

ESTEC

European Space Research - and Technology Centre - Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands T +31 (0)71 565 6565 - F +31 (0)71 565 6040 - www.esa.int

DOCUMENT

LOFT Science Requirements Document

Prepared byDavid Lumb, LOFT Science TeamReferenceSRE-SA/LOFT/2011-001Issue2Revision2Date of Issue11/09/2013Status:issueDocument TypeRQDistributionOpen

European Space Agency Agence spatiale européenne

APPROVAL

Title	
Issue 2	Revision 6
Author	Date 11/09/2013
Approved by	Date

CHANGE LOG

Reason for change	Issue	Revision	Date
Clarifications to release to the industry study	1	3	2/2/2012
Updates during Mission Requirements review by LOFT	1	4	25 May 2012
Science Team			
Update provided to industry for CCN	1	5	08/09/2012
Update for payload consortium AO	1	6	19/09/2012
Update for Industry second phase activity and	1	7	7/2/2013
following the Payload AO Review cycle			
Requirements flow down and descope trade-offs were	2	Draft	15/05/2013
requested to be added after ICR			
Consolidated review prior to PRR	2	1	09/09/2013
Minor editorial changes	2	2	11/09/2013

CHANGE RECORD

Issue 1	Revision 2 a	and 3	
Reason for change	Date	Pages	Paragraph(s)
First formal issue, compared to the draft version (0.8) there are many minor textual changes but the main substantial changes include:	24 Jan 2012		
LAD			
 drop of collimator off-axis transparency as top level requirement (not a requirement but a trade- off between the instrument background and the sensitivity off-axis) collimated FoV of LAD is now defined as less than instead of 1 and 0.5 (goal) degree added a requirement for the response stability which, in combination with the flat top requirement, will avoid unintended (time dependent) modulations in the response moved the calibration knowledge to the goal (essentially affects the time needed for calibration on module level) some justifications of the requirements updated and reference to the top level goals added for the LAD requirements 			

WFM

 defined FoV of WFM in steradian defined broadcast requirement for trigger (and			
position) information (TBC)			
System			
• defined the visibility of the galactic centre (as the			
goal for increasing it had top priority)			
 defined times for core and observatory science with an accuracy of 100 ks 	1		
 undated the ToO time to be consistent with the 			
MRD			
Effective Area stability is the driving requirement,	2/2/2012	16	Table 5.1 and
therefore suggest to ignore requirement SCI-LAD-R-11			Section 5.1.4
"Full data" is replaced by " nominal binning" to	2/2/2012	19	5.1.7
emphasise the fact that in nominal binning the is			
already some compression of energy scale data	0/0/0010	05	<u> </u>
Clarified that the broadcast triggers should occur with 30 seconds for the event time and within 2 minutes for	2/2/2012	20	5.2.5
an event position. For any reasons, 75% of trigger			
events should be broadcast within these time limits.			
Modify the LAD data rates	2/2/2012	26	5.3 - table of system
			requirements
Modified the definition of Galactic Centre visibility for	2/2/2012	28	5.3.1
range and equatorial coordinates, as well as defining			
The energy resolution is allowed to degrade for some	25 05 2012	15	512
science goals and this relaxes constraint on SAA and	20-00-2012	15	5.1.5
thermal performance (Note this requirement needs			
further justifying vs. the list of Science Top Level Goals			
to be relaxed)			
Update the background knowledge requirement. It is	25-05-2012	18	5.1.7
believed to be achievable with the use of a low fraction (1%) of the LAD effective area being blocked off			
Added position information to the burst trigger data	25-05-2012	25	525
Added WFM relative sensitivity calibration	25-05-2012	$\frac{25}{25}$	526
requirement	20 00 2012	20	0.2.0
Provide justification for number of triggers to be	25-05-2012	26	5.2.7
downlinked			
Added explanatory note re. redundancy	25-05-2012	11, 19	5.1, 5.2
Modified summary of LAD requirements.	25-05-2012	12	Table 5.1
Upper energy range of detection set to 80keV	25-05-2012	14,22	5.1.2, 5.2.4
LAD Field of View - changed the requirement to a	25-05-2012	15	5.1.4
for a small field that otherwise complicates the stability	,		
requirement			
Added explicit requirement of response stability of	25-05-2012	15	5.1.5
LAD as function of frequency			
Added comment to the observing plan table accounting	25-05-2012	32	6
for background observations.			
Rev. 5/6 Changes	00/00/0010		
Updated reference to MRD.	08/09/2012	Throughout	throughout
Minor formatting throughout.	08/00/2012	20	518
Changed I BAS broadcast requirement from 65 to 75%	08/09/2012	$\frac{20}{23}$	5.9
of events in Table 5.2	00/00/2012	~0	0.2
Justification included for SCI-WFM-G-19.	08/09/2012	28	5.2.8
Removed 1' RPE requirement in system requirements	08/09/2012	31	5.3.2
table 5.1, and included table caption for this table.			
Justification included for SCI-SYS-G-04.			

Deleted SCI-SYS-R-09 which is old RPE requirement.			_
Updated reference to MRD and M3 proposal.	08/09/2012	8	3
Removed caption at top of LAD requirements table. Updated LAD requirements table (5-1) to reflect latest	08/09/2012	13	5.1
evolution of payload design.			
Included frequency-dependent TN in table 5-1 and included in references list.	08/09/2012	13	5.1
Changed SCI-LAD-R-06 to split between primary and extended energy ranges.	08/09/2012	16	5.1.3
Updated justification for SCI-LAD-G-08.	08/09/2012	17	5.1.4
Updated SCI-LAD-R-10 to include goal FoV.	08/09/2012	17	5.1.4
Added section 5.1.1 System requirements and SCI- LAD-R/G-23, which specify tolerable loss in effective area.	08/09/2012	14	5.1.1
Undated WFM requirements table 5-2	08/09/2012	23	52
Updated SCI-WFM-R-06 to correct to primary and extended energy ranges.	08/09/2012	25	5.2.5
Added WFM system requirements section and redundancy requirement.	08/09/2012	24	5.2.1
Updated system requirements table and added caption	08/09/2012	29	5.3
Completed SCI-SYS-G-04.	08/09/2012	30	5.3.1
Updated justification for SCI-SYS-G-13.	08/09/2012	32	5.3.3
Added note to specify that mock observation plan has been made applicable to the MRD.	08/09/2012	34	6
Added preliminary Table 6-7 of observing time spent in different viewing directions.	08/09/2012	38	6
Modified "GOALS" to "OBJECTIVES"	10/09/2012	9	4
Added sub-section on measurement principles	10/09/2012	10	4.2
SCI-WFM-R-22 justification changed to make more readable	12/09/2012	23	5.2.1
Clarify requirement justifications WFM-R 18 and 19	12/09/2012	26	5.2.7
Removed requirement WFM-R-15. Poorly written and offers nothing additional to associated requirements #14 and #16	12/09/2012	25	5.2.6
Requirement added, SCI-SYS-R-18. Noting that QLA should support the decision making process to change observing plans as a result of TOOs or source properties not meeting observing criteria. Implied performance criteria is really driven by the planning and decision process and not the QLA per se.	12/09/2012	32	5.3.4
Redundancy requirement for LAD is not formally a science requirement and is explains in Appendix B	17/09/2012	14	5.1.1
Orbit requirement is not strictly a science requirement. It is driven by required minimisation and stability of background, and therefore recalled in Appendix B for traceability	17/09/2012	31	5.3.3
DATA rates are to be seen as an instrument/spacecraft design requirement. Only the minimum source flux to be telemetered without data loss should be the requirement from science. Requirements modified and/or moved to appendix	17/09	33	5.3.5
Modified FoR with energy resolution requirements. Based on telecon with consortium team, only some science objectives need the 260eV resolution and they are predictable targets where the greatest FoR is not thought to be required. Also made clear the GC visibility requirements are	19/09/2012	17 31	5.1.4 5.3.1
applicable to the extended FoR.			

appendices. These requirements are now held in the MRD Modification of effective area requirement to consider 7/2/2013 15 5.1.2 possible directions for relaxation (explanatory text) 15 5.1.2 Issue 2 of the document has a large number of changes. 10/7/2013 all 2 Most of these are related to the report of the IPR in most important one include: (not yet complete!) updated objectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirement of the absolute time accuracy to 2microse for the LAD and the WFM .	Re	moved derived engineering requirements to	7/2/20013	Throughout	Throughout	
MRD 15 5.1.2 possible directions for relaxation (explanatory text) 10/7/2013 all 2 Issue 2 of the document has a large number of changes. 10/7/2013 all 2 Most of these are related to the report of the IPR in which a number of clarifications are requested. The most important one include: (not yet complete!) 10/7/2013 all 2 • updated introduction introducing also level 0, level 1 and level 2 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2, 2b and 2c requirements to clarify ambiguities (no substantial change) addition of the requirements of the events corresponding to 240 eV with no event selection change in the requirements of the events corresponding to 240 eV with no event selection - charified that the energy resolution requirements for requirement is thus strict(> 9.5. m² (at other energies this is the same) and has now been clarified. The gound of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified the off-axis energy nergy is for the LAD yeerified energy +/ 0.5 keV (the slope in the effective area curve is steep at the low energy) • updated the off-axis energy response for the LAD specified the erquirement of the background knowledge to 0.25 m². The area at low energy and high energy is given at a specified the erquirement of the background knowledge is the signify updated the WTM description (bullet wise) as	appendices. These requirements are now held in the					
Modification of effective area requirement to consider 7/2/2013 15 5.1.2 Jessue 2 of the document has a large number of changes. 10/7/2013 all 2 Most of these are related to the reprot of the IPR in all 2 updated introduction introducing also level 0, level 1 and level 2 requirements updated objectives where the observatory science is one of the level 1 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to charify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a charification of the requirements (officient) of 060 V for 6% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection charified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV with no event selection charified in that requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM eccuration that the required 10 area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m ² (a tother energies this is the same) and has now been charified therego and has now been charified energy +/ 0.5 keV (the solute in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the energuired loading knowledge of the LAD to be 2.8% set the requirement of the background knowledge of the LAD to be 2.8% set the requirement of the background knowledge o	M		<u></u>			
possible directions for relaxation (explanatory text) all 2 Most of these are related to the report of the IPR in most important one include: [not yet complete]) all 2 - updated introduction introducing also level 0, level 1 and level 2 requirements (so not of the level 0 requirements (effectively this does not change the missions) 3 - some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) - - - addition of the level 2.a, 2b and 2c requirements to clarify ambiguities (no substantial change) - - - addition of the level 2.a, 2b and 2c requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 60% of the events and 200 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection - - - charified number. The negimeering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 2m² urea is a rounded number. The negimeering terms the reflective area curve is steep at the low energy) -	Mo	dification of effective area requirement to consider	7/2/2013	15	5.1.2	
 Issue 2 of the document has a large furmose of changes. 107/2013 all 2 Most of these are related to the report of the IPR in which a number of clarifications are requested. The most important one include: [not yet complete]) updated introduction introducing also level 0, level 1 and level 2 requirements updated objectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2, a band 2 crequirements in the section on instruments and mission, and a clarification of the requirement's definition clarified that the energy resolution requirements of the LAD corresponding to 240 eV with no event selection charified that the energy resolution requirements of the LAD corresponding to 240 eV with no event selection charification that the requirement of the absolute time accuracy to 2 microsce for the LAD and the WFM clarification that the requirements the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/ 0.5 keV (the slope in the Editive area curve is step at the low energy) updated the difficatione the science goals for the E-line slightly updated the WFM description (bullet wise) as this gives the cade before getting into the description bullet wise) as the requirement 5% to eable before getting into the detailed requirements clarified the require energies allower with a lower getting into the detailed requirements clarified the require energies and before getting into the detailed requirements clarified the require resone ide absolute time accurediting into the detailed requirements clarif	pos	ssible directions for relaxation (explanatory text)	10/7/0010	-11		
 which a number of clarifications are requested. The most important one include: [not yet complete] updated introduction introducing also level 0, level 1 and level 2 requirements updated objectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2. z band 2 crequirements in the section on instruments and mission, and a clarified that the energy resolution requirements of the section on instruments and mission, and a clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarified number. In engineering terms the requirement is thus strictly > 9.5 m² (at other requirement is thus strictly > 9.5 m² (at other regrified and the servery and high energy is given at a specified energy +/ 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the dreadime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the dreadime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to detailed requirements clarified thet of net cores science will be allocated through a peer review process and is ope	1SS Mo	ue λ of the document has a large number of changes.	10/7/2013	all	2	
 which information and include: (not yet completed) updated introduction introducing also level 0, level l and level 2 requirements updated objectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguites (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarified that the strictly > 9.5 m² (at other energies this is thus strictly > 9.5 m² (at other energy); sigven at a specified energy +/. 0.5 keV (the slope in the effective area at low energy and high energy) is given at a specified energy +/. 0.5 keV (the slope in the effective area at low energy and high energy); sigven at a specified the requirement of the LAD updated the off-axis energy response for the LAD specified the requirement of the went selection clarified energy +/. 0.5 keV (the slope in the effective area at low energy and high energy); sigven at a specified the required deadtime knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (builtet wise) as this gives the reader some idea before getting into the detailed requirement is above the effective area curve is sale above the effective area curve is step at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (builtet wise) as this gives the reader some idea before getting into	wh	ich a number of clarifications are requested. The				
 updated introduction introducing also level 0. level 1 and level 2 requirements updated dojectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2. a, 2b and 2c requirements in the section on instruments and mission, and a clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection charified that the energy resolution requirements of charige in the requirement on the absolute time accuracy to 2 microse for the LAD and the WFM clarification that the require do the WFM clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +. 0.5 keV (the slope in th effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified energy +. 0.5 keV (the slope in th effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified energy +. 0.5 keV (the slope in th effective area curve is steep at the low energy) updated the off-axis energy and high energy is given at a specified energy +. 0.5 keV (the slope in th effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (builtet wise) as this gives the reader some idea before getting into the detailed requirements clarified the ToO requirements at bis should not chrime the removed memory time: all observing time including for the core science will be allocated through a peer review proces	mo	st important one include: (not yet completel)				
 I and level 2 requirements updated objectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements' definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy + / 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the cores cience will be allocated through a peer review process and is open to the community clarified the roo requirements 	-	updated introduction introducing also level 0. level				
 updated objectives where the observatory science is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements idefinition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified the ToO requirements doserving time including for the core science will be allocated through a peer review process and is open to the community clarified the reoursent as this should not drive the oregoned reavent. 		1 and level 2 requirements				
 is one of the level 0 requirements (effectively this does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements' definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarified that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other engister this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/-0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slighty updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements. 	-	updated objectives where the observatory science				
 does not change the missions) some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events accuracy to 2 microsec for the LAD and the WFM clarified in the requirement of the background has now been clarified. The goal of 12 m² turned out to be not requirement to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives at is given at the required to a become the about the set off-axis and the required the definition of the end off-axis (and the nergy) clarified text of ne to be background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives at the approximation of the background knowledge through a peer review process and is open to the community clarified text of ne to beservatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the to core science will be allocated through a peer review process and is open to the community 		is one of the level 0 requirements (effectively this				
 some reformulation of the level 1 requirements to clarify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the requirement as a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified the off-axis energy response for the LAD updated the off-axis energy response for the LAD set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line clarified text of ne to be science goals for the Fe-line sighty updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements 		does not change the missions)				
 clarify ambiguities (no substantial change) addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements' definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarified number. In engineering terms the requirement to the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/-0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the requirement of the background knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not detailed requirement as this should not detailed requirement as this should not detailed requirements 	-	some reformulation of the level 1 requirements to				
 addition of the level 2a, 2b and 2c requirements in the section on instruments and mission, and a clarification of the requirements' definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the requirement be accuracy to 2 microsec for the LAD and the WFM clarification that the requirement be accuracy to 2 microsec for the LAD and the WFM clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the reader science in the science science will be allocated through a peer review process and is open to the community 		clarify ambiguities (no substantial change)				
 the section on instruments and mission, and a clarification of the requirements definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not device the detailed recurrent area to be science on the character details the detailed recurrent as the should not device the detailed recurrent as the should not 	-	addition of the level 2a, 2b and 2c requirements in				
 clarification of the requirements definition clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/ 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not dvine the granue target as this should not 		the section on instruments and mission, and a				
 clarified that the energy resolution requirements of the LAD correspond to 260 eV for 60% of the events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the TOO requirement as this should not devine the generative text. 		clarification of the requirements' definition				
 the LAD correspond to 260 eV for 60% of the events events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/· 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the TOO requirement as this should not drive the remover the science goals for the core science will be allocated the remover the science science will be allocated through a peer review process and is open to the community 	-	clarified that the energy resolution requirements of				
 events and 200 eV for 40% of the events corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not deixed the more meta. 		the LAD correspond to 260 eV for 60% of the				
 corresponding to 240 eV with no event selection change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the greenet. 		events and 200 eV for 40% of the events				
 change in the requirement on the absolute time accuracy to 2 microsec for the LAD and the WFM clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the grave to the science to the science with the grave to the science to the science with the grave to the science to the science with the grave to the science to the science with the grave to the science with t		corresponding to 240 eV with no event selection				
 clarification that the required 10 m² area is a rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the grave state state	-	change in the requirement on the absolute time				
 rounded number. In engineering terms the requirement is thus strictly > 9.5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the gravet dearment. 	_	clarification that the required 10 m^2 area is a				
 requirement is thus strictly > 9, 5 m² (at other energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the dreund carement 		rounded number. In engineering terms the				
 energies this is the same) and has now been clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge to the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground action the science to the science to the science to the community 		requirement is thus strictly $> 9.5 \text{ m}^2$ (at other				
 clarified. The goal of 12 m² turned out to be not realistic can has therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not deive the ground accoment 		energies this is the same) and has now been				
 realistic can be as therefore been reduced to 10.5 m². The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not deive the mean demonstrates 		clarified. The goal of 12 m ² turned out to be not				
 The area at low energy and high energy is given at a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the detauded accomment. 		realistic can has therefore been reduced to 10.5 m ² .				
 a specified energy +/- 0.5 keV (the slope in the effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground segment. 		The area at low energy and high energy is given at				
 effective area curve is steep at the low energy) updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground approach 		a specified energy $+/-0.5$ keV (the slope in the				
 updated the off-axis energy response for the LAD specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument 		effective area curve is steep at the low energy)				
 specified the required deadtime knowledge of the LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument 	-	updated the off-axis energy response for the LAD				
 LAD to be 2.8% set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument 	-	specified the required deadtime knowledge of the				
 set the requirement of the background knowledge to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground apprent 		LAD to be 2.8%				
 to 0.25% to enable the science goals for the Fe-line slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument 	-	set the requirement of the background knowledge				
 slightly updated the WFM description (bullet wise) as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument 		to 0.25% to enable the science goals for the Fe-line				
 as this gives the reader some idea before getting into the detailed requirements clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground apprent 	-	slightly updated the WFM description (bullet wise)				
 clarified text of net observatory time: all observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument 		as this gives the reader some idea before getting				
 claimed text of het observatory time, an observing time including for the core science will be allocated through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument. 		algorithm of the second s				
 through a peer review process and is open to the community clarified the ToO requirement as this should not drive the ground argument. 	-	time including for the core science will be allocated				
 community clarified the ToO requirement as this should not drive the argument 		through a neer review process and is open to the				
 clarified the ToO requirement as this should not drive the ground apprent 		community				
drive the ground segment	-	clarified the ToO requirement as this should not				
arive the ground segment		drive the ground segment				
- corrected SCI-SYS-R-06 indicating the GC	-	corrected SCI-SYS-R-06 indicating the GC				
visibility as being 3 ks. The original number was		visibility as being 3 ks. The original number was				
elapsed time		elapsed time				
- extended the observing plan showing also the	-	extended the observing plan showing also the				
required energy resolution per science goal and		required energy resolution per science goal and				
number of observed sources		number of observed sources				
- added the magnetar to the target list (does not	-	added the magnetar to the target list (does not				
change the observing plan as this will be observed		change the observing plan as this will be observed				
through collimator		through collimator				
- Keviseu and clarified the Observing plan added the probability to detect PHCT and AMVDe	-	Revised and clarified the UDServing plan				
- added the provability to detect DRC1 and AMARS as function of mission duration and sky visibility	-	action of mission duration and sky visibility				
- added an appendix with the main dependencies of	-	added an appendix with the main dependencies of				

 the key requirements (area, mission duration, sky visibility) added another appendix (B) specifying the dependencies in the instrument and mission requirements added appendix C justifying the drop of some requirements added appendix D justifying the require spectral resolution in some more detail Provided a narrative definition for most of the requirements, particularly the 2a level 			
Iss 2 Rev 2			
Goal increase 10% not 20% - consistent with evolution potential of spacecraft envelope	11/09/2013	18	SCI-LAD-G-01-04
For consistency with MRD definitions, we need to specify not specifically performance for 2 anode events, but the overall AVERAGE performance.	11/09/2013	20	SCI-LAD-R-08
FWHM~\(40\%*(200eV)^2 + 60\%* (260eV) ^2)= 240eV			
The 60%/40% split between events is a consequence of the instrument design and not an element of the science requirements.			
This leads to internal consistency with the case for 'degraded energy resolution' (SCI-LAD-R-22) which has been specified for an average over all detected events			
Field of view should be defined as a limit and not a range. Update the justification to explain the rationale	11/09/2013	21	SCI-LAD-R-10
Editorial explanation	11/09/2013	30	SCI-WFM-R-19
Editorial - 400eV is consistent with requirements and had not been copied across from the correctly Tech Note	11/09/2013	52	A.3.2

Table of contents:

1	ACRONYMS	8
2	INTRODUCTION	9
3	REFERENCES	10
4	OBJECTIVES	11
4.1	Minimum success criteria	13
4.2	Core science requirements (level 1)	13
4.3	Observatory science	15
5	INSTRUMENT PERFORMANCE REQUIREMENTS	16
5.1	Large Area Detector	16
5.1.1	Effective area	18
5.1.2	2 Energy Range	19
5.1.3	Spectral Resolution	20
5.1.4	Field of view	21
5.1.5	6 Response Stability	22
5.1.6	3 Time information	23
5.1.7	' Background	24
5.1.8	B Source flux	25
5.1.9	0 Modularity	26
5.2	Wide Field Monitor	27
5.2.1	Angular resolution and source localization accuracy	29
5.2.2	2 Sensitivity	29
5.2.3	3 Field of view	31
5.2.4	4 Energy range and resolutions	31
5.2.5	5 Time information	32
5.2.6	3 Transient sources	33
5.2.7	7 System Requirements	35
6	MISSION PERFORMANCE REQUIREMENTS	36
6.1.1	Observing Time for LAD	37
6.1.2	2 Pointing	39
6.1.3	B Orbit	40
6.1.4	l Target of Opportunity	41
6.1.5	õ Data rates	42
7	OBSERVING PLAN	43
App	endix A Additional science requirement dependencies	48
App	endix B Science requirements flow down	55
App	endix C Obsolete requirements	61

1 ACRONYMS

AGN	Active Galactic Nucleus
AMXP	Accreting millisecond X-ray pulsar
BH	Black Hole
BHCT	Black Hole Candidate Transient
EOS	Equation of State
FWHM	Full Width at Half Maximum
GR	General Relativity
HEW	Half Energy Width
ISM	Inter Stellar Medium
LAD	Large Area Detector
LMXB	Low Mass X-ray Binary
NS	Neutron Star
QCD	Quantum Chromodynamics
QPO	Quasi-Periodic Oscillation
SMBH	Super Massive Black Hole
TOO	Target of Opportunity
WFM	Wide Field Monitor

2 INTRODUCTION

This document records the scientific requirements for the Large Observatory for X-ray Timing (LOFT). These are the reference requirements through which the Mission Requirements Document will be derived and also the instrument specifications are deduced.

The document starts with the mission statement (also called level 0 requirements) and the minimum scientific success criteria. Next these goals are quantified in a number of sub-goals (level 1 requirements). These level 1 requirements translate into requirements for the two instruments, the mission and the observation plan (level 2 requirements). These requirements are split into different groupings: level 2a, 2b and 2c requirements:

Level 0:	top level goals
Level 1:	breakdown of top level goals in quantified sub-goals
Level 2a:	instrument, mission and observation plan requirements needed to fulfil the top level goals
Level 2b:	subsystem requirements which are directly inferred from the Level 2a requirements
Level 2c:	instrument, mission and observation plan requirements that will not drive the mission
	design but will enhance the scientific return of the mission considerably

Although the level 2b and 2c could be omitted we have included them as they define rather well the type of mission needed to optimize the science (and, for example, level 2c requirements follow a science judgement and cannot be derived from the top level requirements).

The structure of the document is as follows: first the top level objectives and science requirements are given (levels 0 and 1, see section 4). Next the requirements for the two instruments are presented, including a detailed justification and specification of the requirements. In section 6 we provide system level requirements. These are, for a significant fraction, based on the observation plan given in section 7. Detailed description of dependencies in the requirements is presented in appendix A, showing that there is a safe margin in the key requirements with respect to achieving the science goals. In appendix B we provide an overview of the requirement flow down, in appendix C we provide some information about requirements which have been dropped and in appendix D we provide a detailed justification for the required energy resolution.

This version 2 of the science requirements document has relatively few substantial changes in the numbered requirements compared with the issue 1.6. It has however been restructured to meet the request from ESA to provide a more rigorous flow down of the requirements. Only the substantial changes are listed in the change log.

3 REFERENCES

- [RD 1] LOFT: Large Observatory For X-ray Timing, M3 proposal.
- [RD 2] Calibration accuracy of the dead-time, M. vd Klis. LOFT-LAD-TimePerf-20121126LOFT
- [RD 3] LOFT Large Area Detector Response Stability, M. van der Klis et al. LOFT-LAD-RespStab-20120322. 22/03/2012, Issue 1.0
- [RD 4] LOFT Observing Plan Document , LOFT_ObservingPlan_TN2_MA
- [RD 5] LOFT Large Area Detector Background Models, R. Campana. LOFT Technical Note, LOFT-LAD-BkgMdl-20111130. 30/11/2011, Issue 1.0.
- [RD 6] Radiation damage of the LOFT SDDs and its effects on the energy resolution, E. Del Monte et al. LOFT System Note, LOFT-SysN-NIEL-20121105. 05/11/2012, Issue 3.0.
- [RD 7] LOFT System Note: Measurement of the Radiation Damage from soft protons on the Silicon Drift Detectors, E. Del Monte et al., LOFT System Note, LOFT_SysN-IrradSoftProtons_20121112.. 12/11/2012, Issue 1.0.
- [RD 8] LOFT Large Area Detector: Telemetry Estimate, J. Wilms & C. Tenzer. LAD Technical Note, LOFT-LAD-TMest-20120518. 18/05/2012, Issue 2.0.
- [RD 9] LOFT Wide Field Monitor Data modes, compression and telemetry, S. Brandt, LOFT WFM Technical Note, LOFT-WFM-DTC-20120524. 24/05/2012, Issue 2.1.
- [RD 10] The Large Observatory For X-ray Timing (LOFT), M Feroci et al, Experimental Astronomy, Volume 34, Issue 2, pp.415-444
- [RD 11] LAD data compression assessment, B. Artigues, LOFT-LAD-DCA-20130116
- [RD 12] LOFT Wide Field Monitor Preliminary Simulations, J in't Zand, LOFT-WFM-Simul-20120515
- [RD 13] LOFT Background Working Group Report LOFT-LAD xxx 2013nnnn TBC

4 OBJECTIVES

Mission statement:

LOFT is designed to study the equation of state of ultra-dense matter and to explore the conditions of strong-field gravity.

The statement is elaborated below in narrative form that explains how our Level 0 requirements are defined:

EOS of ultra-dense matter and neutron star structure. Understanding the properties of ultra-dense matter and determining its equation of state (EOS) is one of the most challenging problems in contemporary physics. At densities exceeding that of atomic nuclei, exotic states of matter such as Bose condensates or hyperons may appear; a phase transition to strange quark matter may take place at higher densities. Only neutron stars probe these densities in the 'zero' temperature regime relevant to these transitions.

Very "soft" EOSs give a maximum neutron star mass in the 1.4-1.5 solar mass (Mo) range, whereas "stiff" EOSs can reach up to 2.4 -2.5 Mo before collapse to a black hole becomes unavoidable. Apart from maximum mass, the relation between the neutron star mass and radius (M-R) is a powerful probe of the EOS. With the exception of redshifts of any narrow atmospheric lines (feasible for slowly rotating stars only), all tools devised to constraint mass-radius are based primarily on accurate time-resolved and high-throughput broadband spectral measurements. In ~25 neutron stars, spins are now observed in burst oscillations and/or coherent pulsations at frequencies of up to 620 Hz, proving that millisecond spins and dynamically relevant magnetic fields are common among neutron stars in low-mass X-ray binaries.

LOFT will measure the masses and radii of thermonuclear powered millisecond pulsars to an instrumental accuracy of of 4% in mass and 3% in radius by modelling their pulse profiles: their fast spin and strong gravity affect the radiation from the surface hot spots producing the pulsations through relativistic beaming, time dilation, red/blue-shifts, light bending and frame dragging (hence they provide an alternative probe of strong field gravity effects as well). LOFT will be able to cross-validate these results by flux and spectral modelling at photospheric touch-down of radius-expansion thermonuclear X-ray bursts. Since the maximum rotation a neutron star can sustain depends on its mass and structure, fastest spin periods also constraint the neutron star EOS. LOFT will detect periodic signals (and QPOs as well) with unprecedented sensitivity. Models indicate that the pulsation amplitude in fast spinning neutron stars in X-ray binaries could be as low as 0.1%, so the effective area of the LAD is needed to detect these pulsations in a typical 10⁴ s observation of a 100 mCrab source. The recent discoveries of a few intermittent X-ray pulsars, with small pulse amplitudes over short periods of time, indicate that it should be possible to build up a much better spin period distribution for accreting neutron stars than has been possible with RXTE. These intermittent pulsations were also very hard, underscoring the need for a timing mission with a good hard X-ray response. LAD can search for them with an unprecedented sensitivity (0.4 % amplitude in 100s for 100mCrab source).

A different approach has recently emerged from the discovery of global seismic oscillations GSOs) in the tens of Hz to kHz range from magnetars during the rare and extremely luminous giant flares emitted by these sources. The lower frequency GSOs likely arise from torsional shear oscillations of the crust and their frequency, in combination with the magnetic field inferred from the magnetar spin-down, tightly constrains the EOS. LOFT has the capability detect and study GSOs for the first time in 'intermediate' flares, which are tens of times more frequent than giant ones, down to amplitudes of 0.7%, an order of magnitude lower than seen up to now. This will open a new window in the study of neutron star structure through asteroseismology.

In summary these different measurements all address the same top level requirement:

TOP1 The equation of state of ultra-dense matter will be quantified using neutron star mass and radius measurements and measurements tailored to neutron star crust properties.

Page 11/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2 **Strong gravitational fields.** About 40 compact objects accreting matter in binaries are now known to display variability arising in, and occurring at the (millisecond) dynamical timescale of their inner accretion flows: black holes and neutron stars, respectively, show QPOs of up to 450 and 1250 Hz. These QPOs require an explanation that involves the fundamental frequencies of the motion of matter in the inner, strong-field gravity-dominated disk regions. In the absence of sufficient guidance from observations, modelling has so far been to a large extent phenomenological, and different interpretations are still viable.

For example, competing models variously identify observed QPOs with the relativistic radial and vertical epicyclic frequencies or relativistic nodal and periastron precession. Very high-signal-to-noise LOFT/LAD measurements of the QPOs will unambiguously discriminate between such interpretations and in the process tease out as yet untested general relativistic effects such as frame dragging, strong-field periastron precession, and the presence of an innermost stable orbit. Crucially, LOFT will provide access for the first time to types of information in these signals that are qualitatively new due to the capability to measure dynamical timescale phenomena within their coherence time, where so far only statistical averages of signals were accessible. This will allow studies that directly witness QPO formation and propagation and tie in with phenomena that state-of-the-art numerical work is just beginning to address.

LOFT will allow direct measurements of the black hole mass and spin through timing measurements, to compare with other estimates such as mass from optical studies or spin from the thermal X-ray continuum or the Fe K-line profile. The spectral capabilities of LOFT will allow use of the energy dependence of amplitudes and phase delays in the QPOs together with the Fe-K line profiles to measure the compact object's mass and spin, the disk inclination and to study massive black holes in the brightest active galactic nuclei (AGNs) by measuring with unprecedented accuracy the profiles and variability of their Fe K-lines. Additionally, LOFT's good response to higher-energy X-rays is crucial for most of this work; the discoveries of the highest-frequency quasi-periodic oscillations from black holes – the ones which can be used to probe the mass and spins of the black holes – were made only above 13 keV, despite the much higher count rates at lower energies. Similarly, reliable measurements of Fe lines can only be made when both the Fe spectral edges around 8-9 keV and the continuum at energies significantly higher than these edge energies can be well measured.

In summary this leads to the second top level requirement:

TOP2 The conditions of strong-field gravity will be quantified by measuring the mass and spin of black holes (BH) and by verifying predictions of general relativity (GR), such as precession and epicyclic motion. To these aims study of Quasi-Periodic-Oscillations (QPOs) in the time domain, Fe line reverberation and tomography in bright Active Galactic Nucleus (AGNs) and Galactic Black Hole Candidates (BHCs) will be exploited.

Additional Science Themes. LOFT will additionally be a powerful observatory for studying the X-ray variability and spectra of a wide range of objects, from accreting pulsars and bursters, to magnetar candidates (Anomalous X-ray Pulsars and Soft Gamma Repeaters), cataclysmic variables, bright AGNs, X-ray transients and the early afterglows of Gamma Ray Bursts. Due to its high sensitivity it will also enable the study of disk-jet interaction. Through these studies it will be possible to address a variety of problems in the physics of these objects. Coordinated optical/NIR and radio campaigns on specific themes, as well as spin measurements which can aid the Advanced Virgo/LIGO searches for gravitational wave signals from fast rotating neutron stars will add great value to the LOFT program. Although not part of the core science we have identified the following third top level requirement:

TOP3 Enable observational science of a wide variety of X-ray sources during the mission life time, these topics will be complementary with the core science.

Although it is expected that a reasonable fraction of the mission lifetime can be allocated to observatory science (25 Ms) it has not been quantified and therefore it does not drive the mission design

4.1 Minimum success criteria

The minimum scientific success criteria for the mission are reached if the two core science objectives (TOP1 and TOP2) are achieved. It has been indicated in the description of these top level science objectives that supplementary observation strategies are followed to achieve this. For the minimum success criteria this is not required and a constraint from a single method is sufficient:

- The EoS and the QCD phase diagram is constrained by measuring neutron star masses with 4% accuracy and radii with an accuracy of 3% for 3 NSs.
- Strong-field general relativistic effects close to BHs and NSs are detected and BH masses and spins measured through time variability and spectroscopic measurements pf 3 BHs and 6 NSs.

4.2 Core science requirements (level 1)

For each of the level 0 objectives we have identified above a number of complementary methods to achieve these, these are specified quantitatively as our level 1 requirements. The Level 1 requirements for the LOFT mission are to:

Determine Equation of State by different approaches:

- EOS1 Constrain the equation of state of supranuclear-density matter by the measurement, using three complementary types of pulsations, of mass and radius of at least 4 neutron stars with an instrumental accuracy of 4% in mass and 3% in radius¹.
- EOS2 Provide an independent constraint on the equation of state by filling out the accreting neutron star spin distribution through discovering coherent pulsations down to an amplitude of about 0.4% (2%) rms for a 100 mCrab (10 mCrab) source in a time interval of 100 s, and oscillations during type I bursts down to typical amplitudes of 1% (2.5%) rms in the burst tail (rise) among 35 neutron stars covering a range of luminosities and inclinations.
- EOS3 Probe the interior structure of isolated neutron stars by observing seismic oscillations in Soft Gamma-ray Repeater intermediate flares when they occur with flux ~1000 Crab through high energy photons (> 20 keV).

Study Strong-field GR by different approaches:

- SFG1 Detect strong-field GR effects by measuring epicyclic motions in high frequency QPOs from at least 3 black hole X-ray binaries and perform comparative studies in neutron stars.
- SFG2 Detect disk precession due to relativistic frame dragging with the Fe line variations in low frequency QPOs for 10 neutron stars and 5 black holes.
- SFG3 Detect kHz QPOs at their coherence time, measure the waveforms and quantify the distortions due to strong-field GR for 10 neutron stars covering different inclinations and luminosities.
- SFG4 constrain fundamental properties of stellar mass black holes and of accretion flows in strong field gravity by (a) measuring the Fe-line profile and (b) carrying out reverberation mapping and (c) tomography of 5 black holes in binaries providing spins to an accuracy of 5% of the maximum spin (a/M=1) and do comparative studies in 10 neutron stars

 $^{^1}$ Unless specified differently 1 σ errors are given

SFG5 constrain fundamental properties of supermassive black holes and of accretion flows in strong field gravity by (a) measuring the Fe-line profiles of 20 AGNs and for 6 AGNs (b) carry out reverberation mapping and (c) tomography, providing BH spins to an accuracy of 20% of the maximum spin (10% for fast spins) and measuring their masses with 30% accuracy,

The scientific objectives may be achieved through the measurement of the X-ray photometric light curves and spectra of a range of different astrophysical target classes. The targets are all compact objects (neutron stars, stellar-mass as well as supermassive black holes) therefore the measurement requires no imaging capability. Targets will be selected by pointing a collimating structure that discriminates the required source from the diffuse background and nearby X-ray emitting sources. The photons from the selected target will be registered by an array of semiconductor detectors that will measure the X-ray photon energy and arrival time to high precision (~250eV FWHM and 10µs respectively).

A large effective collecting area ensures that sufficient photons can be collected to accumulate spectra and precision photometry over the variability time scales of interest for the different target classes. The energy resolution of the detector in combination with an energy range of 2 to 50 keV will enable the measurement of the Fe-line profile, needed for the Strong Field Gravity goals. This instrument is called the Large Area Detector. The data will be transmitted to ground in the form of photon event lists (time and energy of each photon).

To catch the relevant sources in outburst it is required to monitor a large fraction of the visible sky on a daily basis. If a change in state of a source for the core program is observed, LOFT may be pointed to this source and repeated observations are feasible till the source state is no longer of interest. This monitoring is enabled by a coded mask imaging technique, providing time- and energy sliced images of the available field of view, as well as spectra and light curves of bursts and transients. For the core science objectives processing of these data on the basis of a few days is sufficient to adjust the observation schedule if a source state changes.

4.3 Observatory science

As indicated in the section about science objectives, it is required that LOFT will allow 'observatory type' of science during the periods which are not required for the core science objectives. This will be a significant fraction of the observing time (>25%) and will be allocated on the basis of peer reviewed proposals. In this section we include a few of the most interesting topics.

The LOFT LAD and WFM will be very important for the study of thermo-nuclear explosions on the surface of neutron stars, so called Type I X-ray bursts. Current instruments have revealed residuals in the spectra of a sub-set of these bursts (extreme radius-expansion bursts) suggesting the presence of absorption edges, perhaps arising from nuclear burning ashes mixed into the radiation-driven ejecta powered by the burst flux. Such features have been predicted theoretically, and can provide information on the neutron star compactness. However, as the occurrence of such extreme Type I bursts is unpredictable and as they occur infrequently, high-quality spectra have proved difficult to obtain. The LOFT WFM should allow for the detection of these bursts with sufficient spectral resolution to investigate if the neutron star compactness can be constrained.

The LOFT mission will be capable to advance the field of Gamma Ray Bursts (GRBs) significantly. The LOFT WFM energy band, sensitivity, field of view, source location accuracy and energy resolution are well suited for the investigation of some of the open issues in the study of GRBs. Some of the issues include: the models for the physics of prompt emission, the existence and properties of spectral absorption features by circum-burst material (and hence the nature of the progenitors), the detection and rate of high-z GRBs (which is important for the investigation of the early universe).

Another area where in particular the WFM will contribute is that of X-ray flashes. WFM studies of the population and properties of X-ray flashes found to accompany supernova shock break-out and the disruption of stars and planetary objects by supermassive black holes should provide important results.

A last example in this (incomplete) report on the LOFT Observatory Science involves the study of the magnetic accretion in, for instance, high-mass X-ray binaries. The LOFT/LAD is ideally suited to study the X-ray time variability on timescales of a fraction of the neutron star spin period. The variability is also reflected in the observed spectral properties such as the centroid energy of the cyclotron lines.

5 INSTRUMENT PERFORMANCE REQUIREMENTS

5.1 Large Area Detector

The prime instrument of the mission is the large Area Detector (LAD). This is a non-focusing but collimated X-ray detector with a very large collecting area. This allows for very-high count rates and combined with its spectral resolution, allows researchers also to carry out spectral analysis of bright objects. It will have the following characteristics:

- A large area detector with a collimated field of view (~1 degree).
- Good spectral resolution using Silicon Drift Detectors (~ 240eV). It should be noted that not all events can be reconstructed with the same resolution, depending on the number of anodes to reconstruct the energy. In practice around 40% of the events will be read-out by a single anode and 60% by two anodes. Where required by different science investigations, these datasets can be reduced separately
- A high level of modularity (the different detector segments operate independently) increasing the level of redundancy. The loss of a whole panel and subsequent reduction in effective area may compromise some capability (e.g. EOS2), however many science goals could be completed albeit with longer observation times.
- The capability to monitor available data rates in the LAD instrument and onboard storage to enable switching modes in case the data rates get too high (e.g. to re-binned mode).

The instrument requirements are summarized in Table 5-1 and more details are given for each requirement later. Also the level (cf. Section 2) of the requirements is given. Part of the justification of the requirements is given in the subsequent paragraphs but especially the flow down is discussed in Appendix A where also the relations between the different requirements are explained.

Table 5-1 Overview LAD requirements, all fluxes in Crab units are defined in 2-10 keV in nominal conditions. This table was provided as an initial set of scientific requirements at the time of the proposal and retained for reasons of continuity.

Item	Requirement	Goal	Level
Effective area (given energy is E ± 0.5 keV)	3.8 m ² @ 2 keV 7.6 m ² @ 5 keV 9.5 m ² @ 8 keV 0.95 m ² @ 30 keV	4.2 m ² @ 2 keV 8.4m ² @ 5 keV 10.5 m ² @ 8 keV 1.05 m ² @ 30 keV	2a
Effective area knowledge	15%	10%	2b
Energy range	2 – 30 keV primary 30-80 keV extended	1.5 – 80 keV	2a
Energy knowledge	1%	0.8%	2b
Spectral resolution @6keV (end of life)	260 eV (doubles, 60%) 200 eV (singles, 40%)	200 eV (doubles, 60%) 160 eV (singles, 40%)	2a
Degraded spectral resolution outside the nominal Field of Regard**	400 eV @ 6 keV	300 eV @ 6 keV	2a
Field of View (FWHM)	0.9 – 1.1 degree	0.45 - 0.55 (*) degree	2b
Off-axis response (45°)	0.02% - 0.2% at 30 keV	0.02 – 0.2 % at 30 keV	2b
Response stability (frequency-dependent, see [RD 3])	<0.01 Hz: <2% per decade 0.01 -1 Hz: <0.2% per decade 1-1200 Hz: <0.02% per octave >2000 Hz: Lower is better 10-2000 Hz: <0.0002% nearly periodic	1% per decade 0.05% per decade 0.005% per octave Lower is better <0.00005% nearly periodic	2a
Time resolution	10 μs	7 μs	2c
Absolute time accuracy	2 us	1 us	2c
Dead time	< 1% @ 1 Crab	< 0.5% @ 1 Crab	2b
Dead time knowledge	2.8%	Less than the statistical precision of power spectrum for 1 day at 15 Crab up to $F_{Ny} = 10$ kHz (see [RD 2])	2b
Background	< 10 mCrab	< 5 mCrab	2a
Background knowledge	0.25% at 5-10 keV	0.20% at 5-10 keV	2b
Maximum flux (sustained, nominal binning)	> 500 mCrab	> 750 mCrab	2a
Maximum flux (sustained, re- binned)	15 Crab	30 Crab	2a
Onboard memory (transmit ted over more orbits)	15 Crab, 300 minutes	30 Crab, 300 minutes	2b
Modularity (loss of area due to loss of single point failure)	< 25%	< 10%	2c

(*) note that the smaller FoV, which is a design parameter, improves the background towards the 5mCrab goal but can only be realised if the pointing goal is reached (as they are dependent upon one another). ** not all science (EOS1, EOS2, EOS3, SFG1, SFG3) requires the best energy resolution. By having the nominal energy resolution in the Field of Regard and the energy resolution outside the Field of Regard the observing plan can be optimized taking the need for a good energy resolution into account, see also SCI-SYS-R-19 and SCI-SYS-R-05)

5.1.1 Effective area

The effective area requirement is given at 4 energies (maximum of the distribution, a high energy cut-off and at two lower energies). The effective area is directly related to the stopping power in the detector and the transmission of the thermal blanket and any inactive layer on top of the detector. Especially at the low cut-off the effective area is a steep function of energy and the given energy should be interpreted as energy \pm 0.5 keV.

Effective Area	Value (m ²)	ID	Condition	Level
Definition	The projected collecting are	a for photons (a func	tion of photon energy) determin	ned as the
	product of geometric area	and detectors' quan	tum efficiency, transmission	factors of
	collimators, and associated th	ermal/optical shields.	Value achieved after in-orbit calib	pration
Requirement	9.5	SCI-LAD-R-01	At 8 keV	2a
	Justification Effective area	provides the translation	from a source flux to detected co	unt rate.
	This requirement is the minim	num detector effective a	rea, near the peak of source phot	on and
	variability distribution in ener	gy, that is required to e	nsure the most driving science ca	se can be
	fulfilled (determine masses an	id radii of neutron stars	, investigate gravity in the strong	; field
	regime). This area is required	to reduce the statistical	errors on the mass and radius to	< 4% and
	< 3% respectively. [GOAL EOS	S1, EOS2, SFG1, SFG2, 1	SFG3, SFG4]	<u> </u>
Goal		SCI-LAD-G-01	At 8 keV	
	Justification An increase by	y 10% allows several sci	ence goals to tackle signals 20% f	ainter as
	in several cases the S/N ratio	is proportional to the r	number of detected photons which	n is
	proportional to the effective a	area. [e.g. GOALS EOSI	(in part), EOS2, and EOS3, SFG.	I, SFG3]
D • •			A. 01 M	
Requirement	3.8	SCI-LAD-R-UZ	At 2 KeV	
	JUSTIFICATION: The soft part of the spectrum is important for strong red wings in very broad Fe			
	lines, see also SCI-LAD-R-03	GUALS SFG2, SFG4, S	SFG5]. A lactor ~40% of the peak	area is
Cool	A 9		At 2 koV	T
Guai	Instification See requireme	nt but the goal is 10% r	nore ambitious	
	Justification See requireme	ent but the goar is 1070 i	nore ambitious.	
			A. #1. 37	
Requirement	7.6	SCI-LAD-R-03	At 5 keV	Za
	Justification: To ensure that	at the LAD effective area	a does not change by more than -	~20% over
	the energy interval (5-8 keV)	in which the broad Fe-I	K lines are detected and studied.C	JOALS:
	SFG2, SFG4 and SFG5.			.
Goal		SCI-LAD-G-U3		-
	Justification See requireme	ent but the goal is 10% r	nore ambitious.	
Requirement	0.95	SCI-LAD-R-04	At 30 keV	2a
	Justification To detect QPC)s during intermediate i	flares of SGR/AXP; to detect the	
	continuum emission of bright AGN (>1 mCrab) with a S/N of 200 to measure the Compton			
	reflection component with a 1	5% accuray [GOAL EO	S3, SFG4]	
Goal	1.05	SCI-LAD-G-04	At 30 keV	
	Justification See requireme	ent but the goal is 10% r	nore ambitious.	

<u>*</u>: Small deviations (less than 5%) with respect to the original 10 m² requirement can be accommodated without significant impact on achieving the LOFT science objectives. To allow for unambiguous interpretation the lowest number (9.5m²) in this range has been specified as requirement. However, this requirement is inter-related to several other requirements including the spectral resolution, the field of regard and the redundancy requirement. Deviations in the effective area can, for a significant part of the science, be compensated by a suitable combination of sky visibility and longer mission duration (see also appendix A). With the tuning of these other requirements the impact of the reduced area on the science can be made small. In addition the 25% redundancy requirement may need to be adjusted in order to maintain a 7.5 m² effective area in case of a single point failure.

** An increase in number of modules is not realistic but an increase in the effective area can, potentially, be achieved by a larger open area fraction of the collimator or by a slightly different design of the silicon drift detector where the HV divider is optimized.

Page 18/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2 Related to the effective area itself is also the knowledge about the effective area:

Effective area	Value	ID	Condition	Level
knowledge				
Definition	After in-orbit calibration, th selected astronomical "stan Astronomical Consortium for	ne measured flux in a dard candle" sources r High Energy Calibration	standard (e.g. 2-10keV) energ should be verified against In on recommendation	y band for ternational
Requirement	15%	SCI-LAD-R-05	near the maximum of the	2b
			area	
	Justification to limit the im flux, e.g. accurate measureme into a (minimum) uncertainty through this technique.	pact of systematics in s nts of the Eddington lu of 7-8% in the determi	tudies that require knowledge of minosity during Type I bursts, tr ination of the radius of neutron s	absolute ranslating stars
Goal	10%	SCI-LAD-G-05		
	Justification see requireme	ent but uncertainties wi	ll be further reduced.	

5.1.2 Energy Range

Energy range	Value (keV)	ID	Condition	Level
Definition	The lower and upper energies measured for detected photons after reconstruction. For primary range the nominal binning appropriate to detector energy resolution shall apply. For extended range a binning factor in energy may be applied.			
Requirement	2 – 30 primary, 30-80	SCI-LAD-R-06		2a
	extended			
	Justification: 2 keV: to be able to study photoelectric absorption and soft components of a			
	variety of sources; 30 keV: to	determine the AGN an	d X-ray binary continuum specti	ra in order
	to study the reflection/absor	ption effects and allow I	for an accurate determination of	the Fe-K
	line profile. 30- 80 keV is ess	ential to detect fast high	h-energy phenomena such as SG	R/AXP
	flares, GRBs etc. [EOS3, SFG	2, SFG4, SFG5]	<u>.</u>	
Goal	1.5 – 30 primary, 30 –	SCI-LAD-G-06		
	80 extended			
	Justification: a 1.5 keV lower threshold will yield more accurate measurements of the properties of the absorber in AGNs [GOAL SFG5].			

Energy	Value (AE/E)	ID	Condition	Level	
knowledge					
Definition	After applying all known calibration factors, the linearity and offset of the energy scale applying to a measured spectrum shall allow a photon energy to be determined to within a small fraction.				
Requirement	10-2	SCI-LAD-R-07	3 - 15 keV range	2b	
	Justification: to combine d fraction (1/4) of the energy re	Justification: to combine data from different epochs the energy scale should be known with a fraction (1/4) of the energy resolution (reference point is 6 keV). [GOAL SFG2, SFG4, SFG5]			
Goal	0.8 10 ⁻²	SCI-LAD-G-07	3 - 15 keV range		
	Justification: absolute kno	Justification: absolute knowledge scales with the difference in resolution (goal is 200 eV).			

5.1.3 Spectral Resolution

The resolution is specified at 6 keV. The requirements are split between all events and the events that will be collected on a single anode of the detector (40% of the events).

NT ! 1		ID		T	
Nominal	Value (ΔE)	ID	Condition	Level	
spectral					
resolution					
Definition	FWHM of a Gaussian distrib	ution response to a mo	noenergetic stimulus of the detec	ctor. under	
	nominal operating condition	s		,	
Requirement	240 eV @ 6 keV	SCI-LAD-R-08	Average that assumes 60% of	2a	
-			the events which are read-		
			out by more than a single		
			anode in addition to 40%		
			read by single anode. See		
			SCI-LAD-R-09 for the		
			specification of the single		
			anode		
	Justification: End-of-miss	ion spectral resolution	integrated over the full detector	but after	
	channel to channel correction	ns (e.g. gain); Using bo	th single and double anode event	ts this	
	resolution allows for gravitat	ionally broadened Fe K	α line-width studies, removal of	narrow	
	lines and edges, line/edge stu	udies in PRE type I X-ra	ay bursts. [GOAL SFG2, SFG4, S	FG5]. This	
	number includes all not-corr	ectable contributions to	o the spectral resolution. The ava	ilable	
	margin on top of the Fano lir	nit of Si will be distribu	ited over different components (calibration,	
	sensor uniformity, gain know	vledge etc). See also ap	pendix D and Tech Note on defir	ied	
	contributions to energy resol	ution.		т	
Goal	<200 eV @ 6 keV (60%)	SCI-LAD-G-08			
	Justification: For bright	AGN (> 1 mCrab) and	l black hole X-ray binaries selec	ction of the	
	better resolution will improv	e all science objectives	especially in SFG4 and SFG5.		
		J			
Poquiromont	<200 aV @ 6 kaV (40%		2 10 koV	2h	
Kequitement	of selected events)	SCI-LAD-R-05	$\mathcal{L} = 10 \text{ KeV}$	20	
				<u> </u>	
	Justification: For bright	AGN (> 1 mCrab) and	I black hole X-ray binaries selec	ction of the	
	single events will improve a	Il science objectives gi	ven in SFG4 and SFG5. Selected	events are	
	events). [GOAL SFG2, SFG4,	o the read-out of a sing SFG5].	le anode (explaining the 40% of t	the selected	
Goal	<160 eV @ 6 keV (40%	SCI-LAD-G-09	2 – 10 keV		
	of selected events)				
	Justification: For bright	AGN $(> 1 \text{ mCrab})$ and	l black hole X-ray binaries selec	ction of the	
	single events will improve all science objectives given in SFG4 and SFG5.				

Degraded	Value (∆E)	ID	Condition	Level
spectral				
resolution				
Definition	FWHM of a Gaussian distrib degraded thermal operating	oution response to a mo conditions	noenergetic stimulus of the dete	ector, under
Requirement	<400 eV @ 6 keV	SCI-LAD-R-22	When nominal Solar Aspect Angle (SAA) cannot be maintained, and an increased SAA is adopted to meet sky visibility constraints. Field of regard to be achieved 50% (required) 75% (goal).	2b
	Justification: Not all science goals require optimal energy resolution. In order to avoid unnecessary limitations to the accessible sky at any time, a 50% worse than optimal resolution is acceptable over an extended sky region and this allows the Solar Aspect Angle and thermal constraints to be relaxed. See section 7 (observation plan) and appendix A for more information			
Goal	< 300 eV @ 6 keV	SCI-LAD-G-22	See above	
	Justification: a degraded resolution effectively means	energy resolution sim a larger FoR.	ilar to the requirement "standa	ard" energy

5.1.4 Field of view

Field of view	Value (FWHM)	ID	Condition	Level
Definition	The FWHM of distribution	in transparency of the	e instrument (i.e. collimator) a	at the peak
	energy for the effective area.	A triangular distributio	n is assumed.	
requirement	FoV <1 degree	SCI-LAD-R-10		2b
	Justification: Limiting con	nfusion in crowded fie	lds. [GOAL EOS1, EOS2]. Ass	uming that
	science data degrade if an ol	oservation includes mor	e than 5% photons from other :	sources, for
	on-axis observations \sim 20% of all bright sources in the sky are affected by source			
	confusion. Thist source confusion can be mitigated using offset-pointings			
Goal	FoV <0.55 degree	SCI-LAD-G-10		
	Justification: improved ba	ckground, affecting few	er sources and reducing the nee	ed for offset
	pointings. However this is r	related to the response	stability, it can only be consid	lered if the
	response stability goals are w	vithin reach.	· · ·	

Off-axis	Transmission	ID	Condition	Level
response	through the			
	collimator			
Definition	The fraction of photons,	at specified energy, t	that reach the detector plane	e following
	transmission through the col	limator from a large off	-axis angle (for reference purpos	ses 45°).
Requirement	0.02% - 0.2% at 30 keV	SCI-LAD-R-11	Assuming off-axis angle of 45	2a
_			degree and integrated over	
			full detector area	
	Justification: some respon	nse is required at off-	axis angles to be able to observ	rve seismic
	oscillations in SGR (EOS3), t	the value is not critical	as long as it is in this range (0.0	2 – 0.2 %).
	This can be achieved by eithe	er a transparent collima	tor at higher energies or by a fra	ction of the
	LAD area which has no collin	nator at all.		
Goal	TBD	SCI-LAD-G-11		
	Justification: same.			

5.1.5 Response Stability

The key science requirement is to avoid any spurious (e.g., induced by a variable instrument response) modulation in the measured source count rate, down to a level of the astrophysical signal of interest. As the latter highly depends on the type of source/signal and its characteristic frequencies, it is hard to specify the requirement with a single number. The derivation of these requirements is explained in [RD 3].

Stability	Value (%)	ID	Condition	Level	
Definition	Response stability is	the broad-band	(e.g. 2-30keV) effective area as a fun	ction of	
	frequency. In practice	this is derived fro	m a Fourier transform of the effective a	rea as a	
	function of time.				
Requirement	<2	SCI-LAD-R-23	<0.01 Hz and max unusable	2a	
			bandwidth <1 octave per decade		
Goal	<1	SCI-LAD-G-23			
	Justification: SFG5: A	GN, see also RD 3. On	timescales of light crossing time of a few grav	itational	
	radii (10's seconds) the si	gnature of reflection l	ags must robustly be determined. 1mCrab in 1	00	
-	seconds gives <1% statisti	seconds gives <1% statistical fluctuations			
Requirement	<0.2 (per decade)	SCI-LAD-R-24	0.01-1 Hz and max unusable	2a	
			bandwidth <1 octave per decade		
Goal	<0.05 (per	SCI-LAD-G-24			
	decade)				
	Justification: SFG2, 4: NS&BH LF noise, BH LF QPO. Low frequency QPOs seem correlated with				
	broad band noise phenomena. Unstable response leads to apparent noise in constant flux sources and				
	also to QPO broadening o	or sidebands. Statistic	al fluctuations for typical 100mCrab source in	Is are	
Requirement	<0.02 (per octave)	SCI-LAD-R-25	1-1200 Hz and max unusable	2a	
			bandwidth <1 % per decade		
Goal	<0.005 (per	SCI-LAD-G-25			
	octave)				
	Justification: SFG1, 2,	3: BH & NS LF, HF &	kHz QPO, EOS1: Burst oscillations		
Requirement	Lower is better	SCI-LAD-R-26	>2000 Hz and max unusable	2a	
			bandwidth <1 % per decade		
Goal	Lower is better	SCI-LAD-G-26			
	Justification: Discover	y space			
Requirement	<0.0002	SCI-LAD-R-27	10-2000 Hz and max unusable	2a	
-	(nearly periodic)		bandwidth <1 % per decade		
Goal	<0.00005	SCI-LAD-G-27	-		
	(nearly periodic)				
	Justification: EOS1: BO	O EOS2: AMXP, EOS	3: seismic oscillations	•	

5.1.6 Time information

Intrinsic to the detector is that the arrival time of an event is not known much better than 10(7) µsec as the drift time through the detector depends on the position of the event with respect to the anode. However, as this distribution is stable and uniform, the absolute time knowledge should be better (2 µsec).

Time	Value	ID	Condition	Level	
resolution					
Definition	The 3σ uncertainty in assi	igning the time datun	n of an event to its actual arrival time on the I	LAD	
Requirement	10 µs	SCI-LAD-R-13		2c	
	Justification: Behaviour of matter under extreme conditions and ultra-dense matter – modelling waveforms of periodic signals, X-ray burst oscillations and QPOs. Moreover searches for very short impulsive phenomena. [GOAL EOS1, EOS2, EOS3, SFG1, SFG3, SFG4]				
Goal	7 μs	SCI-LAD-G-13			
	Justification: As above	but now limited to o	otimal drift times in each detector. i.e. the pl	k-pk spread	
	in assigned arrival times a	associated with "next-	to-anode" versus "centre-of-detetcor" events		

Absolute time accuracy	Value	ID	Condition	Level	
Definition	The accuracy with which	the LAD time datum	can be assiged to UTC, after ground calibration	on	
Requirement	2 μs	SCI-LAD-R-14	After correction on the ground	2c	
	Justification: The absolute time accuracy requirement is higher than the detector time resolution. For pulsars, knowing the detection time with an accuracy of 2 microsecond allows comparison with other wavebands (e.g. radio). [GOAL EOS 1 EOS 2 EOS 3 SEG 1 SEG 3 SEG 4]				
Goal	1 μs	SCI-LAD-G-14			
	Justification: Giant pulses from Crab and msec radio pulsars are very brief (some as short as 0.5 us, observed in radio at 0.125 us resolution and rising within that time (Knight et al. ApJ 640, 941) and extremely energetic, so if one is looking for X-ray counterparts to giant pulses 1 us or even better would certainly be very interesting				

Dead Time	Value	ID	Condition	Level
Definition	The fraction of available	time during which a	A LAD detector channel is not able to recor	rd an event
	following the processing of a previous event in the same channel			
Requirement	< 1% @ 1 Crab	SCI-LAD-R-15		2b
	Justification: The crit	ical parameter is the	dead time knowledge but with a too large d	ead time it
	will be hard to reduce the	error. [GOAL EOS 1,	EOS2, EOS3, SFG1, SFG3, SFG4]	
Goal	< 0.5% @ 1 Crab	SCI-LAD-G-15		
	Justification: lower is better but the effect is small (when the deadtime is known accurately)			

Dead time knowledge	Value	ID	Condition	Level	
Definition	The accuracy to which the loss of effective area due to dead time is known				
Requirement	2.8%	SCI-LAD-R-16		2b	
	Justification: assuming the dead independent from the other the error with M the total number of indeper for such element and f _{Nyquist} the Ny	d time is given per or scales with: 2.8% ndent detection elen quist frequency cho	$^{\rm c}$ half detector and the deadtime is * $(M/4000)^{3/2}$ * $(t_{dead}/50~\mu s)^2$ * $f_{Nyq/}$ nents (half of a single SDD), t_{dead} the sen	statisticlly '10kHz e dead time	
Goal	Less than the statistical precision of power spectrum for 1 day at 15 Crab up to FNy=10 kHz	SCI-LAD-G-16			
	Justification: Dead time is releva aperiodic phenomena, particularly dead-time process to an accuracy be can measure the Fourier transform the distortions induced by dead tin [GOAL EOS 1, EOS2, EOS3, SFG1, S	nt to all sources wh at high frequency etter than the precis to a certain precision me to the Fourier FG2, SFG3, SFG4, S	tere we want to do accurate charact ($1/t_{dead}$). We need to be able to ca sion afforded by the count rates. Th on given the count rate, then the un- transform should be less than that SFG5]	erization of alibrate the at is, if you certainty in t precision.	

5.1.7 Background

Back ground	Value	ID	Condition	Level
rate				
Definition	Equivalent flux of all	cosmic diffuse, extern	hal particle and internally generated events t	that cannot
	be distinguished from	title A-lay events inc	in the target in the LAD neid of view	-
Requirement	10 mCrab	SCI-LAD-R-17	2 – 30 keV	2a
	Justification: Some	of the science goals a	re related to low flux sources (1-10 mCrab)	
	such as AGNs and so	ome accretion power	ed X-ray pulsar and black hole transients.	
	[GOAL EOS1, EOS2, S	SFG5]		
goal	5 mCrab	SCI-LAD-G-17	2 – 30 keV	
	Justification: The le	ower goal increases t	he number of (AGNs) sources accessible to	
	the LAD.	-		

Background	Value	ID	Condition	Level
knowledge				
Definition	The accuracy with wh	ich the equivalent ba	ckground flux is known after ground based	application
	of calibration and mo	delling of environmer	tal factors	
Requirement	0.25% ² of the flux	SCI-LAD-R-18	5-10 keV	2b
	Justification: Some	of the science goals a	are related to low flux sources (1-10 mCrab)	
	these sources is sensit EOS1, EOS2, SFG5]. S	ive to residual system See Technical Note	atics after background subtraction. [GOAL	
goal	0.20%	SCI-LAD-G-18	5 - 10 keV	
	Justification: Same	as requirement.		

 $^{^{2}}$ Studies by the Background Working Group reported in technical Note [RD-13] suggest this is feasible especially where one or more modules have a blocked collimator unit in part of the array.

5.1.8 Source flux

Maximum	Value	ID	Condition	Level
flux				
(nominal				
binning)				
Definition	The maximum equiva sustained	lent target flux for wh	ich the nominal LAD event data binning sch	eme can be
Requirement	> 500 mCrab	SCI-LAD-R-19	Stable source with no loss of event	2a
			information	
	Justification: only	sources brighter that	n 0.5 Crab require temporal re-binning.	
	Bright transient sour	ces can be stored o	n-board and the full information can be	
	transferred during su	ibsequent ground co	ntacts. [GOAL EOS1, EOS3, SFG1, SFG2,	
	SFG3, SFG4]. Aroun	d 30 sources in the	observation plan have intensities > 250	
	mCrab and around 20) sources > 500 mCra	b. These sources will in general be observed	
	during their bright sta	te and require then th	ne sustained data rate.	
goal	>1 Crab	SCI-LAD-G-19	No loss of event information	
	Justification: impro	oved performance, typ	ical 10 sources will be above this level.	

Note: whereas the source flux is specified for a source within the FoV the science goal EOS3 requires to be able to detect high-energy photons from a 1000 Crab source from outside the field of view (i.e., through the collimator). This does not drive the design in view of the spectral slope and the stopping power of the collimator for photons < 20 keV where the bulk of the photons are for these 1000 Crab sources.

Maximum	Value	ID	Condition	Level
flux re-				
binned				
Definition	Utilising user-defined within the available to	d rebinning in time ar elemetry rates	d/or energy the higher flux that can be accord	mmodated
Requirement	15 Crab	SCI-LAD-R-20	loss of information is acceptable (user defined re-binning of the data)	2a
	Justification: Behaviour of matter under extreme conditions – modelling lines and waveforms of X-ray burst oscillations for instance during type I X-ray bursts. Spin and relativistic effects around BH and NS. SGR/AXP flares shining at offset angles. [GOAL FOS1 FOS3 SEC1 SEC2 SEC3 SEC4]			
Goal	30 Crab	SCI-LAD-G-20	Data compression with loss of information acceptable (user defined)	
	Justification: Beha effects around BH an very bright transients	viour of matter unde d NS. SGR/AXPs in f	r extreme conditions. Spin and relativistic laring states. Brightest state of Sco-X-1 and	

Onboard	Value	ID	Condition	Level
memory				
Definition	The amount of data	storage to be prov	ided in the LAD sub-system for extended	downlink,
	commensurate with the data generated by a bright target for specified duration			
Requirement	15 Crab, 300 min	SCI-LAD-R-21	No loss of event information	2b
	Justification: Being	g able to retrieve all o	lata over a number of ground contacts for	
	bright and unexpecte	d transients, taking	advantage from long observation of weak	
	sources (e.g., AGNs).	[GOAL EOS1, EOS3, S	SFG1, SFG2, SFG3, SFG4]	
Goal	30 Crab, 300 min	SCI-LAD-G-21		
	Justification: Same	as above but more an	nbitious.	

5.1.9 Modularity

LAD Modularity	Value	ID	Condition	Level	
Requirement	Corresponding to a loss of	SCI-LAD-R-23	Loss due to a single	2c	
-	effective area of $< 25\%$		point failure		
	Justification: In case of a ma	jor failure 75% of the	e area will still allow to a	achieve the	
	minimum success criteria. This is explained in appendix A where it can be seen that with 70%				
	of the area and increased observing time a significant fraction of the science can be achieved				
	(although for fewer sources or wit	h somewhat reduced se	nsitivity)		
Goal	< 10%	SCI-LAD-G-23			
	Justification: with a 10% loss of	area the science is still	affected significantly less		

5.2 Wide Field Monitor

The main goal of the WFM is to provide good triggers of active sources for the LAD. The instrument requirements will therefore have the following characteristics:

- Desirable trigger levels for bright transients is 100 mCrab for part of the sky accessible to LAD as 90% of these transients in this part of the sky should be identified, weaker transients (about 2 mCrab, duration few days) are more frequent and about 50% should be found. This can be achieved by a FoV that is a compromise between the accessible sky and the dimensions of the Galactic Centre region (~60 degree). A detailed trade-off has been determined (see RD 12).
- Sensitivity (5 σ detection) over 50 ks must be < 5 mCrab over energy range of 2 50 keV for a field where there is no source confusion (outside the Galactic Centre).
- Location accuracy < 1 arcmin for a 10 σ source. This defines the error budget for pointing and reconstruction of the pointing.
- The total allocation for the WFM data (in normal operations) is 10% of the total telemetry band width with a maximum of 100 kbits/s. If the LAD data rate is <80%, the WFM should be able to use up the available bandwidth.
- The allocation of the bandwidth should be under control of the user (e.g. the user may select to reserve a larger part of the bandwidth for one of the instruments).
- Energy range and telemetry bandwidth should allow at least 8 spectral bands for the detection of spectral state changes in transient sources and be sensitive to thermal (e.g. disk) spectral components.
- Enable storage of full data on board for at least 1 trigger per orbit for short (300 sec) transients (GRBs, XRFs, type I bursts, ...)
- Find rate triggers for transient events on board and use this to switch modes (e.g. different data compressions).
- Low energy threshold provides largest discovery space and should match the threshold of the LAD.
- A WFM redundancy scheme should avoid loss of FoV (at the cost of degradation of imaging)

Item	Requirement	Goal	level
Location accuracy (confidence level 90%)	<1 arcmin	<0.5 arcmin	2a
Angular resolution	<5 arcmin	<3 arcmin	2b
Peak sensitivity in LAD pointing direction (5 σ source detection)	1 Crab (1 s) 5 mCrab (50 ks)	0.2 Crab (1s) 2 mCrab (50 ks)	2a
Absolute flux calibration accuracy	20 %	15 %	2b
Relative flux calibration precision	5 %	2.5%	2b
Sensitivity variations knowledge	10 %	5 %	2b
Duration for rate triggers	0.1 sec - 100 sec	1 msec - 100 sec	2b
Rate meter data	16 msec	8 msec	2b
Field of view	1 pi steradian around the LAD pointing	1.5 pi steradian for large Sun angles part of the LAD accessible sky would otherwise not be monitored	2a
Energy range	2 – 50 keV primary 50-80 keV extended	1.5 – 50 keV primary 50-80 keV extended	2b
Energy resolution	500 eV	300 eV	2c
Energy scale calibration accuracy	4%	1%	2c
Number of energy bands for compressed images	>=8	>=16	2c
Time resolution	300 sec for images 10 μsec for event data	150 sec for images 5 μsec for event data	2b
Absolute time calibration accuracy	2 µsec	1 μsec	2b
Event/image data downlink maximum delay	3 hours	1.5 hours	2a
Onboard storage of triggered date	3 hours	2 hours	2c
Broadcast of trigger time and position to end user	< 30 sec after on board detection of the event for 65% of the events	< 20 sec	2c
Number of triggers for WFM	>> 1 per day	>> 1 per orbit	2b
Modularity	No full loss of FoV due to single point failure		2b
On-board memory	5 min @ 100 Crab	10 min @ 100 Crab	2a

Table 5-2: Overview of Wide Field Monitor requirements

5.2.1 Angular resolution and source localization accuracy

The angular resolution and source localization accuracy are related and the source localization depends also in the signal to noise ratio.

Localization	Value	ID	Condition	Level
accuracy				
Definition	The ability to determi	ne the position of a source	on the celestial sphere	
Requirement	< 1 arcmin	SCI-WFM-R-01	For an isolated source > 10 mCrab (2-10 keV) in 50 ks observation and an isolated source > 100 mCrab in 1 ks. Position accuracy refers to 90% confidence radius and a source in the fully illuminated field of view of a WFM camera. This requirement is with	2a
	Justification: A 1 a or ground observatori Note: localization refe	rcmin localization accuracy les in case a new and unkno ers to position derived on g	y allows for follow up measurements own source is found (e.g. a BH X-ray b round	of the LAD inary)
Goal	< 0.5 arcmin	SCI-WFM-G-01		
	Justification: Redu	ce crowding effects, and all	ow for better multi-wavelength follow	-up.

Angular resolution	Value (FWHM)	ID	Condition	Level
Definition	For each WFM camera	a, the FWHM angular distr	ibution for a point source.	
Requirement	< 5 arcmin	SCI-WFM-R-02		2b
	Justification: For so	ources of the specified brig	htness the driving requirement is the	localization
	accuracy. The localiza	tion depends on the angula	r resolution and the signal to noise ra	tio.
Goal	< 3 arcmin	SCI-WFM-G-02		
	Justification: Reduce crowding effects, and allow for better multi-wavelength follow-up.			

5.2.2 Sensitivity

Peak	Value	ID	Condition	Level
sensitivity				
Definition	The equivalent flux th a given observation times the second secon	at can be detected in the co me.	entre of the WFM field, for a point sou	rce and for
Requirement	1 Crab in 1 second 5 mCrab in 50 ks	SCI-WFM-R-03	$2 - 30$ keV, 5σ detection. Spectrum is assumed to be Crab- like and presence of the Cosmic Diffuse X-ray Background. Source position in LAD pointing direction.	2a
	Justification: 1s: Fast events of all kinds: SGRs, AXPs bursts/flares, X-ray flashes and bursts. 50 ks: Weak transients; accreting ms pulsars; AGN and weak source monitoring. Source detection sensitivity scales with the signal to noise ratio.			
Goal	0.2 Crab in 1 second 1 mCrab in 50 ks	SCI-WFM-G-03	$2 - 30$ keV, 5σ detection. Spectrum is assumed to be Crablike	
	Justification: Impr fast transient events).	oved performance, especia	ally opening up new parameter spac	e (e.g. very

Absolute flux calibration	Value	ID	Condition	Level	
accuracy					
Definition	Following the applica high S:N detected so International Astrono	Following the application of calibration data, the accuracy with which the equivalent flux of high S:N detected source can be specified. The reference shall be targets recommended be International Astronomical Consortium for High Energy Calibration.			
Requirement	20%	SCI-WFM-R-04	5 – 12 keV, in the LAD pointing direction	2b	
	Justification: Cross calibrations with observations performed with other X-ray instruments.			nents.	
Goal	15 %	SCI-WFM-G-04	5 - 12 keV		
	Justification: Some	what improved knowledge	which is still achievable		

Relative flux calibration precision	Value	ID	Condition	Level	
Definition	After applying all calibration knowle must be known to a small fraction a peak on-axis area.	edge, the relative chang and within radii corresp	e in flux sensitivity with off onding with an area at leas	-axis angle t 20% of	
Requirement	5%	SCI-WFM-R-18	5-12 keV, relative flux determination over time scale of ~ 1 month	2b	
	Justification Relative calibration of the flux determination precision of the WFM at varying off- axis angles down to 20% of the peak effective area. This provides an upper limit on the systematic errors in source light curves as they are derived from different pointings placing the sources in different cameras and at different off-axis angles.				
Goal	2.5%	SCI-WFM-G-18	5-12 keV		
	Justification further lowering the	systematics in source li	ght curves.		

Sensitivity	Value	ID	Condition	Level	
variation					
knowledge					
Definition	After applying all ground based calil	bration knowledge, the	accuracy of determining th	e flux of	
	any given target, and the also minim	um flux sensitivity, fro	m one pointing period to a	nother.	
Requirement	10%	SCI-WFM-R-19	5-12 keV, time scale of	2b	
_			nominal mission		
			duration		
	Justification Relative knowledge of variations in the sensitivity of the WFM over the mission				
	duration. Needed to cross check with	h other observations ma	ade of similar sky locations	at	
	different observing times and to ma	intain absolute flux cali	bration. Compared with R-	18, this	
	prioritises the relative change in sensitivity with time.				
Goal	5%	SCI-WFM-G-19	5-12 keV		
	Justification Further reducing the	systematic errors in lo	ng term variations of sourc	es.	

Duration for	Value	ID	Condition	Level
rate triggers				
Definition	A selectable duration over which triggering burst mode.	ch counts are integrate	ed to detect a count rate i	ncrease for
Requirement	0.1 - 100 sec	SCI-WFM-R-12	Time scales of significant rate increase.	2b
	Justification: The time scales are typical for the transient events to be studied in detail with the full resolution data to rise significantly above the background level. Full resolution data for validated triggers will be stored for nominally 300 s around the burst trigger time, including a pre-burst interval. Transients with longer time scales can be studied with the normal image data with 300 s integration time.			
Goal	0.001 - 100 sec	SCI-WFM-G-12	User selectable set of integration periods.	
	Justification: Triggering sen ray Flashes).	sitivity to very short ev	vents (e.g., TGFs: Terrestri	al Gamma-

5.2.3 Field of view

Field of View	Value	ID	Condition	Level
Definition	The coverage of the celestial sphere provided by the ensemble of WFM units.			
Requirement	1 pi steradian	SCI-WFM-R-05	By rotating the spacecraft over	2a
	around the LAD		180 degrees the other 50% of the	
	pointing		sky accessible to the LAD can be	
	-		observed in one orbit.	
	Justification: Need to match as closely as possible the sky that is accessible to the LAD at any			
	one time, but limited to 180 degrees centred around the LAD pointing. Allow study of the long			
	term variability of AGNs, type I X-ray burst history, provide triggers for e.g. state changes and			
	the occurrence of super-bursts. For a typical pointing, 50% of the accessible part of the sky of the			
	LAD should match with 20% of the WFM peak effective area.			
Goal	1.5 pi steradian,	SCI-WFM-G-05	The total sky accessible to the LAD	
	including coverage		can be observed by the WFM by	
	for the anti-Sun		two suitable pointings of the	
	direction		spacecraft	
	Justification: Part of	of the LAD accessible sky w	ould otherwise not be monitored.	

5.2.4 Energy range and resolutions

Energy range	Value	ID	Condition	Level	
Definition	The lower and upper energies measured	ured for detected photo	ns in spectral accumulation	n mode. For	
	primary range the nominal binning	of 100eV shall apply. Fo	or extended range a further	binning	
	factor in energy may be applied.	factor in energy may be applied.			
Requirement	2 – 50 keV primary	SCI-WFM-R-06		2b	
	50-80 keV extended				
	Justification: Soft response, below 5 keV important for high redshift GRBs, study of type I X-				
	ray bursts, supernova-shock break out: Science products in the primary energy range: Extended				
	dynamic range up to 80 keV intend	led for monitoring of ve	ery bright sources (>1 Crab) as part of	
	LAD background monitoring strateg	gy.			
Goal	1.5 – 50 keV primary	SCI-WFM-G-06			
	50-80 keV extended				
	Justification: Allows better signal	to noise ratio for the sa	me geometrical detector ar	ea.	

Energy	Value	ID	Condition	Level
resolution				
Definition	FWHM of a Gaussian distribution re	esponse to a monoenerg	getic stimulus of the detecto	or
Requirement	500 eV	SCI-WFM-R-07	At 6 keV	2c
	Justification: Allows scientific products from WFM such as spectra for bight sources but it is not driving the design as the number of sources with sufficient countrates and spectral features is not part of the core sciene			
Goal	300 eV	SCI-WFM-G-07	At 6 keV	
	Justification: Improved energy resolution could eventually help.			

Energy scale calibration accuracy	Value	ID	Condition	Level		
Definition	After applying all known calibration	n factors, the linearity a	and offset of the energy sca	le applying		
Requirement	4%	SCI-WFM-R-08	At 6 keV	2c		
	Justification: The energy resolut This allows scientific products from	Fustification: The energy resolution (and hence the scale) is not a main driver for the WFM. This allows scientific products from WFM such as edges from type I bursts.				
Goal	1%	SCI-WFM-G-08	At 6 keV			
	Justification: Even though not a r	Justification: Even though not a main driver several Observatory Science cases would benefit.				

Energy bands compressed images	Value	ID	Condition	Level
Requirement	>=8	SCI-WFM-R-09	User selectable bands	2c
	Justification: Allows the downlink of limited data in a number of energy bands that match interesting regions in the energy spectrum. 8 allow for some finer ranges around the Fe-line and still coverage of the full range			
Goal	>=16	SCI-WFM-G-09	User selectable bands	
	Justification: Increase in number resolution capability.	er of energy bands ar	nd better use of the intrin	nsic energy

5.2.5 Time information

Time resolution	Value	ID	Condition	Level
Definition	The cadence of the time datum of	of different WFM mode	data	
Requirement	300 s normal,	SCI-WFM-R-10		2b
_	10 μs triggered			
	Justification: Typical integration time for images is 300 s (yet programmable). The time scale corresponds to the resolution needed to monitor the intensity of non-bursting sources. The time resolution of triggered data will, however, be more accurate (10 μ s) in the event by event mode. This number matches the time information of the LAD.			
Goal	150 s normal, 5 μs triggered.	SCI-WFM-G-10		
	Justification: Higher performa	ance for brighter source	es.	

Absolute time calibration	Value	ID	Condition	Level	
Definition	The accuracy with which the calibration.	WFM time datum ca	an be assiged to UTC af	ter ground	
Requirement	2 μs	SCI-WFM-R-11	Applies to photon-by- photon data	2b	
	Justification: Pulsar studies and correlation of timing results with other missions and				
	observations and equal to the LA	D			
Goal	1μ	SCI-WFM-G-11			

Page 32/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2

	Justification: Same	ustification: Same as requirement.				
Rate meter data	Value	ID	Condition	Level		
Definition	The enderse of total of	unt noto doto non comono	in 9 TPD anargy hands			

Definition	The cadence of total count rate data per camera in 8 TBD energy bands.				
Requirement	16 msec	SCI-WFM-R-13		2b	
	Justification: Provide the abili	ity to study time cohere	ent or non-coherent time va	riability on	
	shorter time scales than the normal 300 s integration for imaging data and in cases where				
	imaging is not required to identify the source. The primary use will be the monitoring of X-				
	ray pulsars (coherent sources) over longer time scales.				
Goal	8 msec	SCI-WFM-G-13			
	Justification: Improved performance.				

5.2.6 Transient sources

Data downlink	Value	ID	Condition	Level
Definition	Once the WFM has identified a t down linked within a maximum	ransient event and stor period of time	ed this in a priority queue i	t must be
Requirement	3 hours following data storage	SCI-WFM-R-14	Assumes one ground contact each orbit of which one can be missed (e.g. weather conditions)	2a
	Justification: WFM will be used to identify transient events and state changes in X-ray sources. The presence of transients or state changes could result in follow up (ToO) with the LAD (prime mission science) or with measurements by other (ground based/space based) instruments. The transients may be detected both in triggered data and in normal data if the transient rise time is >100s or a spectral state change has occurred.			
Goal	1.5 hr	SCI-WFM-G-14		
	Justification: Factor 2 faster acceptable if this is not reached f	, it is not expected th for 100% of the cases.	nat this will drive the des	sign and is

Storage of triggered data	Value	ID	Condition	Level
Definition	Event-by-event data generated i	n burst mode, triggered	by a transient source will b	e stored,
	for submision at the next availab	ole ground contact		
Requirement	3 hours	SCI-WFM-R-15	Assumes one ground	2c
			contact each orbit of	
			which one can be	
			missed (e.g. weather	
			conditions)	
	Justification Onboard memory	y will store up to 3 hour	rs of data (although depend	ing on the
	event rate some binning is fores	een for bright events/ep	oisodes/areas). This allows	
	transmission of all relevant info	rmation if a transient ha	as been identified by the ins	strument
Goal	3 hours	SCI-WFM-G-15		
	Justification: Longer storag	e is not needed co	nsidering the transient	down link
	requirement			

Broadcast of	Value	ID	Condition	Level
trigger time and				
position				
Definition	After a trigger into burst mode, t	the WFM will attempt t	o localise the source on the	sky and
	determine the time of trigger. Th	iese data will be broadc	ast in a Burst Alert messag	e.
Requirement	Within 30 sec of generation of	SCI-WFM-R-17	High galactic latitude,	2c
	a valid event packet the event		isolated sources > 2	
	time and localisation (to ~ 1		Crab (2-30 keV) in a 10	
	arcminute accuracy) by the		sec observation.	
	WFM, this shall be broadcast		Position accuracy refers	
	and reach the end user.		to 90% confidence	
			radius and a source in	
			the fully illuminated	
			field of view of a WFM	
			camera pair. Accuracy	
			to be achieved after	
			inflight calibration of	
			systematic position	
			offsets.	
			65% of the triggered	
			events should be	
			broadcast within the 30	
			sec cap The data	
			content < 1kbit/event at	
			a typical rate of once	
			ner orbit	
	Instification. If broadcasted	a set of ground reco	ivers can see the trigger	times and
	positions for follow up measure	ments A 30 sec latence	y is a reasonable number b	ased on the
	chain of data transmission to the	e end-user.		used on the
Goal	For the same triggered events.	SCI-WFM-G-17	Some ground based	
	the goal of reaction time		observatories need	
	should be 75% in <20s.		rapid response to utilise	
			the LOFT alerts.	
	Justification: Enhanced perfo	rmance of the full syste	m handling burst alerts.	

Note: this requirement calls for an additional system with a set of ground stations to receive the broadcasted trigger time and position and disseminate this to the community

Number of	Value	ID	Condi	tion	Level
triggers					
Requirement	Up to 5 GRB	SCI-WFM-R-20			2b
	triggers per day				
	Justification Estimates suggest there should be at least 150 GRB per year detected by				
	WFM, therefore statistically several per day should be accommodated.				
Goal	>>1 per orbit	SCI-WFM	-G-20		
	Justification: Other triggers such as Type 1 X-ray bursts, as well as potential false triggers				
	imply the need for rela	atively frequent download	ling of burs	st triggers.	

5.2.7 System Requirements

Modularity	Value	ID	Condition	Level
Requirement	No loss of FoV	SCI-WFM-R-22	One single point	2b
_			failure in the WFM.	
	Justification: The design an	nd geometric arrangem	ent of the WFM shall be	such that in
	the case of a single point failu	re still the full FoV sho	uld be covered although	it is accepted
	that the effective area as we	ll as the angular resol	ution for a certain part	of the sky is
	reduced.	-		-

On-board	Value	ID	Condition	Level
memory				
Requirement	5 min @ 100 Crab	SCI-WFM-R-16		2a
	Justification: storage of all event data for very bright transients in a continuous fashion vithout gaps (or less bright transients over longer periods). This allows for transmission of these data to the ground after the transient event happened without loss of information.			
Goal	10 min @ 100 Crab	SCI-WFM-G-16		
	Justification: the same but wit	th increased capability.		

MISSION PERFORMANCE REQUIREMENTS 6

In this section science requirements for the system are given. This is clearly related to the instrument requirements but also to the strawman observing plan (see section 7). In addition to these requirements the natural functions of the satellite such as the control of the instruments (start/stop of observations, attitude keeping etc.) are, of course also required but these are not listed in the science requirements document.

Item	Requirement	Goal	level
Net observing time core science	24.7 Msec	24.7+6Msec	2a
Additional observing time observatory science	25 Msec	25+6 Msec	2a
Calibration time	5%	2%	2b
Minimum science observing times	1 minute (1 source during 2 weeks per year) 10 minutes (10 sources during 2 weeks per year)		2b
Accessible sky fraction (nominal energy resolution)	>35 %	50%	2a
Accessible sky fraction (degraded energy resolution)	>50 %	75%	2b
Galactic centre visibility (at degraded energy resolution)	> 35%	> 65%	2a
Probability to detect 2 BHCT and 2 AMXP (each)	> 98%	> 99%	2a
Mission duration	4 year	5 year	2b
Source pointing LAD (3 0)	1 arcmin	0.5 arcmin	2b
Pointing knowledge for each axis over the full orbit (AKE, 3 sigma, 10 Hz)	<20 arcsec	<5 arcsec	2c
Orbit	LEO with low inclination	LEO with low inclination	2b
Slews per orbit (average) Slews per orbit (at least)	from observing plan 2	from observing plan 2	2b
Change in observing plan following alert of SOC (ToO)	<12 SOC working hours	< 8 SOC working hours	2b
Quick look analysis	< 7 days	< 3 days	2b
Instrument data rate (typical) ¹⁾	LAD: 350 kbps (~ 150 mCrab) + WFM: 100 kbps	WFM in event mode	2b
Instrument data rate (sustained)	LAD: 1000 kbps (~ 500 mCrab) + WFM 100 kbps ²⁾	LAD: ~1 Crab	2b
Data transfer per orbit	6.7 Gbit/orbit	14 Gbit/orbit	2b

Table 6-1 **Overview of system requirements**

The WFM is less than 10% of the total bandwidth unless a Guest Observer requests this to be higher. For a total 1) of 6.7 Gbit/orbit 10% corresponds to 100 kbps (~100 minute orbit). This indicates that during typical observations it will be possible to downlink data which were collected during

2) periods with strong sources provided this data is stored on-board.

Page 36/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2

6.1.1 Observing Time for LAD

The core science time is related to the top-level goals (see section 4.1) and the observatory science is related to the third top level goal.

Net core science	Value	Id	Condition	Level
observing time				
Definition	he amount of observing time required to execute the nominal core science topics.			
Requirement	24.7 Ms	SCI-SYS-R-01		2a
	Justification: See observation plan (section 7). One year with a 40% observing efficiency corresponds to 12 Ms and at 50% observing efficiency it corresponds to 15 Ms.			
Goal	24.7 Ms + 6 Ms	SCI-SYS-G-01		
	Justification: The goal is to have the mission extended by one year 50% of that time is reserved for core-science and 50% for observatory science			

Net observatory science observing time	Value	Id	Condition	Level	
Definition	Amount of observing time that c	Amount of observing time that can be devoted to non-core science topics			
Requirement	25 Ms	SCI-SYS-R-02		2a	
	Justification: In addition to the core science about 50% of the net observing time is proposed for observatory science. All time will be allocated through a peer review process				
Goal	same + 6 Ms	SCI-SYS-G-02			
	Justification: In case of an ex the guest observing time as well.	tended mission life ti	me (to 5 year) it is expected to	o increase	

Calibration time	Value	Id	Condition	Level
Definition	The fraction of usable observing	time reserved for cele	estial calibration observations	
Requirement	5%	SCI-SYS-R-03		2b
	Justification: The calibration Sufficient time should be alloca external (astrophysics sources) detailed calibration plan. 5% re- year at the typical observing efficiency	time is specified as a ated for periodic cali . This number is ba fers to total net obser- ciency).	fraction of the total net observ brations, both internal (electrised on past experience and ving time (corresponds to 2.6 v	ving time. rical) and not on a weeks per
Goal	2%	SCI-SYS-G-03		
	Justification: Maintain the sa be predicted and less calibration	Justification: Maintain the same quality but over the mission lifetime its performance can be predicted and less calibration time is required.		

Minimum	Value	Id	Condition	Level		
observing time						
Definition	Capability of the spacecraft to s	lew to a target, acqui	re stable pointing and obtain	LAD data		
	for a minimum duration irrespe	ctive of earth and sola	r aspect angle constraints			
Requirement	1 minute per orbit for 1 source	SCI-SYS-R-04		2b		
	/ year during 2 weeks					
	10 minutes per orbit for 10					
	sources during 2 weeks per					
	year					
	Justification: There is no theoretical limit on the shortest observation time and hence,					
	during night time there will be additional observing time if the satellite slews to a given					
	position. Considering the slew r	ate we do not expect	this will be very efficient. Nev	ertheless,		
	from a science perspective som	ne sources only acces	ssible from the night side wil	ll be very		
	interesting and this is estimated	d to be one strong so	urce (1 Crab) and 10 weak sou	rces (150		
	mCrab) per year. Considering typical decay times it would be required to observe these					
	sources over as many orbit that	purces over as many orbit that the source is visible (up to two weeks).				
Goal	Factor 2 longer times	SCI-SYS-G-04				
	Justification: Increases observ	ving efficiency for sou	rces outside FoR.			

Sky visibility- nominal Field of Regard	Value	ID	Condition	Level		
Definition	Fraction of 4π steradians celesti	al sphere that can be in	stantaneously visible to the L	AD		
Requirement	35%	SCI-SYS-R-19	nominal energy	2a		
			resolution ¹			
	Justification: The energy reso	lution should be < 260	eV for SFG2, SFG4 and SFG	G5. but as		
	these are mostly predictable tar	gets, the observation so	chedule can be tuned to obse	erve these		
	sources when they are in the FoR (for the nominal energy resolution), see also appendix A					
Goal	50%	SCI-SYS-G-19				
	Justification: This increases t	Justification: This increases the probability to execute the observing programme within 4				
	years, given the added pointing	freedom.				

1) The corresponding sky fraction is also called the Nominal Field of Regard

Sky visibility – extended Field of	Value	ID	Condition	Level
Regard				
Requirement	50%	SCI-SYS-R-05	Degraded energy resolution	2b
	Justification: Combined with the mission duration (4 years) this gives a 98% probability to detect two BHCT and 98% to detect two AMXPs. For various science goals (see section 7) the energy resolution is not critical.			
Goal	75%	SCI-SYS-G-05	Will require adjustable solar panels (TBC)	
	Justification: This increases t year mission and would still be science to be done in the Galact observation time when the bu observing the core-science targe	he probability to detec 98% for a 3 year missio tic Centre area on the s lge is visible to LOFT ts.	t 2 BHCT and AMXPs to 99 on. Furthermore, it allows Ob sky. Otherwise (50% sky visil is used for a significant fr	% for a 4 oservatory bility) the action by

1) The corresponding sky fraction is also called the **Extended** Field of Regard

Galactic centre	Value	ID	Condition	Level
visibility				
Definition	The fraction of yearly coverage	ge of the Galactic Cen	tre location that is within	the LAD
	Extended Field of Regard.			
Requirement	The GC location (equatorial	SCI-SYS-R-06	Coupled to the extended	2a
•	coordinates 17 45 40; -29 00		Field of Regard (400eV	
	28) must be visible in 35% of		energy resolution).	
	orbits			
	Justification: 35% correspond	ls to the Extended Field	l of Regard requirement of 5	0% of the
	sky [SCI-SYS-R-05] and allows	for sufficiently long net	observing time of the Galac	tic Centre
	to meet the top level goals.		-	
Goal	65%	SCI-SYS-G-06	Will require adjustable	
			solar panels.	
	Justification: This number corresponds to the Extended Field of Regard goal of 75% of the			
	sky [SCI-SYS-G-05] and will optimize the science return as it enables longer viewing of the			
	Galactic Centre which is importa	ant for the observatory s	science.	-

BHCT/AMXP	Value	ID	Condition	Level
Detection				
Requirement	>98% probability to detect two major or big outburst of a BHCT showing the high- frequency quasi-periodic oscillation and > 98% probability to detect two AMXP	SCI-SYS-R-07	Coupled to sky visibility	2a
	Justification: See the observa	tion plan (section 7)		
Goal	> 99% probabilities for AMXP and for BHCT with HF QPO	SCI-SYS-G-07		
	Justification: Increased prob	ability		

Mission duration	Value	ID	Condition	Level
Definition	The elapsed time for scien commissioning but not including	ce observing program g TBC months perform	nme after completion of ance verification/calibration	in-orbit phase.
Requirement	4 years	SCI-SYS-R-09		2b
	Justification: With a 4 year mission all requirements in terms of observing			
	time, probability to catch rare events and energy resolution are achieved with			
Goal	5 years	SCI-SYS-G-09		
	Justification: A longer missi	Justification: A longer mission duration allows for a larger science return.		

6.1.2 Pointing

C	Value	14	Condition	Lovel
Source pointing	value	10	Condition	Level
LAD				
Definition	The accuracy of pointing the LA	D boresight towards a	catalogued target. This shall b	ea3σ
	radius value, and applies once th	e LAD boresight to st	ar tracker offset is calibrated in	ı orbit.
Requirement	1 arcmin	SCI-SYS-R-08	Pointing of LAD, 3σ	2b
	Justification: This is well wit accuracy with which the WFM of to the stability requirement of th be maintained during periods w of transient sources, with an ini- science.)	hin the field of view can determine a sourc ne LAD pointing. (Not hen the LAD is not ob tial boresight estimat	of the LAD. It also correspon ce position. This requirement i ce there should be an equivalen pserving, to enable the WFM lo ce. However this is TBD and no	ds to the s coupled it value to calization ot driving
Goal	0.5 arcmin	SCI-SYS-G-08		
	Justification: Reduces gradier response stability.	nt of response vs. poin	nting in LAD to provide more i	nargin in

Absolute	Value	ID	Condition	Level
Knowledge				
Error				
Definition	The instantaneous reported star	tracker reference axis l	ocation .	
Requirement	20 arcsec	SCI-SYS-R-10	3 σ, 10 Hz	2c
	Justification: Any pointing jitt about the pointing. This prov frequencies that exceed the SCI- to the FoV, but the actual num deduced from the science requir the relative alignment in the LAI	ter can be corrected on vides additional marg LAD-G-26 specification aber (20 arcsec) is an ements. Hence it is a le D is included in the poin	the ground if we have good in, especially in the cas I. The AMA should be small engineering estimate and vel 2c requirement. Any dis nting error and not in this A	knowledge e of finite l compared not strictly stortions in MA.
goal	5 arcsec	SCI-SYS-G-10		
	Justification: As many star tra nice to have this but it is not real	ckers provide few arcse lly required.	conds pointing knowledge	it would be

6.1.3 Orbit

Requirements on orbit are derived from a requirement on instrument background rates, stability and radiation damage due to charged particles. At this level we only give a top level requirement and more details are given in the MRD.

Orbit altitude	Value	ID	Condition	Level
Requirement	LEO, low inclination	SCI-SYS-R-11		2b
	Justification: Only a LEO o a low inclination the radiatio passively cooled and still reac in the MRD.	rbit provides a low eno n damage to the detec h the end-of-life tempe	ugh background. In combina tors will be low enough to h rature requirements. Details	ition with ave them are given
goal	LEO, lower inclination	SCI-SYS-G-11		
	Justification: A lower inclin	ation will reduce the ef	fects of the SAA.	

Slews per orbit	Value	ID	Condition	Level
Requirement	From observing plan	SCI-SYS-R-13		2b
	Justification: This allows for slewing of the satellite during monitoring campaigns and is			
	directly related to SCI-SYS-R-04, this is NOT equal to the average number of slews per			
	orbit which depend on the observation plan (see RD4).			
Goal	4	SCI-SYS-G-13		
	Justification: This increa	ses the number of	potential observations of	otherwise
	inaccessible targets (at a giver	n time) by a factor 2.		

6.1.4 Target of Opportunity

Although not the prime science it is clear that fast response times will enable additional science. The provided requirements are supposed not to drive the design but are nevertheless ambitious in the sense that the ToO response time should be optimized within the planned ground system.

Change in observing plan	Value	ID	Condition	Level	
(100)				1	
Requirement	<12 working hours after the	SCI-SYS-R-14		2b	
	reception of ToO trigger at				
	Iustification · LOFT is not a	mission dedicated to f	ast transients (like SWIFT)	However	
	it is important to be able to re	spond to state changes	in sources at a reasonable	rate (called	
	ToOs). Therefore the ToO response time should not drive the design of the ground system.				
	The provided specification corresponds to a reaction time <12 SOC				
	working hours following the notification of a ToO trigger submitted by a				
	user to the SOC during their normal working hours.				
	Clearly, this requirement should not inhibit faster response times in case a ToO is				
	identified at the beginning of a working day. Although many targets will be triggered by a				
	change in state, the number of ToOs is limited as subsequent observations of a target				
	which changed state, will be pre-planned at the time of the first observation and do not				
	Following the change of a sour	vation schedule.	ources will be on between s	omothing	
	like a week to very long period	le state, the relevant s	voar after the transient tri	omething	
	like a week to very long periods (campaigns up to one year after the transfert trigger may be expected). This makes a response of < 12 hours for the core science not mandatory				
	Clearly a faster response will i	mprove the science in g	eneral (see the goal).	atory.	
Goal	< 8 working hours after	SCI-SYS-G-14			
	reception of trigger at SOC				
	Justification: During day	time a response wi	thin 8 hours is feasible	based on	
	XMM/Integral experience				

Note: We expect between 12 and 24 ToOs per year.

QLA and	Value	ID	Condition	Level	
utilisation for					
observation					
planning					
Definition	A Quick Look data analysis s	ubsystem should be pr	ovided at SOC (and SDC)	in order to	
	determine the properties of triggering sources and LAD target object in order to provide an				
	alert for observation plan changes, and verify LOFT Burst Alert messages.				
Requirement	<7 days	SCI-SYS-R-18		2b	
	fustification: The analysis using a QLA system should be powerful enough to be able to				
	identify source spectral and brightness changes that allow an alert for new ToOs to be				
	generated, or identify failure to meet observing proposal criteria. The planning cycle to				
	update the observing plan shall be <7 days and therefore QLA should be able to generate				
	the required data for Duty Scientist decision on a much shorter timescale. Observation				
	campaigns can last weeks.				
Goal	< 3 days	SCI-SYS-G-18			
	Justification: The re-plan	ning timescales shoul	d be faster to avoid loss	s of useful	
	observing time.	-			

6.1.5 Data rates

Typical data rate	Value	ID	Condition	Level
Definition	The science data rate genera compression ratios, when obs data.	The science data rate generated by the instruments, after nominal binning and lossless compression ratios, when observing a source at the typical LAD brightness for event mode data.		
Requirement	350 kbps (LAD) + 100 kbps	SCI-SYS-R-15		2b
	(WFM)			
	Justification: For a 150 mC must support the full LAD eve for the WFM should be transr	Justification: For a 150 mCrab source, observed with an efficiency of 60% the data rates must support the full LAD event mode data. Simultaneously data for nominal event modes for the WFM should be transmitted (100 kbps).		
Goal	TBD kbps	SCI-SYS-G-15		
	Justification: Increase in the data rate for the WFM to exploit fully the available transmission rate.			

Sustained data rate	Value	ID	Condition	Level
Definition	The science data rate generated by the instruments, after nominal binning and lossless			
	mode data.	compression ratios, when observing a source at the maximum LAD brightness for event mode data.		
Requirement	1000 kbps (LAD) + 100	SCI-SYS-R-16		2b
	kbps (WFM)			
	Justification: For a 500 mCrab source, observed with an efficiency of 60% the data rates			
	must support all LAD event mode data. Simultaneously all data for nominal event modes			
	for the wrw plus the transmi	ssion of data stored on	board for previous measurem	lients.
Goal	>1500 kpbs	SCI-SYS-G-16		
	Justification: Increase of th	e LAD source to >1 Cra	b without loss of information	

Downlink rate	Value	ID	Condition	Level
Requirement	6.7 Gbit/orbit	SCI-SYS-R-17		2b
	Justification: This is link mCrab), and SCI-LAD-R19 and of no loss of LAD information	ed to the previous sci nd the minimal telemet within the above limits	ence requirement SCI-SYS- ry of the WFM, under the as s.	R16 (500 sumption
Goal	14 Gbit/orbit	SCI-SYS-G-17		
	Justification: Enables the h previous requirement.	igher sustained rate rec	uired by the goal SCI-SYS-R	-16 in the

7 OBSERVING PLAN

In *Table 7-1* the total observing time per core science requirement is given split over the different source categories. Also the number of required sources per category is given as well as the number of observed sources. This number of observed sources is larger than the number of required sources as it is not always known a priori if a source is in a given state, We also specify whether the spectral resolution is important for the science goal (Fe-line characterization). For the Neutron Stars, both transient outburst NS and the transient weak NS will be observed. From these we expect that 3 will have the properties of an AMXP which are then observed for a longer period.

Table 7-2 lists more details per source type: the number of sources, the number of pointings per source, the campaign duration (= time over which pointings should be distributed, for transients this is how long the outburst lasts, for persistent sources the minimum time over which we need to sample their behavior), the total exposure time for that class of sources, the top level science goals addressed, and examples of sources in this class (for transients of course these are really examples, as usually other ones like these will occur and be observed with LOFT). Most classes of sources serve to address >1 science goal as is already indicated in *Table 7.1*.

Table 7-3 lists the archetypal sources per class. *A* mock observation plan defined in [RD-4] has been produced based on this table, and for the purposes of deriving the impact of the observing plan on the system, has been made applicable to the mission in the MRD. It should be recognized that a ToO for LOFT is of a different nature than 'usual' observatory ToOs. When the source state changes, a change in the observing program can be triggered but then, for this source, a campaign of weeks to longer periods is started. Only when, during this campaign, the source fades away, the campaign can be stopped to save observing time. So, effectively we expect about 60 ToOs over the mission life time. Despite this difference with the more usual use of ToOs (changes in the observation plan by external triggers) we have kept the name as it would result in a re-planning of the observation schedule.

Table 7-1 Overview of sources and total observation time per core science requirement. Also the total time on the Galactic Centre is given. Note that observation of the same source can be used for different science goals. This explains that the total time is not the sum but the maximum of the entries

	#	EOS1	EOS2	EOS3	SFG1	SFG2	SFG3	SFG4	SFG5	total	time on bulge
BH transient outburst	4				2400	2400		2400		2400	1920
BH quasi persistent	2				400	1600		1600		1600	800
AGN1 (reveberation)	6								4800	4800	0
AGN2	14								2400	2400	0
milisec pulsar outbursts ¹⁾	3	1000	1000			1000	1000			1000	850
NS persistent bright	13	2900	800		4800	4800	2800	4800		4800	3600
NS transient bright outbursts	3	1200	600		1800	1800	1800	1800		1800	900
bursters	10		1000							1000	750
NS persistent weak	14		280							280	210
NS transient weak ²⁾	7	500	120							500	375
magnetars (seismic)	1			100						100	
Follow up sources EOS ³⁾	2	4000								4000	3000
total	85	9600	3800	100	9400	11600	5600	10600	7200	24680	12405
number required NS		4	35		8	10	10	10			
number required BH					3	5		5			
number observed NS		20	48		15	18	18	15			
number observed BH					6	6		6			
Other				1 SGR					14+6 AGN		
spectral resolution		no	no	no	no	yes	no	yes	yes		

1) The NS transient outburst NS and the transient weak NS will be observed. From these we expect that 3 will have the properties of an AMXP which are then observed for a longer period

- 2) we have allocated 500 ks for the long term transient NS KS1731-260 for the EOS1 goal
- *3)* We have allocated 4 Ms additional time for EOS1 to reduce the errors on the mass/radius relation for the two most favourable/interesting sources. These cannot be identified before the measurements are done

Source type	# of sources	Total pointings	Campaign length [days]	Total time [ks]	тоо	Number of TOOs	Fraction in bulge [%]	Scienc e goals	Example objects
BH transient outbursts	4	800	100-350	2400	Yes	16	80	SFG1,2, 4	XTEJ1550-564, GROJ1655-40, XTEJ1118+480, GX339-4
BH quasi persistent	2	400	1000	1600	No	0	50	SFG1,2, 4	GRS1915+105, Cyg X-1
AGN1	6	24	700	4800	No	0	0	SFG5	See list AGN1 (reverberation)
AGN2	14	14	5	2400	No	0	0	SFG5	See list AGN2 (profiles)
Millisec pulsar outbursts	3	250	10-30	1000	Yes	6	85	EOS1, SFG1,2, 3,4	SAXJ1808.4- 3658,XTEJ1814- 338,HETEJ1900 .1-2455
NS persistent bright	13	50	10-200	4800	No	0	75	EOS1,2 SFG1,2, 3, 4	See bright persistent NS
NS transient bright outbursts	3	250	6 - 60	1800	Yes	6	50	EOS1,2 SFG1,2, 3,4	CirX-1, AqlX-1, 4U1608-52
Bursters	10	40	15 - 30	1000	Yes	20	75	EOS2	See list bursters
NS persistent weak	14	14	1	280	No	0	75	EOS2	See list weak persistent NS
NS transient weak	7	6	1	500	Yes	12	75	EOS1, EOS2	See list weak transient NS
Magnetar	1	1	1	100	No	No		EOS3	Shines through collmator

Table 7-2: Detailed overview of observations to meet the core science requirements

1) Average time per pointing is total time/total pointings. If the total number of pointings is a concern, pointings of less than 10 ks can be added up to make pointings of at least 10 ksec in length.

2) For some ~10 of AGN2 sources additional offset background fields are needed (~700ks total). There should be several "standard" background fields that must be quasi-periodically revisited to monitor the evolution of background. This should be ~3% of net observing time.

Table 7-3: Potential sources per class (not exhaustive)

Source class	Sources
Brightest AGN1 (8 candidates)	MCG-5-23-16, MCG-6-30-15, NGC4051, NGC3516, NGC3783, NGC3227, MRK509, MRK766
AGN2 (22 candidates)	H0557-385, HE1143-1810, MCG-2-58-22, MCG+8-11-11,MRK110 MRK279, NGC4593, NGC5548, NGC7213, NGC7314, IC4329A, NGC7469, Q2251-178, ESO511-G030, IRAS05078+1626, NGC526A NGC2110, NGC2992, HE 1143-182, NGC4593, NGC4151, ARK120
BH Transients	4U 1543-47, 4U 1630-47, GRO J1655-40, GRS 1739-278, GX 339-4, H1743-322, IGR J17091-3624, MAXI J1543-564, MAXI J1659-152, MAXI J1836-194, SAX J1711.6-3808, SLX 1746-311, Swift J1753.5-0127, V4641 Sgr, GS1354-64, XTE J1118+480, XTE J1550-564, XTE J1650-500, XTE J1652-453, XTE J1720-318, XTE J1748-288, XTE J1752-223, XTE J1817-330, XTE J1818-245, XTE J1859+226, XTE J1908+094, XTE J2012+381, GRS 1915+105, (persistent; Cyg X-1)
Bright transient NS (3 sources)	AQL X-1, CIR X-1, 4U 1608-52
Bright persistent NS (13 sources)	Sco X-1, GX 5-1, GX 17+2, 4U 1636-53, 4U 1728-34 4U 1820-30, 4U 0614+091, 2S 0918-549, Ser X-1, 4U 1705-44 GX 349+2, Cyg X-2, 4U1702-429
Bursters (10 sources)	EXO 1745-248, 1M 0836-425, 4U 1323-62, 4U 1705-44, XTE J1710-281 XTE J1723-376, 4U 1746-37, GS 1826-24, XTE J2123-058, XTE J1739-285
Weak persistent NS (14 sources)	4U 1850-087, 4U 1915-05, XB 1832-330, 4U 0513-40 , 1A 1246-588 4U 1812-12 , 1RXS J170854.4-321857 , SAX J1712.6-3739 , 4U 1722-30 SLX 1735-269, SLX 1737-282, SLX 1744-299/300, 1A 1742-294, XTE J1701-407
Weak transient NS (7 sources)	XTE J1759-220, SAX J1806.5-2215 , GRS 1741.9-2853, KS 1741-293 SAX J1753.5-2349, 2E 1742.9-2929, KS 1731-260
Millisec pulsar outburst	SAX J1808.4-3658, XTE J1751-305, XTE J0929-314, XTE J1807-294, XTE J1814-338, IGR J00291+5934, HETE J1900.1-2455, S wift J1756.9-2508, SAX J1748.9-2021, NGC 6440 X-2, IGR J17511-3057

Observing times and schedules in the overwhelming majority of cases are set by intrinsic source state variations rather than by S/N considerations. Sources have different spectral/timing states, and we need to sample each state over a range of luminosities in order to understand the processes we are detecting with LOFT, or in order to catch a source in the right state to see the process in the first place. Transients are named that will likely not be on, these serve as placeholders for similar transients that will be discovered by LOFT WFM and perhaps other means.

The total observing time required for the **top level science requirement is 24.7 Ms**, which corresponds with a realistic but conservative observing efficiency of 50% to 1.6 years elapsed time of which ToO targets are 6.7 Ms v and non-ToO 18.0. For the bright AGNs we could save observing time by doing 50% as ToOs (need to cover several flux levels in each source). However, it should be recognized that we need a longer mission duration to ensure a good probability to observe the rare transient events needed for some of the science goals. There are no SGRs in the table as we only have the serendipitous offset observations as a top level goal – we DO plan to have TOO triggers in place for when an SGR becomes active, to point at them to see if intermediate flares happen – this is not guaranteed to succeed, hence not a top level goal.

A preliminary breakdown (based on reasonable assumptions on the targets for Observatory science) of observing time spent at different viewing directions is given in [RD 4].

Page 46/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2

Table 7-4:	I: Expected observing time spent at different viewing directions (note that a	a mission duration of 4
years corre	rresponds to 50 Ms with a 50% observing efficiency)	

Viewing Direction	Primary Science	Observatory Science	Total (Ms, %)
Galactic Centre	12.4	4.6	17.0 (35%)
Galactic Plane	2.5	5.2	7.7 (15%)
Rest	9.8	15.2	25.0 (50%)
Total	24.7	25	49.7

A final consideration for the observation plan is the mission life time to have a good probability to catch rare events: BHCT in the intermediate state with HF QPOs, and AMXPs. The number of transients is relatively low (few). We have selected realistic assumptions in the sense that we do not take into account that the number can be larger due to the huge improvement in the sensitivity of LOFT compared to RXTE. Still we assume that some of the known, persistent, sources will be active in the LOFT era. This includes GRS1915+105 (BH transient outburst) and NGC 6440X-2 (AMXP). This probability has to be folded with the field of regard of the mission (as it is of no use if LOFT cannot observe the source when it becomes active due to viewing constraints.

Table 7-5: Probability for the occurrence of transient events as function of life time and sky visibility given as constraints on the Solar Aspect Angle (note that we always expect 1 source based on current data)

Sky visibility	± :	30	+30/	-50	+30/	′- 70	+3	0/-90
BH transient outburst							ĺ	
number sources	2	3	2	3	2	3	2	3
5 years	0.993	0.95	0.999	0.99	1	0.997	1	0.998
4 years	0.98	0.90	0.995	0.96	0.999	0.99	0.999	0.99
3 years	0.95	0.79	0.98	0.9	0.994	0.95	0.996	0.97
Accreting millisecond X-ray pulsars								
number sources	2	3	2	3	2	3	2	3
5 years	0.993	0.95	0.998	0.98	1	0.995	1	0.997
4 years	0.98	0.87	0.994	0.95	0.998	0.98	0.999	0.99
3 years	0.95	0.77	0.98	0.87	0.992	0.94	0.995	0.96

Based on these expectations it is concluded that the minimum life time of the mission should be 4 years for a sky visibility of +30/-50 degree and 3 years for +30/-70 degree. Under these conditions the expectation for 3 BH transient outbursts and AMXPs is around 95% and the probability of detecting two in each group is larger than 99%. Also, with a conservative estimate of 50% observing efficiency the full program can be performed.

Appendix A Additional science requirement dependencies

Some of the instrument and mission requirements are highly coupled and we have selected a reasonable balance between the key parameters which include effective area, sky visibility (field of regard and extended field of regard and mission duration). For example

- a reduction in effective area of the LAD can, to a significant degree, be compensated by a longer mission duration or a larger field of regard. There is only a limited effect on attaining the core objectives. It will, of course, affect the overall science return of the mission as it reduces the discovery space.
- a smaller field of regard can be compensated by a longer mission duration;
- although all science goals benefit from it, not all core science requirements (L1 level) need a good spectral resolution. Hence the nominal Field of Regard with nominal spectral resolution is driven by those core science objectives which need good spectral resolution (SFG2, SFG4, SFG5) and for the other science goals the extended field of regard can be used. If good spectral resolution is available also for the observations aimed at the other core science objectives, it will enable a desirable additional scientific return;
- a larger field of regard or extended field of regard allow for a shorter mission duration provided we can execute the observations for the core science (e.g. sky visibility of the Galactic Centre is sufficient).

Although the number of combinations is large, two issues are driving part of the instrument and mission design: the effective area and the sky visibility with good or degraded energy resolution. We can demonstrate that the current instrument and mission requirements have a safe margin for these parameters.

A.1 Effective area

In Table A-1 we provide an overview of the science impact of a reduced effective area. For this we provide first the basic effects of a reduced area, followed by the potential mitigation. As is indicated some of the L1 core requirements can be fully compensated but in other cases some loss of science (less sensitivity, fewer sources) can also be the consequence. In the last columns of this table we quantify the effect of a reduction to 70%, 80% and 90% of the effective area, on increase in observing time, source flux constraints or number of sources.

	Туре	Compensation	Aeff	reducti	on
Science			70%	80%	90%
EOS1	coherent analysis, errors scale as $Aeff^{1/2}$	$ \begin{array}{l} \textbf{Yes: observe longer to collect} \\ \textbf{same number of photons: } T_{new} = \\ T_{old}^* \; A_{old} / A_{new} \end{array} $	1.43	1.25	1.11
EOS2	coherent blind search, attainable amplitudes scale as Aeff ^{-1/2}	$\begin{array}{l} \textbf{Mostly: observe longer} \\ T_{new} = T_{old} * (A_{old}/A_{new}) * small \\ correction; this means more \\ acceleration smearing so one loses \\ the tightest orbits \end{array}$	1.43	1.25	1.11
EOS3	incoherent blind search, attainable amplitudes scale as Aeff ^{-1/2} , S/N drops as Aeff	Mostly : longer mission to catch brighter SGRs. For the same signal the source needs to be brighter (see next columns)	>1430 mCrab	1250 mCrab	1110 mCrab
SFG1	incoherent detections and analyses. attainable amplitudes scale as Aeff ^{-1/2} , S/N drops as Aeff, centroid errors increase as Aeff ⁻¹ , number of detections drops as Aeff	Mostly : longer mission and better sky access to observe more BHTs average more data as $T_{new}=T_{old}*(A_{old}/A_{new})^2$ but this increases smearing	2.04	1.56	1.23
SFG2	coherent analysis, errors scale as $Aeff^{1/2}$	Yes : observe longer as $T_{new} = T_{old}^*$ A_{old}/A_{new}	1.43	1.25	1.11
SFG3	detect signal within coherence time (~0.1 s) attainable amplitudes scale as Aeff ^{-1/2}	Fewer sources : no compensation possible, this will be done for fewer sources, need proportionally brighter sources, assuming a galactic disk distribution the number drops as Aeff. Nominal sources is 10	7 NS	8 NS	9 NS
SFG4	incoherent analysis	Yes : observe longer $T_{new} = T_{old}^*$ $(A_{old}/A_{new})^2$ and assume process is stationary for this longer time	2.04	1.56	1.23
SFG5	coherent analysis dominated by background systematics	Fewer sources : for average line profiles observe longer $T_{new}=T_{old}*A_{old}/A_{new}$. for tomography fewer sources are accessible as time is fixed, need proportionally brighter sources, so cover smaller volume, number scales as Aeff ^{3/2} . Nominal sources is 6 + 14 AGN	1.43 4+14 AGN	1.25 5+14 AGN	1.11 6+14 AGN

Table A-1 Impact of reduced effective area

In summary this analysis shows that the core science goals are not at stake if the effective area reduces by the order of 10%. However, some of the science goals will be less ambitious (e.g. a slight reduction in the number of AGNs on which LOFT can perform highly significant Fe line tomography) whereas others can be still achieved but require (significantly) longer observation times (and hence mission duration). However, we cannot claim that the accuracy in the predictions is such that it is mission critical to change one of the other

Page 49/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2 mission constraints (Field of Regard, mission life time) when the effective area reduces by 10%. When larger reductions in the effective area are needed it is strongly recommended to optimize some of these other design parameters.

A.2 (Extended) Field of Regard

The Nominal Field of Regard is the part of the sky which can be observed with the nominal energy resolution and the extended field of regard has been introduced to allow for observations of sources where the energy resolution is not required. The required field of regard is 35% of the sky (corresponding to the FoV in the M3 proposal) and the extended field of regard is 50%. In practice this implies that for the extended field of regard the thermal requirements on the LAD instrument will be less stringent.

A second factor which needs to be folded in is that a fraction of the relevant sources for LOFT is in the Galactic Centre, which implies that we need to consider the fraction of observing time for the Galactic Centre separately from the total observing time. In *Table A-2* we summarize the required observing times for the core program (top half) and the available observing time on the Galactic Centre for different assumptions. As can be seen there is a considerable margin between the needed observing time with good spectral resolution and the available observing time (needed 8.1, available 17.8 for a 4 year mission). Also with a shorter mission the margin is significant.

	Time	Comment
Туре	[Ms]	
Core observing plan		
Total on Galactic Centre	12.4	
with spectral resolution on Galactic Centre	8.1	
Total core science	24.7	
Total core science with nominal spectral resolution	18.8	
Available observing time for nominal mission		
duration		
Total observing time	63.1	(50% observing efficiency) ¹⁾
Total observing time Galactic Centre for Sun constraint	8.8	
± 10° (20% of sky visible)		
Total observing time Galactic Centre for Sun constraint	17.8	nominal spectral resolution
±20° (35% of sky visible)		requirement and thus the baseline
Total observing time Galactic Centre for Sun constraint	26.4	Degraded spectral resolution
±30° (50% of sky visible)		requirement

Table A-2 Available observing time on the Galactic Centre

1) Note that both the industrial studies give an observing efficiency in excess of 50% hence the calculated number is conservative.

The last factor to be considered is the observing time available for the BHCT and AMXPs. In total we require for these very bright sources 3.4 Ms which is not predictable in time (and may happen at a part of the year when the Galactic Centre is poorly visible). Of these sources the BHCT require a campaign length of 100 - 300 days, only a few weeks of which can be expected to exhibit the HF QPOs required for SFG1 and the AMXPs require observing campaigns of typical 20 days (total required time is 300 ks per AMXP). This potential risk is mitigated by the allowance of regular out of field of regard observations (due to the few hour thermal intertia of the system). As can be seen from Table A-2 the visibility with a very small solar constraint ($\pm 10^{\circ}$) gives still a total of 8.7 Ms for a 4 year mission, well in excess over the needed observing time.

A.3 Energy resolution and bandwidth

LOFT will provide a unique combination of effective area, energy bandwidth and spectral resolution. The area, also in connection with the field of regard, has been discussed above and here we will discuss the justification and trade-offs for the energy resolution and bandwidth.

A3.1 Bandwidth

The energy resolution and bandwidth are driven primarily by the Strong Field Gravity science goals. It is very important to have the broadband energy coverage to model the reflection properties measuring both Fe line profile and Compton reflection continuum above 10 keV. The good leverage on the continuum in a broad energy band will allow us to disentangle all spectral components and, in turn, to correctly model the residuals of the Fe line. The power of the broad energy range in determining model parameters has been recently demonstrated by XMM and NuStar analysis of NGC1365 (Risaliti et al. 2013). In this respect the high energy response of LOFT is unique, covering simultaneously the 2-30 keV band with a great improvement in effective area in both low and high energy ranges, a factor >60 higher with respect to XMM in the Fe K domain and a factor of ~30 with respect to NuStar or Astro-H at 30 keV. The 2 keV low end of the bandwidth has been set to enable the study of photo electric absorption and soft components, the 30 keV allows one to determine the AGN and X-ray binary continuum spectra in order to study reflection or absorption effects and allow for the accurate determination of the continuum underneath the Fe-K line profile. With an upper range of 80 keV (no specific resolution is required) fast high-energy phenomena such as SGR/AXP flares can be studied. In practice these bandwidth limits are not absolute limits but the science will degrade gradually (an effect of about 10% in the energy thresholds has a small effect on the science but it depends somewhat on details of the science case). It should be noted that the energy range is unique for the WFM and will, for the first time enable the monitoring of the sky below 5 keV with CCD-class spectral resolution.

A3.2 Energy resolution

The energy resolution of the LAD is driven by three of the five goals (level 1) of the Strong Field Gravity science and these have been used to define the energy resolution requirement. The 3 relevant science goals are:

- SFG2 Detect disk precession due to relativistic frame dragging with the Fe line variations in low frequency QPOs for 10 neutron stars and 5 black holes.
- SFG4 constrain fundamental properties of stellar mass black holes and of accretion flows in strong field gravity by measuring (a) the Fe-line profile and (b) carrying out reverberation mapping and (c) tomography of 5 black holes in binaries providing spins to an accuracy of 5% of the maximum spin (a/M=1) and do comparative studies in 10 neutron stars
- SFG5 constrain fundamental properties of supermassive black holes and of accretion flows in strong field gravity by measuring (a) the Fe-line profiles of 20 AGNs and, for 6 AGNs: (b) carry out reverberation mapping and (c) tomography, providing BH spins to an accuracy of 20% of the maximum spin (10% for fast spins) and measuring their masses with 30% accuracy,

However, whereas these science goals drive the energy resolution, the combination of spectral resolution with timing resolution (large effective area) will open up a new discovery space and the results of this new discovery space cannot be predicted at this time. Hence, we have aimed at a design with an ambitious but feasible , but ambitious energy resolution. As we will show, with CCD-class spectral resolution and passively cooled detectors we can achieve these three science goals.

As specified in this requirement document, in practice the instrument will have different classes of events:

Page 51/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2 single anode events and double anode events. They will have different resolution but for simplicity we will analyze the data for the full detector and refer to this as ~ 240 eV resolution ("nominal" energy resolution) and study the science impact in the event of a degradation, taking 270 eV and 300 eV as case study (it is useful to note here that this is not the degradation in energy resolution associated with the extended field of regard, which is 400 eV). The two main components to the resolution are the intrinsic limiting resolution of Silicon detectors (called Fano noise) and the electronic noise (read-out pre-amplifier and detector leakage current). A number of other components - including uncertainties in the knowledge of DC noise, gain and offset (see LOFT-IAPS-PLC-MD-0001 for details) - contribute to the resolution but they are of less importance.

A.3.2.1 Reverberation mapping and tomography of BHs and NS (SFG4 and SFG5)

A degraded spectral resolution will increase the uncertainty on the determination of the centroid (typically by the inverse of the degraded resolution) for a given model. The extra uncertainty here is statistical (depending also on photons per phase or time-delay bin), rather than systematic (i.e. not being able to distinguish distinct variable spectral components, which are all broad in this case and variable in much longer time scale with respect to the orbital period of the disc). Thus the increase of the uncertainty can be mitigated by longer observations, with the exposure time scaling roughly with the square of the relative degradation in energy. This has been verified by detailed simulations for an orbiting hot spot and for the reverberation mapping. The fact that the Fe-line is relatively broad and we also fit the broad reflection component confirms this also qualitatively.

This argument is only correct if the hot spot lasts long enough to compensate a loss in spectral resolution by longer observations. However, in case of a hot spot the prime science comes from the variability of the spectra. In this case the complexity and correctness of the model for the emission without hot spot is therefore of less importance.

A.3.2.2 Fe-line variations in low frequency QPOs (SFG2)

Essentially the same correction can be applied as for the reverberation mapping and tomography case.

A.3.2.3 Fe-line profile in 20 AGNs and determination of spin and masses (SFG5)

The driving requirement is to be able to disentangle all different emission line contributions in the Fe K band (3-8 keV), namely: narrow neutral and ionized lines (Fe K α , Fe K β , Ni K α) plus broad Fe K line with the goal of determining accurately the broad line parameters to recover the BH's spin. These components are illustrated in Figure A-1. We worked with AGN, since they will represent the weak, i.e. worst, case scenario. The requirement 240 eV (the expected resolution of single anode events with 200 eV resolution for 40% and 260 eV for the other 60%) is necessary to measure the BHs spin in AGNs with the 20% accuracy. This is shown in the left panel of Fig. A-2 where the 68, 90 and 99% (black, red and green respectively) confidence levels of the disc inclination vs BH's spin are given We also mention that all narrow emission line components in the X-ray spectra of AGNs are produced in reprocessing media distant from ~0.1pc to a few pc from the central BH (BLR and molecular torus) and then likely constant over years timescales. Since we are targeting here bright AGNs, Chandra and XMM already observed all of them allowing characterization of the narrow emission lines. It is also worth noting that Astro-H will observe the AGN LAD sample long enough to characterize with its unprecedented eV precision all narrow components in the Fe K energy range.

Figure A-1: different components of a AGN spectrum including the continuum and ionized absorber (blue), the cold reflection and narrow Fe line $K\alpha$, Fe-K β and Ni-K α (magenta), the ionized lines FeXXV and Fe XXVI (red) and the blurred ionized reflection component (green). The total emission is given in black.

With the nominal energy response of 240 eV we are able to disentangle all the different line components in the Fe region and get good measurements of the blurred reflection components (continuum and lines). As an example, starting with BH spin a=0.7, we were able to recover the BH spin at the ~20% level of accuracy, despite the presence of narrow Fe K α , Fe K β , Ni K α and ionized lines due to a "hot gas" emitter with ionization parameter log(xi)~3.5 (see left panel in Fig. A-2). Assuming instead 300 eV FWHM energy resolution for the total of events, we detect some ambiguity in disentangling the different line contributions. In particular, the ionized lines (Fe XXV/XXVI with equivalent width ~ 40 eV) are blurred together and with the broad line blue wing that prevents the determination of the disc inclination and emissivity with the requested accuracy. This also prevents an accurate spin determination and the error rises to > 50 % (see right panel in Fig. A-2). We also check the effect of an intermediately degraded energy resolution (270 eV FWHM). In this case the scientific objective is still reached, although with a larger uncertainties on the spin determination (typical 99% confidence level at ~40%, see middle panel in Fig. A-2).

Figure A-2. Confidence contours (68, 90 and 99% in black, red and green respectively) of disc inclination vs BH's spin for different value of the LAD energy resolution: the requirement value (240 eV), degraded (270 eV) and worst case (300 eV). The model is that presented in Fig. A-1 including warm absorption, cold reflection and narrow ionized Fe line.

Page 53/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2

Conclusion

We performed a sensitivity analysis of the risks associated with a potential non-compliance of the LAD energy resolution parameter with the requirement. It has been illustrated that even in the event of an energy resolution not meeting the requirement, consequences for the science objectives can be mitigated by longer observations, with the exception of the Fe-line profile fitting where a 10% spectral resolution degradation is still within the science requirements but a 20% degradation will not meet the requirements. This is summarized in Table A-3. Of course, this conclusion depends on the assumption that we have a correct understanding and description of the spectra of these sources (and with a better energy resolution this will be verified more easily).

Science goal	Type and effect	~270 eV resolution	~300 eV resolution
Relativistic frame	Coherent, change of	Observing time x 1.1	x 1.2
dragging in LF QPOs	observing time		
Reverberation	Incoherent, change in	x 1.2	x 1.4
mapping	observing time		
Tomography	Incoherent, change in	x 1.2	x 1.4
	observing time assuming		
	the hot spot lasts		
	sufficiently long		
Fe-line profile fitting	increase of errors in	Increased	Increased uncertainty
	spin/mass	uncertainty but close	by about a factor 2
		to requirement	above the requirement

Table A-3

Appendix B Science requirements flow down

In this appendix we give the logic of the requirements flow down. We have taken a number of reasonable assumptions for the balance between the various requirements (which need to be confirmed by the mission design). Below we first present the flow down of the requirements (level 1 to level 2a> This is given in Table B-1 for the LAD and in Table B-2 for the WFM. The flow-down from level 2a to level 2b is given in Table B-4 and finally we list the additional requirements (level 2c) that should not drive the mission design but are nevertheless important to optimize the science output of the mission. The flow down from level 0 to level 1 is omitted for brevity.

Table B-1 LOFT science requirement flow down (only driving science goals are given and the others are left empty).

	Level								
2	za								Other
Level 1	LAD 1,2,3,4	LAD-23,24, 25,26,27	LAD-6	LAD-8	LAD-11	LAD-17	LAD-19		WFM
	Aeff [m ² @ keV]	Response stability ³⁾ [for range]	E- range [keV]	∆E@6 keV [eV]	Off-axis @30 keV for 45°	Back- ground (2-30 keV) [mCrab]	Flux [mCrab]	Max flux sustained	Camera ²⁾
FOS1 1	10 @ 8	10-2000 Hz				10	>500	15 Crah	Vos
E051 1	10 @ 9	10 2000 Hz				10	>000	15 Crab	Voc
EUS ²	10@0	10-2000 HZ	T T		10(1)	10	500	15 Crab	ies
EUS3 3	1 <i>@</i> 30	10-2000 Hz	Upper limit of 80 keV		1%1		>500		
SFG1 1	10 @ 8	1-1200 Hz					>500	15 Crab	Yes
SFG2	4 @ 2 10 @ 8 8 @ 5	0.01 – 1 Hz 1-1200 Hz	2 - 30	260			>500	15 Crab	Yes
SFG3 1	10@8	1-1200 Hz					>500	15 Crab	Yes
SFG4 1	4@2 10@8 8@5 1@30	0.01 – 1 Hz	2 - 30	260			>500	15 Crab	Yes
SFG5	4 @ 2 10 @ 8 8 @ 5	< 0.01Hz	2 - 30	260		10			

1) the EOS3 can be met by either a part of the detector without collimator (at the expense of area) or by a transparency in the collimator (SCI-LAD-R-28)

2) A wide field monitor is required to detect transient events or state changes in known sources for all Level 1 science requirements with the exception of EOS3 and SFG2

3) For the response stability not the requirements are given but the frequency range for which they apply, the absolute numbers can be found in the requirement itself (SCI-LAD-R23,24,25,26,27)

Page 55/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2

	Level 2a				
Level 1	WFM-011)	WFM-03	WFM-05	WFM-14	WFM-16
	Location accuracy [arcmin]	Sensitivity	Field of view	Transient down link	Onboard memory
EOS1		1 Crab/s	π sr	3 hr	
EOS2		1 Crab/s	π sr	3 hr	
EOS3					
SFG1	1		π sr	3hr	5 min 100 Crab
SFG2	1	1 Crab/s	π sr	3h	5 min 100 Crab
SFG3		1 Crab/s	π sr	3h	
SFG4	1	1 Crab/s			5 min 100 Crab
SFG5		5 mCrab/50 ks	π sr		

Table B-2 LOFT science requirement flow down (second part for WFM). Note that the need to have a WFM is given in the first part of the table

1) Localization accuracy is given for a source > 10 mCrab (2-10 keV) in 50 ks (typical S/N around 20)

In addition a number of level 2a requirements follow from the top level goals and the observing plan. These are listed in Table B-3.

Table B-3 Level 2 system requirements including their parent requirement

Parent require ment	background to the requirement (details are given in section 5.2)
TOP1, 2	See table in section 7, needed to accomplish the two core science goals
TOP3	Allocated time for the observatory science
Observing plan	See table 7.1 in section 7 and appendix A
Observing plan	A large fraction of the events will take place in the Galactic Centre
Observing plan	See observation plan. These are key observable targets and the probability to observe two should be large
	Parent require mentTOP1, 2TOP3Observing planObserving planObserving plan

Level 2a parameter	Level 2b parameter	Level 2b number	justification
LAD effective area (LAD 1,2,3,4)	LAD effective area knowledge	LAD-05	Allows to cross correlate with data of other missions
	LAD deadtime	LAD-15	A large deadtime, even if accurately known, corresponds to a reduction in effective area. This also indicates that, in principle, it can be compensated by larger area detectors
	Typical data rate	SYS-15	The observation plan in combination with area (and event decoding) defines the typical observing data rate
	Sustained data rate	SYS-16	The same is true for the sustained data rate
LAD response stability, (LAD- 23,24,25,26,27)	LAD deadtime knowledge	LAD-16	A unknown deadtime corresponds to countrate dependent variations in the response which may result in false detections
LAD energy range (LAD-06)	WFM Energy range	WFM-06	Matches the LAD energy range
LAD energy resolution (LAD- 08)	LAD ∆E=200 eV @ 6 keV for 40% of events	LAD-09	For the data analysis we can combine the nominal resolution together with the improved resolution for events read-out in a single anode. Hence the final spectral resolution is a combination of the two resolutions
	LAD degraded resolution	LAD-22	Not all science requires a good spectral resolution. As the required spectral resolution drives the temperatures (and hence the SAA) it is useful to define a degraded energy resolution as well (outside the field of regard). The actual value is set at 400 eV but could be also somewhat larger (100 eV) before affecting the science significantly.
	LAD energy knowledge	LAD-07	Combination of data for different epochs should not affect the energy resolution significantly (contribution is set at 1/4 of the energy resolution at 6 keV)
	Orbit	SYS-11	Radiation damage due to the selected orbit should allow for the resolution to stay within the requirements at the end-of- life.
LAD background (LAD-17)	Collimated field of view	LAD-10	A smaller field of view results in a lower CXRB but this needs to be balanced with the pointing accuracy and stability as well as with feasibility to make a collimator with a 70% open area fraction
	Background knowledge	LAD-18	With the proper knowledge on the background (including variations over an orbit) a larger background is acceptable. The required level is feasible and is in agreement with the 10 mCrab background requirement
	Orbit	SYS-11	The orbit should be such that the background is achieved (and also the resolution degradation over the mission life time)
Max flux (nominal) LAD-19	Max flux rebinned	LAD-20	For brighter sources it is acceptable to lose some information (rebinning needed) but some upper limit had to be set. The proposed upper limit will only affect a limited number of sources over the mission lifetime (about 30) and, in these cases, the number of counts is high and data compression is required
	Onboard data	LAD-21	To cope without critical science loss in case ground contact is

 Table B-4
 LOFT derived science requirement flow down (from level 2a to level 2b)

	memory		lost for 4 orbits
	Telemetry rate		
Location accuracy WFM-01	Angular resolution	WFM-02	The localization depends on the angular resolution and the S/N ratio. With 5 arcmin a position accuracy of 1 arcmin is feasible for sources with a S/N of about 20 (few mCrab/day)
Peak sensitivity in LAD direction WFM-03	Sensitivity knowledge	WFM-04	Cross calibration with other X-ray instruments
	Time resolution	WFM-10	Time resolution matches the typical integration time
	Duration of rate triggers	WFM-12	Combined with the sensitivity this sets the trigger level for transient events
	Rate meter data	WFM-13	Study time variability on short time scales when no position information is needed
	Relative sensitivity	WFM-18	Allows determination of peak fluxes irrespective of camera and orientation
	Sensitivity variations	WFM-19	Allows to compare results of different epochs
	Number of triggers	WFM-20	Corresponds to the expected sensitivity
Field of view WFM-05	Redundancy	WFM-22	Need to cover field of view even with failure of single camera
Collimated LAD field of view LAD-10	Pointing accuracy	SYS-08	Satellite pointing accuracy should match the field of view of the LAD and thus also match the WFM position accuracy
	Pointing knowledge	SYS-10	On top of the accuracy we need also to have the knowledge as, together with the LAD field of view this defines the background
Net observing time (SYS-01)	Calibration time	SYS-03	a reasonable fraction for the calibration time defines, together with the observing time the mission duration. With 5% the required calibration levels are feasible
	Slews per orbit	SYS-13	Together with the observing plan this number is required to reach the required observing efficiency
Probability to detect AMXP/BHCT SYS-R07	Minimum observing time	SYS-04	A minimum observing time improves the probability to observe rare events in case they are only visible in the night part of the orbit
	Mission duration	SYS-09	In combination with the observing plan and the sky visibility the probability to detect AMXP/BHCT defines the mission duration
	TOO alert	SYS-14	In order to respond in reasonable times to transient events (needed to detect some sources such as AMXP/BHCT) a response time is needed
	Quick Look analysis	SYS-18	To catch the transient events that data should be inspected. No fast response is required (as sources will, in general, be on for periods of weeks to months)
Pointing accuracy (SYS-08)	Absolute measurement accuracy	SYS-10	The absolute measurement accuracy of the AOCS system should be a relatively minor contribution
Sky visibility nominal energy (SYS-19)	Extended Field of Regard with degraded energy resolution	SYS-05	Allowing for a degraded energy resolution increases the total observing time available. This is advantageous as not all science requires the good spectral resolution
Typical data rate SYS-15	Downlink rate	SYS-17	The downlink rate follows from the amount of data collected over an orbit (sized for 500mCrab source, but assuming WFM data and/or telemetry "catch-up" will fill up to this

rate).

Page 59/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2

Table B-5 Level 2c requirements on the LA	AD, WFM and system. Note that some	WFM requirements are derived from
the LAD requirements (to match the LAD J	performance) but are intrinsically not	t driving the design

Level 2c requirement	number	background to the requirement (details are given in section 5.2)
LAD Time resolution	LAD-13	Time resolution is determined by the drift time in the detector but the system should not add a significant additional component
LAD Absolute time accuracy	LAD-14	Comparison with other wavelength bands is facilitated by a good timing accuracy (but again this is not driving the design)
LAD redundancy	LAD-23	This requirement follows from the minimum success criteria for the mission
WFM energy resolution	WFM-07	In principle the resolution is similar as for the LAD but given the number of counts a somewhat degraded resolution is for almost all cases equivalent
WFM energy scale knowledge	WFM-08	Allows to combine data from different epochs. The accuracy of 4% corresponds to 240 eV at 6 keV (where the intrinsic resolution requirement is 500 eV)
WFM energy bands	WFM-08	See justification in section 5.2
Energy bands compressed images	WFM-09	Defines the energy ranges which can be limited (considering count rates and spectral resolution in the WFM)
WFM absolute time accuracy	WFM-11	Matches the LAD absolute time accuracy (LAD-14)
Onboard availability of triggered data	WFM-15	Not a driving requirement but will ensure that important data for the WFM is stored to enable secure transmission to the ground
Broadcast trigger information	WFM-17	Not a driving requirement but will enhance the mission science return for a large community and other observatories

Appendix C Obsolete requirements

Compared to the version 1.6 of the SciRD various requirements have been refined (in substance they were not changed but their definition has been sharpened to avoid misunderstandings). At the same time a few requirements have been dropped as they were obsolete or better captured in a more general formulation. The relevant requirements are given below for traceability.

Flat top	LAD-12	Concept of flat top was dropped and replaced by pointing stability requirement
Orbit altitude	SYS-R11	Replaced by a more top level orbit with low background and low radiation dose
Orbit inclination	SYS-R11	Dropped in favor of the more generic requirement. The actual orbit requirements are given in the MRD

Likewise there were requirements on redundancy that were defined, but which are not classified as science requirements. Accordingly it was decided that the data rate and other technical issues should be captured in this appendix in order to trace the scientific arguments behind design issues that should instead be reflected in the Experiment Interface Document Annex A.

Page 61/61 LOFT SciRD Date 11/09/2013 Issue 2 Rev 2