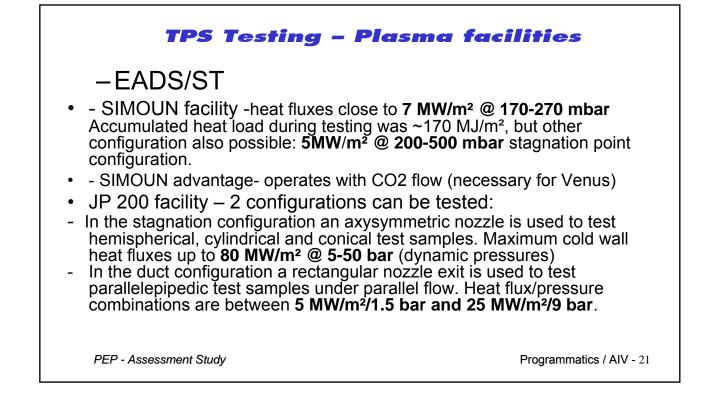

	European available aerothermodynamic fac	
•	- Oxford University (UK);	
•	- IUSTI (Marseille, France);	
•	 LAEPT (Clermont-Ferrand, France); 	
•	- Max Planck Institute for Plasma Physics (Gar	ching, Germany);
•	- ONERA (Toulouse and Modane, France);	
•	- PROMES (Odeillo, France);	
•	- RWTH (Aachen, Germany);	
•	- TNO (Rijswijk, The Netherlands);	
•	- TU Braunschweig (Braunschweig, Germany);	
•	- UMIST (Manchester, United-Kingdown);	
•	- UNINA (Naples, Italy);	
•	- VKI (Brussels, Belgium).	
PE •	- <u>ANLR</u> Amsterdam, The Netherlands - DNW, various locations in NL and D	Programmatics / AIV - 10

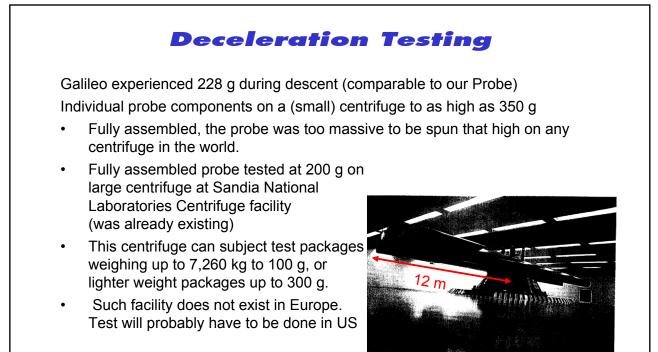


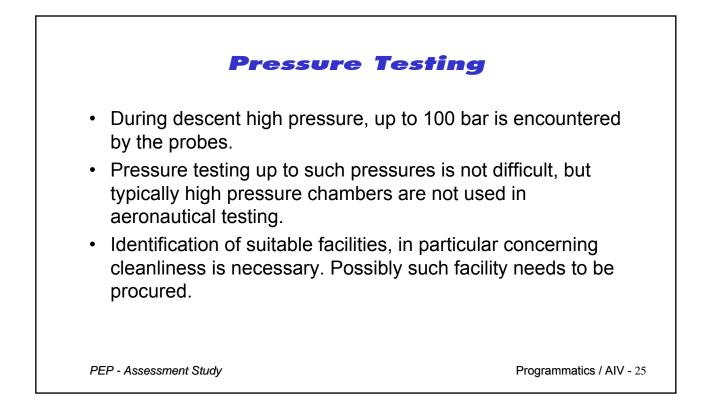

TPS Testing – Plasma f	acilities
Starting point JEP with updated values	
 Most powerful (in terms of heat-flux) European TPS SCIROCCO (CIRA) - segmented arc heater - 3.8 N L3K (DLR) - segmented arc heater - 12 MW/m² @ Plasmatron (VKI) - available 6.5 MW/m²@ 600mba SIMOUN (EADS) – Huels arc heater - 7 MW/m² @ COMETE (EADS) – Plasmatron – 7 MW/m² JP 200 (EADS) - Huels arc heater 	/IW/m² 2 1300mbar ar
- 80 MW/m ² @ 5-50bar - 5 MW/m ² @ 1.5bar & 25 MW/m ² @ 9bar	
 High Pressure (EADS) – Huels arc heater – 150 M Aerothermodynamic group) 	IW/m ² (NOT confirmed from
 PWK4 (IRS) – Magnetoplasmadynamic generator RD5 (IRS) 14 MW/m2 @ 50 mbar 	⁻ – 3 MW/m ^{2@} 5kPa
PEP - Assessment Study	Programmatics / AIV - 12





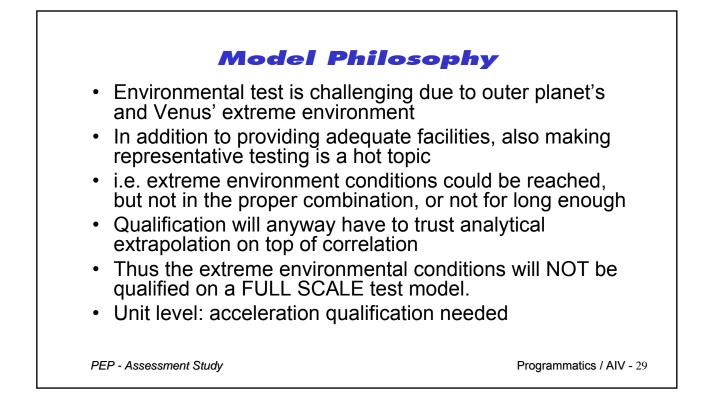


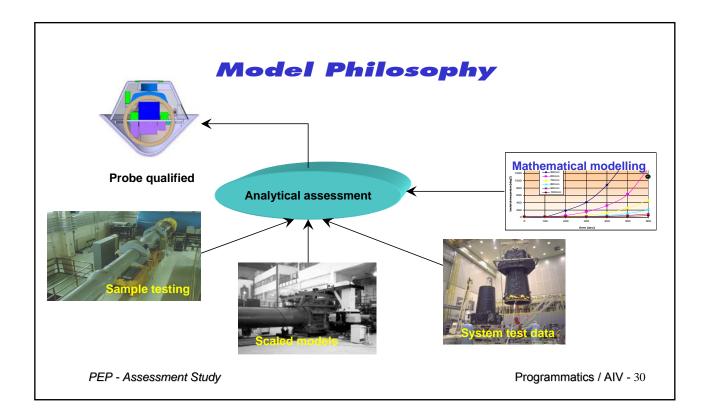

TPS Testing – Plasma facilities Plasmatron – VKI –Belgium Available up to 6.5 MW/m2@ 600mbar and tested also at 10 MW/m² Test campaign – ROM cost:? Future proj ects: 2009-VKI decid ed to construct and bui ld a new ly designed nozzle which accelerates the flow and thus helps to achieve higher heat flux. Using the new nozzle, VKI expects to reach the order of **10MW/m²** and dynamic pressures close to **800 mbar**. The characterization tests with this nozzle are expected to be finalized end of 2009 (presented at 6-th workshop April 2009) The Plasmatron is a subsonic facility which has to be compared with the MPD RD5/ RD7 facilities of IRS. This facility makes proper simul ation of shear forces impossible and puts so me guestion mark concerning the reported pressures (other rules might apply for different situations). PEP - Assessment Study Programmatics / AIV - 18



Programmatics / AIV - 23

Deceleration Tes	ting
 Centrifuges up to 200 g for equipment e (DLR, Berlin, Centrifuge Z100 / 200) Max. payload: 200 kg (at 50 g) Max. acceleration: 200 g (with50 kg) Max. dynamic load: 100 000 N Effective central radius: 1800mm For components even higher levels can achieved in Europe on smaller centrifuge At probe level test is preferable over ana property or workmanship variations can under extreme loads, in particular for no structures, e.g. TPS, EDS 	probably be es (tbc) alysis because initiate failure
PEP - Assessment Study	Programmatics / AIV - 24

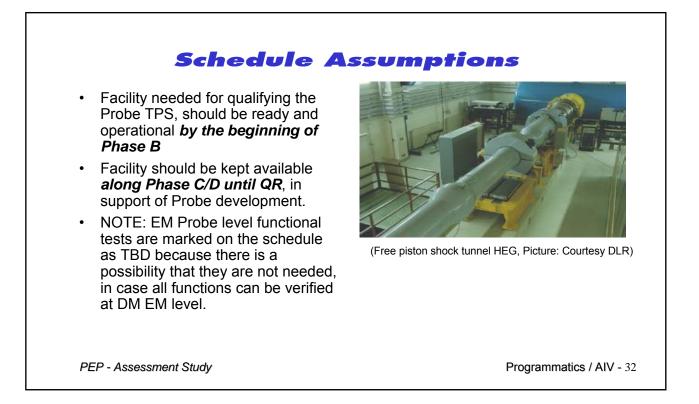


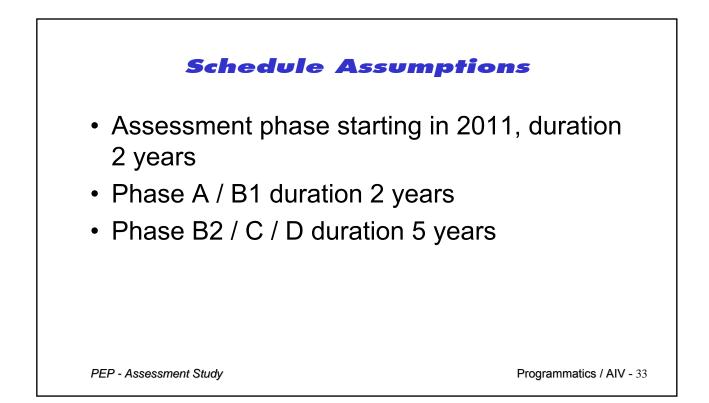

Testing Conclusion	ns
 Validation of CFD models is the key issue. More investigation on the existing European facilities is assess limitations 	
 Faithful reproduction of flow field and associated be anyway impossible 	phenomena will
 Heat flux computation will be subject to high unce margin on TPS design required 	ertainty. High
 Testing of TPS at the required high fluxes is poss samples 	sible on small
 High qualification factors will have to be applied (heat fluxes) 	e.g. factor 2 on
PEP - Assessment Study	Programmatics / AIV - 26

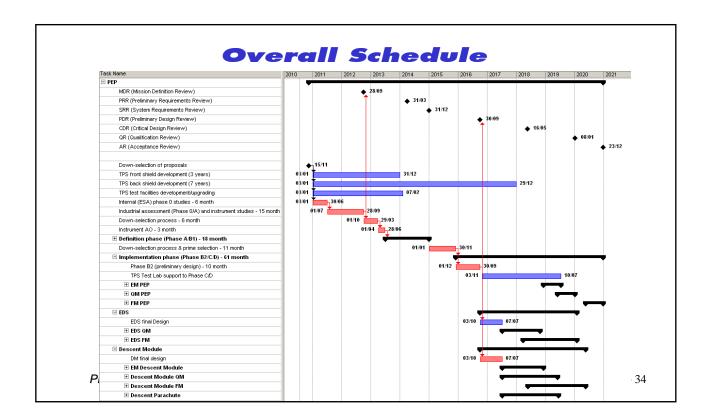
		Probe Models							
	Sample	SM	EM	QM	Scaled models	FM			
TPS	For high thermal flow test	X		x		х			
Entry and Descent System	For high thermal flow test	X		X	Hypersonic testing + high thermal	Х			
Parachutes	TBD			TBD units for optimisation + qualification	Aerodynamics testing	х			
Descent Module		Including acceleration & pressure test	Functional testing	Functional and environ. tests	Aerodynamics testing	х			
Probe System			Separation, Comm's etc.	EM+ environm. + ref. ground config.	TBD	х			

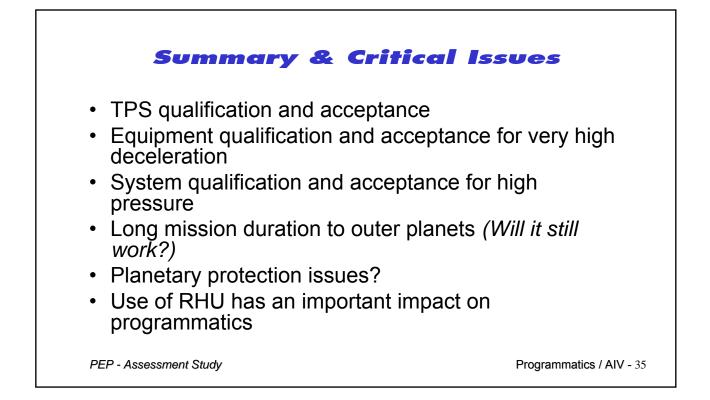
		Domorko	
	Description	Remarks	
	Flight standard structures and mechanisms	Pressure tests required on all sealed structures	
	Functional and electrical performances represented. Commercial components.	Also representative of layout, shapes and interfaces.	
	Full flight standard with all redundancies.	Shall include acceleration and pressure tests. Facilities TBD	
Scaled models	Representative for aerodynamics / aero-thermal (depending on the test)	Special facilities needed for the higher part of the aero-thermal field	
	Flight vehicles, including spare units and parts	Including pressure tests	
Samples	Assessing TPS and shield vs. high aero-thermal	Special facilities needed	

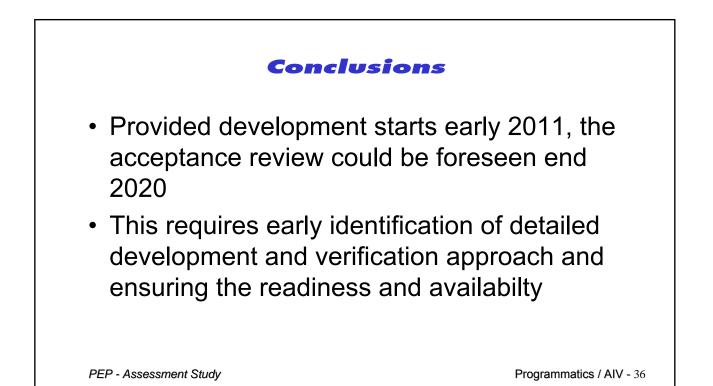
Programmatics / AIV - 28

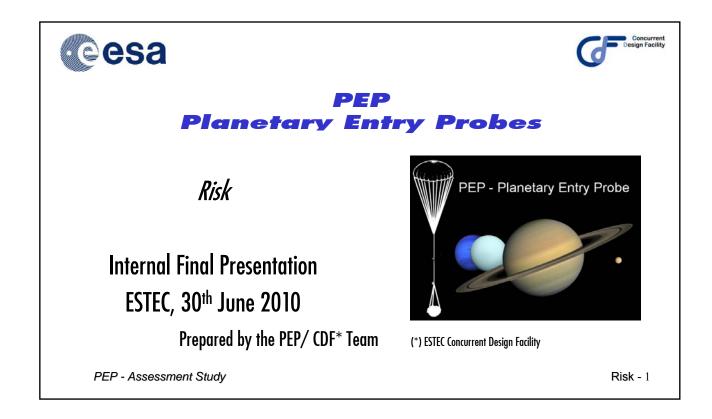


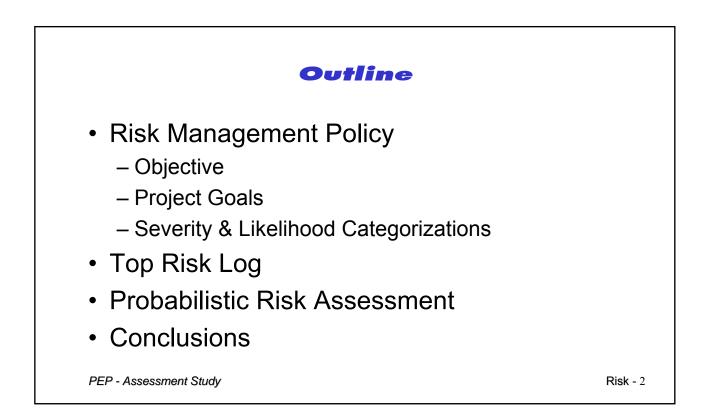

Schedule Assumptions

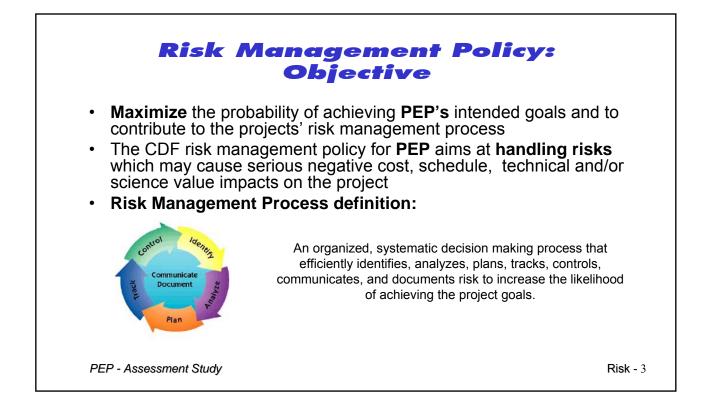

- Only one probe is considered here building two probes together, even for different planets, will benefit from each other
- Most of the development on TPS material shall be completed within Phase B.
- TPS material development should begin about 3 years before Probe Phase B K.O. (even by making use of *existing* facilities)
- Combined functional tests with an Orbiter are taken into account in the schedule
- Combined environmental tests with an Orbiter are taken into account
- Orbiter development is not included


PEP - Assessment Study


Programmatics / AIV - 31







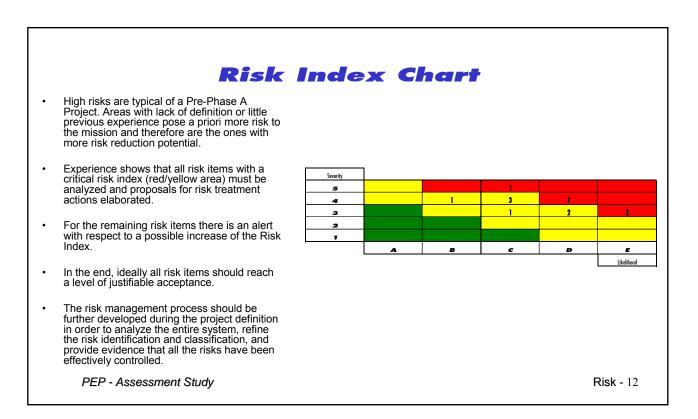
R	Risk Management Policy: Project Goals
SRE	 The Planetary Entry Probe(s) shall investigate the characteristics of the Planetary atmospheres of Venus (VEP), Saturn (SEP), Uranus (UEP) and Neptune (NEP): Atmospheric profiles (temperature, pressure, density) Chemical composition (abundances & isotopes) Optical properties and features (surface and atmosphere) Measure wind direction and magnitude
Technical	The Planetary Entry Probe(s) platform shall perform correctly during all mission phases incl. launch, transfer, separation, coast, entry, and descent.
Schedule	Mission Timeframe shall be 2020-2035
Cost	Cost at completion shall be within the M-class mission budget

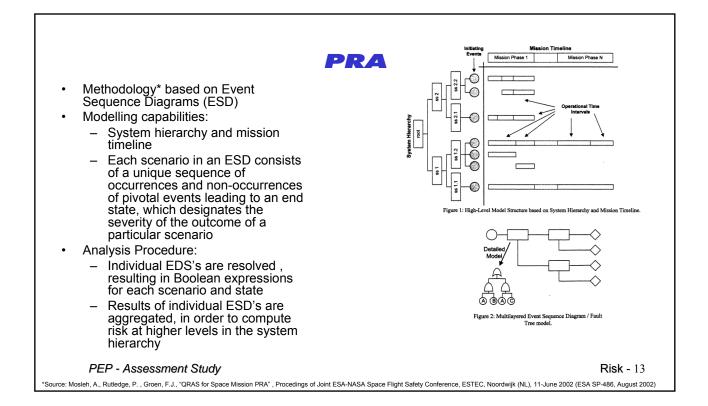
	C	ateg	orization	. &	Ri	sk	Index
Severity	Schedule	Science	Technical (ECSS-Q-30 and ECSS-Q-40)	Cost	Score	Likelihood	Definition
atastrophic 5	Launch opportunity lost	Failure leading to the impossibility of	Safety : Loss of system, launcher or launch facilities.	Cost increase result in project	E (5)	Maximum	Certain to occur, will occur once or more times per project.
		fulfilling the mission's scientific objectives.	Loss of life, life-threatening or permanently disabling injury or occupational illness; Severe detrimental environmental effects.	cancellation	D (4)	High	Will occur frequently, about 1 in 10 projects Pf=0.1 R=0.9
Critical	Critical launch delay (TBD)	Failure results in a major reduction	Dependability: Loss of mission. Safety: Major damage to flight systems,	Critical increase in	C (3)	Medium	Will occur sometimes, about 1 in 100 projects Pf=0.01 R=0.99
4	months	(70-90%) of the mission's science	major damage to ground facilities; Major damage to public or private property;	estimated cost (TBD M€)	B (2)	Low	Will occur seldom, about 1 in 1000 projects Pf=0.001 R= 0.999
re	return.	etum. Temporanily disabling but not life- threatening injury, or temporary occupational illness; Major detrimental environmental effects.		A (1)	Minimum	Will almost never occur, 1 in 10000 projects Pf=0.0001 R=0.9999	
Major 3	Major launch delay (TBD) months	Failure results in an important reduction (30- 70%) of the mission's science return.	Dependability: Major degradation of the system. Safety: Minor injury, minor disability, minor occupational illness. Minor system or environmental damage.	Major increase in estimated cost (TBD M€)	Sever 5 4 3	5 5A L 4A 3 3A	58 5C 50 5E 48 4C 4D 4E 38 3C 3D 8E 28 2C 2D 2E
Significant 2	Significant launch delay (TBD) months	Failure results in a substantial reduction (<30%) of the mission's science return.	Dependability: Minor degradation of system (e.g.: system is still able to control the consequences) Safety: Impact less than minor	Significant increase in estimated cost (TBD K €)	1		10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Minimum 1	No/ minimal consequences	No/ minimal consequences.	No/ minimal consequences.	No/ minimal consequences.			

Г

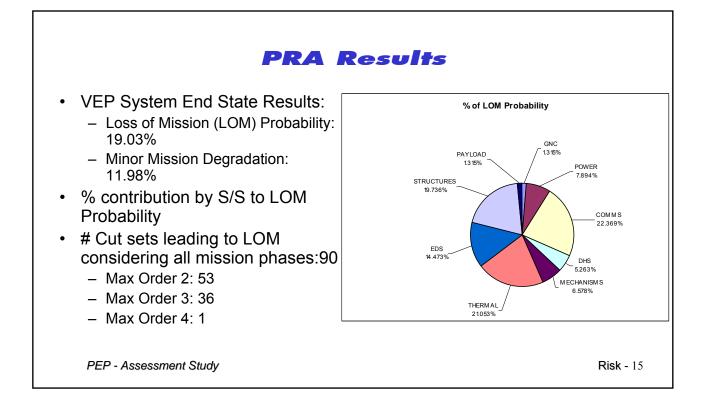
lisk Type	Risk index	Risk scenario	Classification	Cause	Mitigating Action 1	Mitigating Action 2	Mitigating Action 3
uncher							
	5C	Launch window constraints for missions to outer planets (Uranus, Neptune and to a lower extent Saturn).	Schedule	Very lengthy gap between launch windows. Missing launch opportunity would imply mission cancellation.	Plan schedule accordingly with sufficient risk margins.	At least 6 month margin between FAR and the launch campaign.	Baseline launch date offering 2 launch opportunity within acceptable timeframe. (e.g. Neptune LD 2030 case)
ission							
	4D	Uncertainties related to planetary atmospheric models specially in the case of the outer planets (Uranus and Neptune) with impact on the TPS materials choice and design.	Technical	Wrong estimates of heat fluxes, heat loads (int. of heat fluxes), peak deceleration.	Refine atmospheric models and entry trajectory analyses for the outer planets.	Design including sufficient safety margin	
	4D	Long mission lifetime for outer planets.	Technical	18-20 year transfer time for Neptune and Uranus entry probe missions. Challenging reliability issues.	Technology investment/development required.	New technology qualification approach focusing on assurance of long duration missions.	Optimize trajectories, study alternative propulsion technologies to reduce transfe time.
	4C	Critical probe-orbiter tracking, targeting & separation sequence. Heavy impact on spacecraft operations.	Technical	High accuracy of spacecraft targeting. Tracking required. Compressed schedule demands a lot of preparation and many simulations.	Relaxed release sequence. Release at least 20 days ahead of entry (piggy-back case).	Use doppler double maneuver sequence (preferred OPS) which reduces insertion error as compared with doppler single maneuver. ADOR Single Maneuver requires only 6 days rather than 20 days but is very time pressed and requires continuous coverage.	Insert safe mode recovery slot: into planning.

lisk Type	index	Risk scenario	Classification	Cause	Mitigating Action 1	Mitigating Action 2	Mitigating Action 3
ission		1					
	4C	Critical planetary entry conditions. Limited entry trajectories satisfying all requirements (sun illumination, Earth visibility (DTE comms) or orbiter visibility (relay comms). Short probe coverage time throughout descent.	Technical	Sun illumination. Loss of orbiter/Earth visibility before end of nominal science mission.	Optimize entry trajectories to maximize probe coverage throughout descent.	Accept limited entry cases.	Use redundant DTE & relay communication.
	4B	Critical Saturn ring gap crossing. Particle collision risk.	Technical	Higher probability of impact with small size debris (water Ice).	Precisely defined ring regions. Relatively well-known environment.	Low impact probability if passage is at clear gaps (e.g. between the rings F and G rings)	Single ring crossing. Appropria shielding.
	3D	Planetary protection issues impact on technical requirements and schedule.	Schedule/technical	Forward contamination of target celestial bodies. Requirements on documentation, cleanliness standards, and sterilization.	COSPAR PP classification: Category I: Venus. No protection of such bodies is warranted and nc planetary protection requirements are imposed by this policy. Category II: Saturn, Uranus, and Neptune.	Outer planets: Preparation of a short planetary protection plan is required for these flight projects primarily to outline intended or potential targets, brief Pre and Post-launch analyses detailing strategies, and a End-of-Mission report.	Plan schedule accordingly with sufficient margins to account fo PP related delays.


Risk Type	Risk index	Risk scenario	Classification	Cause	Mitigating Action 1	Mitigating Action 2	Mitigating Action 3
latform		-					
	4D	Low TRL of mid/low density ablative TPS heat shield materials (optimal TPS solution for Venus case instead of heritage Carbon Phenolic). Development risk implications	Schedule/technical	Large number of non-qualified materials or elements at research level only. Development challenges.	Development program to raise the TRL and reduce the risk of ablative TPS materials and heat shield systems.	Invest in technology and testing. Evaluate arc jet and other testing capabilities. Piecewise determination of material properties and failure modes. Certification by combination of testing and analysis	Development time is consider sufficient given launch date objectives (2020-2035).
	4D	Uncertainties in RF signal atmospheric losses in Venus/Satum/Uranus/Neptune.	Technical	Atmospheric loss can be significant due to high pressure. Clouds can cause high attenuation at specific frequencies. Planet radiation can also block some frequencies.	An assessment of the atmospheric composition shall give the final exact frequency.	A scenario in which the carrier is directly overhead as the probe goes deep in the atmosphere of the entry planet is suitable.	Select appropriate frequency to minimize signal attenuation.
	4D	Uncertainties in parachute deployment dynamic pressure leading to parachute malfunction, insufficient drag, higher than expected descent velocity.	Science/technical	Uncertainties in the external environment (atmospheric density), deployment Mach number.	Design parachute to operate safely without failure in a wide range of dynamic pressures.		

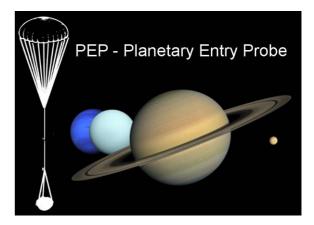

Risk - 8

lisk Type	Risk index	Risk scenario	Classification	Cause	Mitigating Action 1	Mitigating Action 2	Mitigating Action 3
atform							
	4D	Criticality of 100 bar pressure vessel and associated technologies and testing facilities.	Schedule/technical	No existing European representative testing facilities. PV's represent one of the single largest mass elements in a deep atmospheric probe. Present state of the art PV technologies are not adequate for the mass requirements of these missions.	Appropriate PV design guidelines with adequate margins.	Develop manufacturing engineering plans and obtain prototypes for leading candidate materials. Perform testing on prototypes under representative environmental conditions for temperature and pressure survivability.	Invest in testing facilities.
	4D	Critical planetary entry parachute technology and related control systems.	Schedule	Low TRL of representative European parachute technologies.	Beagle2 heritage (Lindstrand Technologies Limited UK)	Invest in European technology and testing facilities.	Sub-contract to US manufact in case of schedule constraint (e.g. IRVIN Aerospace (USA responsible for Huygens' parachutes and the probe's descent control sub-system un contract to Martin-Baker Spa Systems UK)
	4C	Critical Planetary Entry Probe separation and entry sequence (incl. carrier separation, parachute deployment/jettison, front/back shield separation, harness cut)	Technical	Single Point Failure Mechanisms	Single actuation and short duration events.		All Pyrotechnic devices are equipped with redundant ES/ standard actuators.


	index	Risk scenario	Classification	Cause	Mitigating Action 1	Mitigating Action 2	Mitigating Action 3
tform							
	3E	Challenging thermal-structural analysis for ablative materials.	Technical	Statistical material properties do not exist for most TPS materials. Obtaining mechanical properties (highly non-linear) across a wide temp. range is challenging and for TPS materials often produce large variations. Failure modes are poorly understood.	Thermal-structural design and analysis based upon FEM is insufficient – combined environment testing, with thermal gradients and mechanical loads is needed	Experience/time required to develop a credible and validated series of FEM models for an integrated heat shield to assess various load cases.	Invest time in establishing an acceptable thermal-structural margins policy.
	3E	Heritage carbon phenolic from Pioneer-Venus and Galileo (Venus entry case) no longer manufactured.	Schedule	Very limited supply of heritage CP. Current CP employs carbon cloth derived from new rayon source. Limited arc jet tests show performance similar to heritage	time and resources. Test in high energy laser facility to	Test in CO2 arc jet to demonstrate applicability of theoretical thermochemical ablation models to performance in Venus atmosphere.	Validate/update heritage in-d thermal response models via jet tests of instrumented sam at well-defined conditions. Combine surface ablation and depth thermal response mode into Venus entry design model for carbon phenolic.

lisk Type	Risk index	Risk scenario	Classification	Cause	Mitigating Action 1	Mitigating Action 2	Mitigating Action 3
atform							
	3D	Limited capability of ground testing facilities (arc jet) for TPS ablative materials (e.g. EADS Simoun 6 MW Facility or DLR L2K)	Schedule	Low number of available testing facilities. Even an ideal ground test facility will not fully replicate flight environments forcing difficult ground- to-flight traceability efforts. Prone to high down time.	Plan schedule accordingly. Insert margins in schedule.	Invest in facilities.	
	3C	Ablative materials manufacturing complexity	Technical	Restarting the manufacturing of previous TPS materials takes significant time and resources. Significant fabrication experience is required to produce quality and consistency.	Investment required to establish necessary infrastructure.	Selection of experienced TPS manufacturer.	

PRA Assumptions		
 Equipment list and redundancy from VEP CDF Model Mission timeline begins at t=0 orbiter separation and consists or main phases: Cruise Entry Descent 	f 3	
 Equipment operational intervals and/or actuation times from CD Model)F	
 Equipment failure rates extracted from in-house database (time based-operational interval) 		
 Point value estimates for on-demand based events 		
 No uncertainty considered in input variables 		
PEP - Assessment Study	Risk - 14	

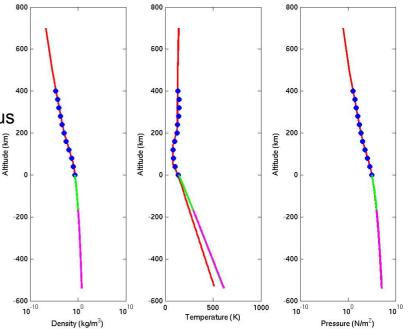

Conclusions	
 Environment Atmospheric modelling and its impact on TPS, communication, and (parachute deployment) Technology Development European low density TPS materials and manufacturing processes European parachute technology 100 bar pressure vessel Major Mission Events (Targeting/Separation/Entry/Descent) Minimize SPFs Demonstrate mechanisms/EDL system reliability on-ground Long mission duration (lifetime) for outer planets Uranus & Neptune transfer time 18-20 years 	EDL
PEP - Assessment Study	Risk - 16

PEP Planetary Entry Probes

Annex I: Atmospheric Models for Outer Planets IFP ESTEC, 30th June 2010

Prepared by the PEP/ CDF* Team

(*) ESTEC Concurrent Design Facility

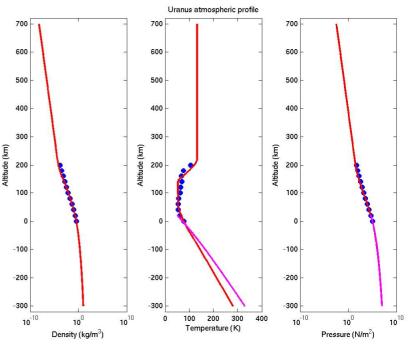

Annex I - 1

Atmospheric Models for Saturn

- Initial models used in the calculations were derived by ESA technical support and are denoted as Reference [B]
- These models have been compared to the data provided in [RD1: Giant Planets of Our Solar System: Atmospheres, Composition, and Structure; P.Irwin; 2009] and [RD2: The Planetary Scientist's Companion; K. Lodders, B. Fegley Jr, 1998].
- Furthermore, the models have been compared to models kindly provided by Dr. A. Coustenis of the SSEWG: [RD5: Tristan Guillot, published in Guillot, 1999 "A comparison of the interiors of Jupiter and Saturn", Plan. Space Sci. 47, 1183; and Saumon & Guillot, 2004, "Shock Compression of Deuterium and the Interiors of Jupiter and Saturn", ApJ 609, 1170; numerical data via personal communication].
- General remarks about the models:
 - Profiles for simulation are for +700 to -500 km for Saturn. Profiles available through references cover only parts, [RD5] mainly the lower parts from > 1bar. This data does not affect the entry phase but impacts the descent phase.
 - The models from [RD5] differ strongly in the altitude at which they reach 10 bar. Within 2 km there is a 9 bar discrepancy between the models.
 - 1 bar altitude shifted to 0 km to make comparison possible (reference used at CDF).
 - Two models provided: One static homogeneous model without He discontinuity at 1 Mbar (not matching observed J4) and one static model with He discontinuity at 1 Mbar (matching observed J's)

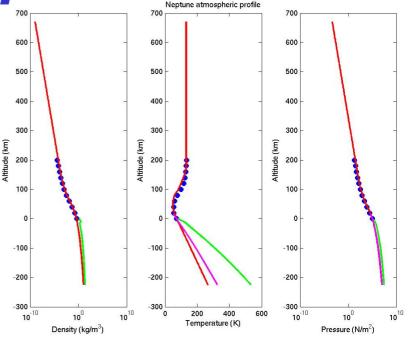
Comparison to References -Saturn

- Red Lines: Model used in study [B]
- Blue dots: RD[1,2]
- Green Line: RD[5], Model w/ He discontinuity
- Magenta Line: RD[5], static homogeneous Model w/o discontinuity
- Evaluation:
 - Density difference is <2% between [B] and [RD5] (both models)
 - Pressure difference <15% between [B] and [RD5] (both models)
 - Temperature profile differs strongest by <18% (gradually increasing to that value with depth)
 - Good agreement between models in lower parts


Atmospheric Models for Uranus and Neptune

- Initial models used in the calculations were derived by ESA technical support and denoted as Reference [B]
- These models have been compared to the data provided in [RD1: Giant Planets of Our Solar System: Atmospheres, Composition, and Structure; P.Irwin; 2009] and [RD2: The Planetary Scientist's Companion; K. Lodders, B. Fegley Jr, 1998].
- Furthermore, the models have been compared to models kindly provided by Dr. A. Coustenis of the SSEWG: [RD3: M. Herzig et al., in preparation, obtained via personal communication] and [RD4: Fortney, Ikoma, Nettelmann, Guillot & Marley, submitted to Icarus, via personal communication].
- General remarks about the models:
 - Profiles for simulation are from +700 to -300 km for Uranus and +600 to -225 km for Neptune. Profiles available through references cover only parts, [RD3,4] mainly the lower parts from +20 to -400/500 km. This data does not affect the entry phase but impacts the descent phase.
 - There are relatively large differences between [RD3 and RD4]
 - Differences in the lower part, however, mainly lead to different descent timing and thermal evolution.
 - Taking into account the largest differences, the margin policy applied during the study should be able to cope with these variations during entry and not lead to significant impacts on the design. (cf the sensitivity analysis and margin policy sections)

Comparison to References I -Uranus


- Red Lines: Model used in study [B]
- Blue dots: RD[1,2]
- Magenta Line: RD[3]

- Evaluation:
 - All profiles in good agreement
 - Pressure differences < 5%
 - Temperature differences <17%
 - Differences in the temperature profile mainly affect the thermal calculation but are small enough to be covered by the study margin

Comparison to References II -Neptune

- Red Lines: Model used in study [B]
- Blue dots: RD[1,2]
- Magenta Line: RD[3]
- Green Line: RD[4]
- Evaluation:
 - Except temperature, profiles in good agreement
 - Between [B] and [RD3]: <5% difference in pressure, <20% difference in temperature
 - Between [B] and [RD4]: density differs by factor of 2, pressure by factor 2 ¹/₂, temperature max. difference is factor 2.
 - Between [RD3] and [RD4]: roughly as between [B] and [RD4].
 - In general, [RD4] profiles change faster with altitude than [B] and [RD3].

