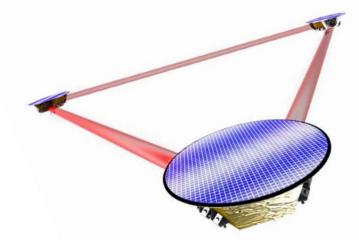
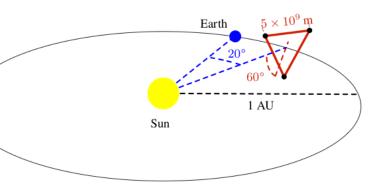
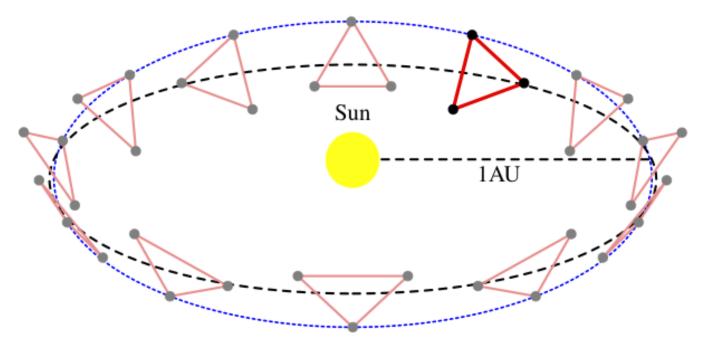


LISA Laser Interferometer Space Antenna

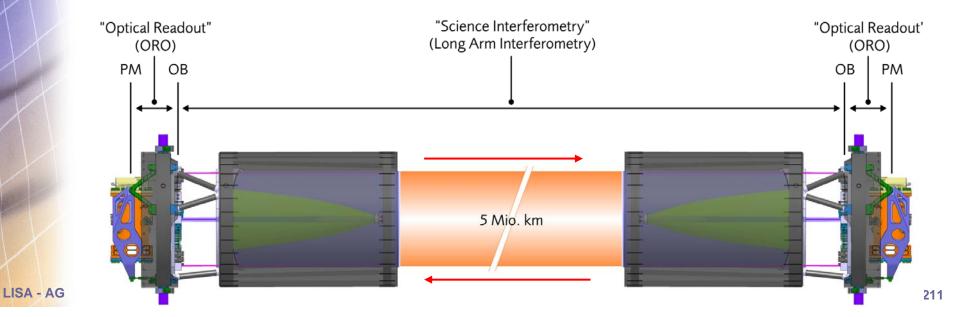

Paris - Feb 3, 2011

Alberto Gianolio LISA Project Manager


The LISA Mission

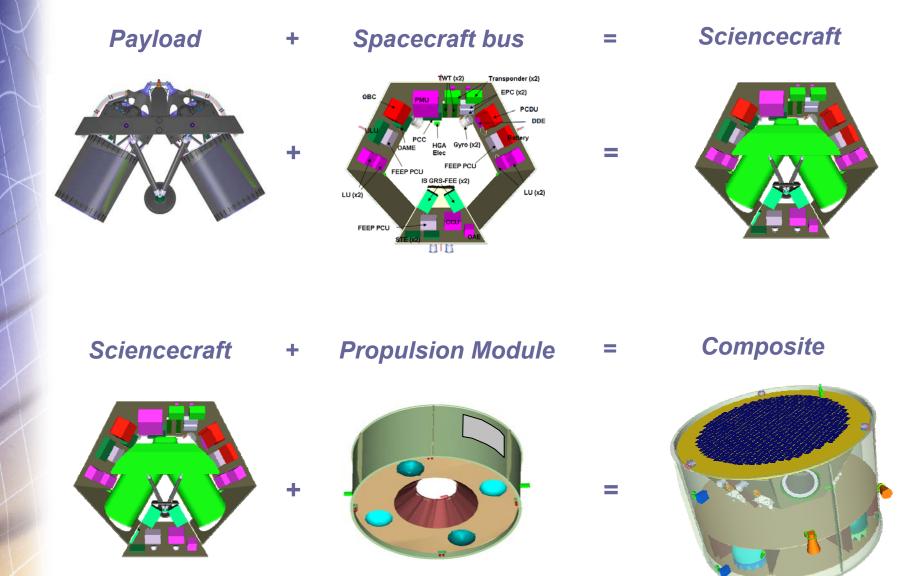

- Three satellites in heliocentric orbits separated by 5 million km
- Laser interferometry to monitor the distance changes between pairs of free-falling test masses
- The spacecraft protects its two test masses from all external disturbances
- Joint ESA/NASA mission
 - Cooperation started in 2000
- Ongoing ESA technology validation mission (LISA Pathfinder)
 - Implementation started in 2004
 - Goal: validate the LISA hardware that cannot be tested on the ground

The LISA Orbits

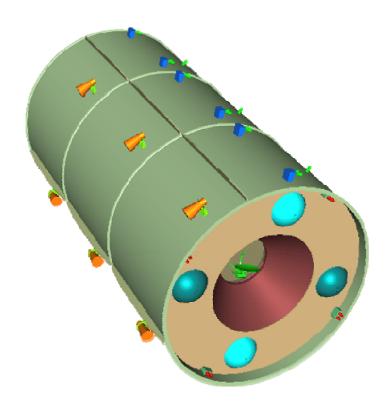

- Orbits allow for mission duration >5 years without orbit control manoeuvres
- Extremely quite environment, required to achieve perfect free-fall
- Maintain fix orientation towards the sun
- Constellation revolution around the sun provides directional sensitivity

The measurement principle

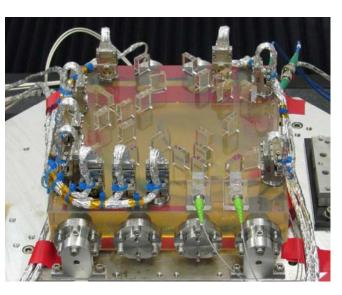
- How to achieve strain sensitivity of $h \sim \delta L/L \sim 10^{-21}$
 - Measuring changes in the difference between the 5 x 10⁹ m armlengths with 10⁻¹² m precision
 - Measurement feasible thanks to orbits stability within the measurement bandwidth
 - Laser-based version of spacecraft ranging
- Measurement split into:
 - long-arm interferometer, between fiducial points on two opposite optical benches
 - local interferometer, test-mass displacement wrt fiducial point
- Local interferometer will be flight validated by LISA Pathfinder



LISA Payload **Optical Assembly** Optical Bench + Telescope + += 2 x Optical Assemblies **MOSA** MOSA + electronics (Phasemeter + Laser + FEE etc.) = Payload


5

Sciencecraft & Composite


Stack

Stack = 3 x Composite modules

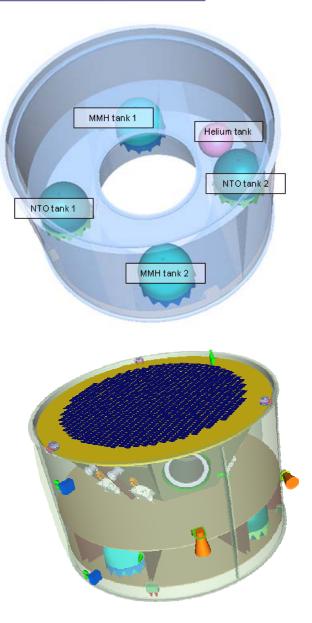
The LISA Payload

- LISA payload consists of two main parts
 - Interferometry Measurement System
 - Disturbance Reduction System
- Interferometric Measurement System includes:
 - 40 cm off-axis telescope
 - Optical bench
 - Laser system (2 W at λ =1064nm)
 - Phasemeter

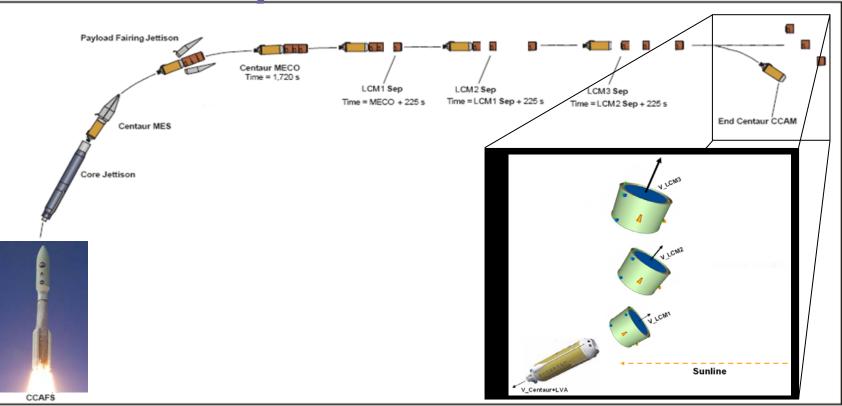
Disturbance Reduction System includes:

- Gravitational Reference Sensor (GRS) with free-falling test masses
- Drag-Free and Attitude Control Software (DFACS)
- Micropropulsion system

LISA - AG


LISA Spacecraft bus

- Standard architecture
 - 5.4 m^2 solar array, ~1 kW, 28V regulated bus
 - X-band communication, 1 High-gain, 3 low-gain antennae
 - 2 processing units, 3 MIL1553B buses, 12.2 Gbit memory
 - Star tracker, sun sensors, gyros for AOCS
- Very well studied and consolidated concept
- Builds on LPF experience
 - Gravitational balance
 - Magnetic cleanliness



Propulsion Module

- Bi-propellant system providing up to 1130 m/s of ∆V
- Carries launch loads of stack configuration
- Provides propulsion to the composite during cruise phase
- Jettisoned prior to scientific operations
- 5 tanks
 - 4 propellant
 - 1 pressurant
- 8 thrusters
 - 4 x 22N Orbit Control
 - 4 x 5N Reaction Control

Launch sequence

- Atlas V 541 places the stack in escape orbit
- The 3 Composites separate and proceed for 14 months to their final orbital position

LISA System Budgets

- Composite Spacecraft dry mass = 1368kg
- Stack wet mass incl. launch adapter = 6155kg
 - Includes units contingency (3% to 20% depending on maturity)
 - 20% system margin
- Stack fits on Atlas V 541
 - Launch capability 6200kg
 - Atlas V 551 (6500kg) is the next available launcher
 - Highest Power requirement = 1006W
 - Includes losses, life degradations and 25% system margin
 - Compatible with Solar Array size

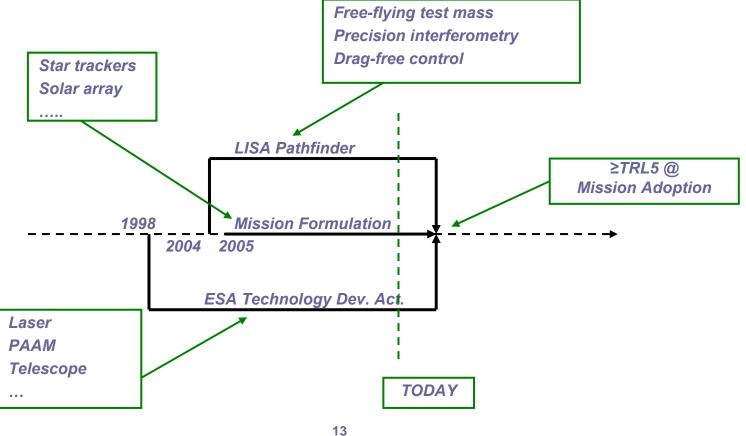
12

– Still has growth margin

Communication Budget

- Allows full data downlink in X-band within the visibility windows
- Contains the required 3dB margin

POWER

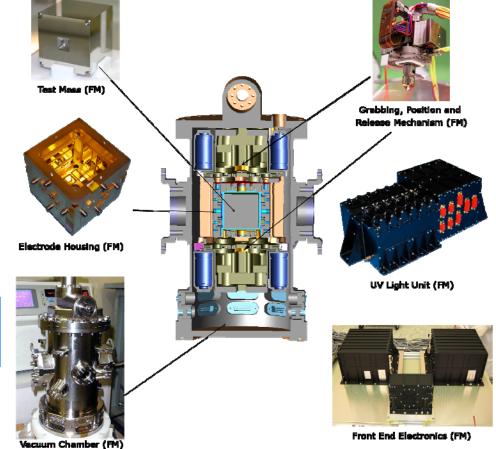


MASS

LISA Technology

- LISA technologies fall in three main categories:
 - Off the shelf components
 - Technologies validated on LISA Pathfinder (those that cannot be tested on the ground)
 - Technologies developed through CTP/TRP activities

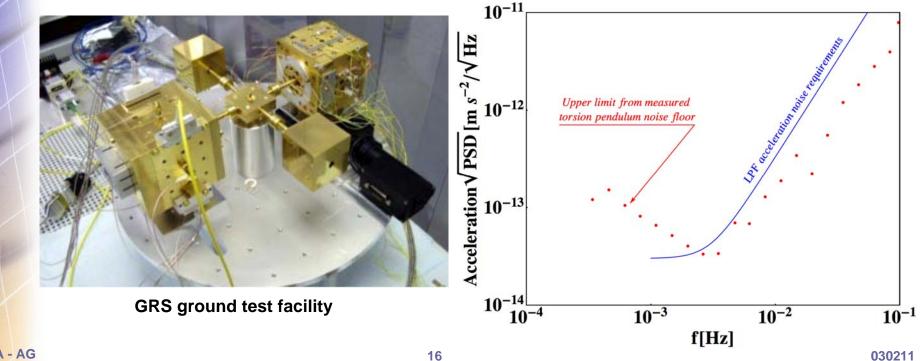
LISA Pathfinder (LPF)


- LISA Pathfinder is a validation step in the LISA development
 - LPF hardware designed to be the LISA hardware
 - Flight results will validate error budget for extrapolation to LISA
- LPF system performance approaching LISA requirements
- Nearly all flight hardware available to LPF
 - Launch lock and micropropulsion to be delivered

LPF launch composite being prepared for thermal balance test campaign at IABG 030211

Gravitational Reference Sensor

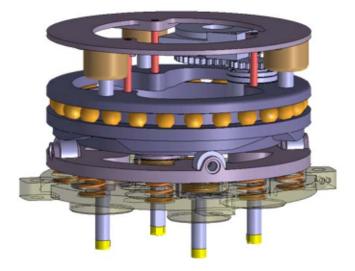
- Gravitational Reference Sensor (GRS):
 - Test Mass
 - Electrode Housing
 - Vacuum Enclosure
 - Caging Mechanism
 - Charge Management
 - Front-End Electronics

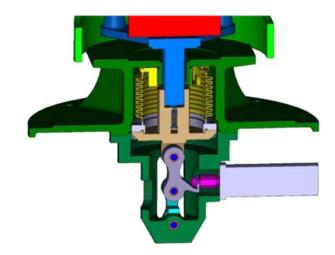

LPF flight hardware

Much of this hardware is ready-for-use <u>in LISA</u>

LISA - AG

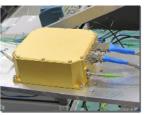
GRS Ground Testing


- Performed with torsion pendulum
- Provides verification of surface disturbances
- Results used to validate the LPF payload (LPF Test Package LTP) noise model
- Noise performance exceed expectations
 - Torsion pendulum sensitivity



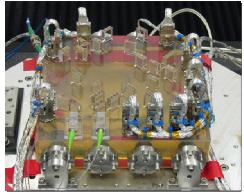
LPF Launch Lock

- Holds the test-mass in place during launch
- Problems in hydraulic parts encountered during FM unit testing
- Investigation of the problem led to alternative design options that replace hydraulic system with motor-driven system or with a one-off lock system
- Design Review and go-ahead milestone in April 2011



Open issue is manufacturing of a piece of mechanics, not *identification of new technology* to perform the function

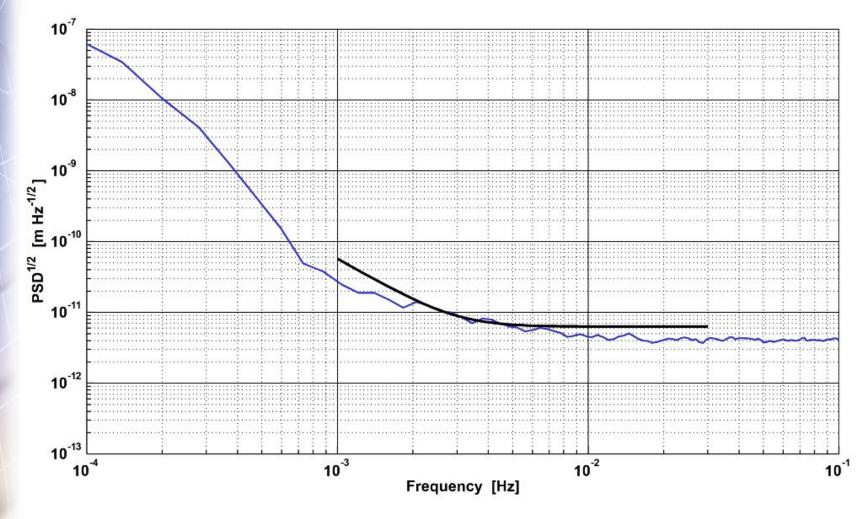
LTP Metrology Interferometer


- Comprises
 - Reference Laser Unit
 - Can be used as LISA seed laser
 - Laser Modulator
 - Optical Bench
 - Components and construction processes identical on LISA
 - Phasemeter
 - Data Management Unit



Laser Modulator (IM)

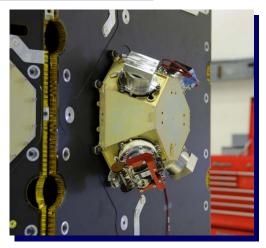
Optical Bench Interferometer (FM)



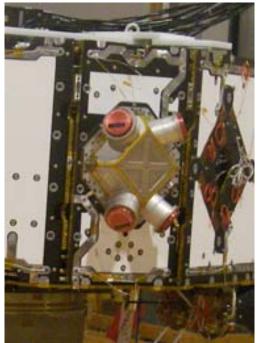
Phasemeter (FM)

Data Managament Unit (PM)

LTP Metrology Interferometer



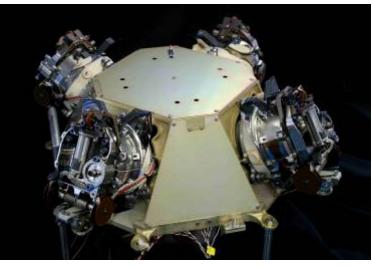
Optical Metrology System flight hardware ground test results

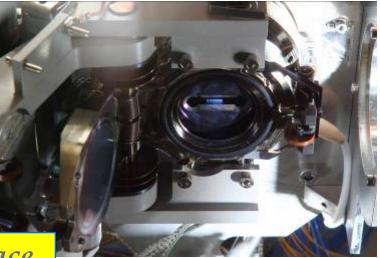

LISA - AG

Micropropulsion System

- Micro-Newton thrust required for drag-free performance
- Field Emission Electric Propulsion (FEEP) thrusters developed in Europe for LPF and LISA
 - Based on a slit emitter with Caesium propellant
- Colloidal micro-Newton thrusters developed by NASA, will fly on LPF
 - Flight units have already been integrated onto the S/C
- Life test of FEEPs and colloidal thrusters will be done for LISA

Cs Slit FEEP

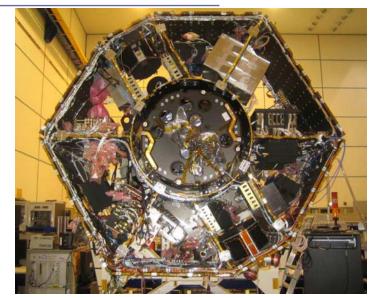



Colloidal Thruster

LPF FEEPs

- >3200 hours extended firing on flightrepresentative device
- All thrusters functions demonstrated by repeatable tests
- Problem encountered during Qualification Confirmation Tests
- Test interrupted, investigations started and ongoing
- Series of tests defined, planned and partly executed
- Backup strategy considered for LPF and LISA for risk mitigation
- Status review and decision on way forward in April 2011

Workplan to solve the problem in place. Alternatives exist (colloids) and are ready to fly

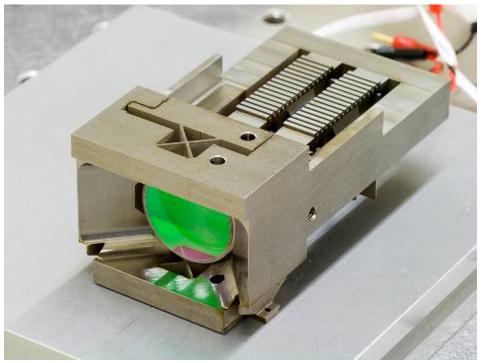


LPF current status

- Successful CDR for Payload, spacecraft, science ground segment and Mission
- Most flight units tested and delivered
- Spacecraft bus integration almost complete
- Propulsion module integration complete
- Integrated System Test campaigns started
- Launch Lock and FEEPs Review in April 2011

22

Earliest launch end 2013



Technology Development Activities

- Technology development done during phase 0/A
- Achieve technology readiness by mission adoption
- LISA has an approved technology development plan that includes, inter alia
 - Optical Bench
 - Point-Ahead Angle mechanism
 - Phasemeter
 - UV light sources
 - Optomechanical characteriz.
 - GRS Front-End Electronics

Solid technology plan, leading to timely maturity

Point-Ahead Angle Mechanism

ESA-NASA cooperation

- Long-standing cooperation, started in 2000
- Parallel organizational structures within the two Agencies
- ESA and NASA Project Managers jointly coordinate Mission Formulation activities
- Scientific community organized in the LISA International Science Team (LIST)
 - 15 members from Europe and 15 from US, European and US cochairs
 - Actively supports the Mission System Engineering
- The working scenario for Implementation is based on:
 - One Agency having a clear lead role and being responsible for mission success
 - Each Agency individually managing the procurement and delivery of the assigned mission elements

Possible cooperation scenarios

- Four scenarios with acceptable division of responsibilities for Implementation Phase studied
- One used as baseline for the Mission Formulation activity and for the Review

Scenario type:	Working scenario	
	ESA	NASA
Mission lead - System Engineering	Х	
Support to System Engineering		Х
Real-time Testbed	Х	
Spacecraft		Х
Payload	Х	
Phasemeter		Х
System Assembly Integr. & Verific.	Х	
Flight Software	Х	
Propulsion Module	Х	
Micropropulsion	Х	
Ground operations		Х
Launch Vehicle		Х
Science Ops./Guest Investigator	Х	Х

CV Review outcome

- Mission design adequate to support the mission
- Sound development approach
- **Budgets correctly established**
- All Technology Development Activities (TDAs) in place
- Clear path to TRL 5 for all critical technologies
 - TRL 5 achieved timely prior to mission adoption
 - Following areas require attention
 - Laser
 - Micropropulsion
 - GRS
 - (All are covered by dedicated TDAs)
- Overall development risk compatible with L-mission schedule
- **Co-operation scheme allows clear responsibilities and simple** interfaces

Way forward into Definition

- The workplan leading to the Definition phase includes work in the following areas:
 - System Requirements Document preparation
 - Detailed Separation analysis
 - Intelligent Propulsion Module
 - Shifting functions from sciencecraft to propulsion module
 - Consolidation of optical design
 - *Micropropulsion lifetime demonstration*
 - Alternative micropropulsion systems
 - Colloidal
 - Indium
 - RFT
 - Cold gas
 - Contamination
 - Optical surfaces
 - Fibres

LISA - AG

Conclusion

- The mission concept is mature and well studied
- The technical baseline is feasible
- Technology Development Activities
 - Are well defined
 - Address critical areas
 - Lead to timely technology readiness
- A co-operation scenario exists that allows clear responsibilities and simple interfaces
- The overall development risk is compatible with L-mission schedule

We are ready to go !