

## Payload Data Processing Technologies for JUICE

JUICE instrument Workshop

ESOC, 9th -11th November 2011

R. Trautner, TEC-EDP

## Contents



### **Presentation Overview**

- Expected payload data processing requirements for JUICE
- Data compression technologies
- Data processing hardware: existing processors (Europe)
- Data processing hardware: recent ESA developments
- Data Processor Chip for Exploration Missions
- Summary and proposal for requirements consolidation

### **Expected Payload Data Processing Requirements**



The following general requirements are expected for the processing of payload / instrument data:

### <u>Software</u>

- Mix of signal processing and control code / general purpose processing
- Resource efficient and performant data compression
- re-use of established standards and qualified algorithms / software where possible

### Hardware

- Sufficient processing performance (# MIPS)
- Radiation hardness at least some 100 krad, better 1 Mrad (=> DARE180)
- Sufficient reliability
- Very high power efficiency (Jupiter orbit => low solar power levels)
- Compatibility with established development flows and existing / qualified software

### => A demanding mixture !

## **Data Compression Technologies**



#### **Data compression is essential to reduce:**

- on-board storage needs (saves mass, volume, power, cost)
- telemetry bandwidth needs (saves power = mass)

### Data compression allows to do more science with less resources

### **Tradeoff lossy versus lossless** compression required for each data source

### Best (overall !) compression method may NOT provide best compression rate

- Optimal compression often needs excessive processing resources (memory, MIPS)
- Balanced performance/resource consumption is important
- <u>CCSDS standardized compression algorithms</u> have good compression performance at low implementation complexity
- Standardized algorithms are often already available in software toolbox of industry: lower cost, lower risk, higher maturity (software TRL)

### Data compression should be used not only for science but also for HK data

- Typically for science data lossy compression is used (max science per data volume)
- For HK data lossless data compression is required

### **CCSDS & ESA Data Compression Algorithms**



### **CCSDS** algorithms

- Lossless (RICE) data compression (CCSDS 122.0-B-1)
- Lossless image compression (CCSDS 121.0-B-1)
- Lossy image compression (CCSDS 121.0-B-1)

### **Near-future CCSDS algorithms**

- Lossless multispectral data compression (under standardization)
- Lossy multispectral data compression (under standardization)

Algorithms developed with ESA support / ESA licensable - Lossy multispectral data compression (available, use planned on ExoMars)

Various pre-processing algorithms

- Can increase compressibility of data by re-ordering etc.

## ESA's Data Compression Evaluation Tool: WhiteDwarf



| /hiteDwarf Compression Tester - v0.8.2 beta                                          |                      |                     |                |
|--------------------------------------------------------------------------------------|----------------------|---------------------|----------------|
| st files                                                                             |                      |                     | Help           |
| Add Remove Clear Show Status                                                         | View                 | Compression         |                |
| Filename Size Status Match Ratio                                                     | View<br>Decompressed | Profile             |                |
| TestImage1024x1024.raw 2M Not compressed<br>TestImage512x512.raw 512K Not compressed | Transform            | Save                | Delete         |
|                                                                                      |                      | Import              | Export         |
|                                                                                      | Compress             | Algorithm CCSDS 12: | 1.0 (Rice) 💌 💽 |
|                                                                                      | Decompress           | Block size          | 8 🔻 samples    |
|                                                                                      | Compress             | Reference Insertion | 16 💌 blocks    |
| -Set properties for TestImage512x512.raw                                             | Decompress           | Add padding by      | es             |
| ✓ Set byte order Little endian (LSB first) ▼ Word size 2 bytes ▼                     | View log             |                     |                |
| Bits per sample 16 V                                                                 | Export results       |                     |                |
| Signed no                                                                            |                      |                     |                |
| No files to decompress                                                               |                      |                     |                |
| utput files                                                                          |                      |                     |                |
| Import Append to filename                                                            | File extensions      |                     | attillitis     |
| Nothing C Profile name                                                               | Compressed fil       |                     | esa            |
| Export O Text                                                                        | Decompressed         | file dec            |                |
| Folders                                                                              |                      |                     | TEC-EDP        |
|                                                                                      |                      |                     |                |
| Compressed ./compressed                                                              |                      | Browse              | About          |

#### WhiteDwarf is available to ESA supported projects via:

http://www.esa.int/TEC/OBDP/SEM069KOXDG\_0.html

- Allows users to test recommended compression algorithms
- CCSDS standardized algorithms included, more to be added in future (multispectral image compression, etc)
- Supports both compression + decompression for easy verification
- Several data pre-processing methods are also implemented
- Application is both WIN and Linux based, executable, for distribution to the teams / industry: to be used for tests with user data
- Teams / industry can play with processing and compression algorithms and their parameters, select pre-processing steps, compression algorithm and best settings for their type of data

#### The following processors are available in Europe:

| Processor                                   | LEON2 & derivatives<br>AT697F etc       | LEON3<br>GR712RC                       |
|---------------------------------------------|-----------------------------------------|----------------------------------------|
| Manufacturer / Technology                   | ATMEL<br>180nm                          | Aeroflex Gaisler<br>Tower Semic. 180nm |
| Performance (max)                           | 86MIPS, 23 MFLOPS                       | 300 DMIPS, 200 MFLOPS                  |
| Clock                                       | 100 MHz max                             | 125 MHz max                            |
| Radiation hardness<br>SEU sensitivity (ca.) | 300 krad (Si) tested < 10^-5/device/day | 300 krad(Si)<br>< 10^-6/device/dat     |
| Architecture                                | Single core GPP                         | Dual core GPP                          |
| Power consumption                           | 1W @ 100 MHz                            | 1.5 W (?)                              |

#### Mid-term (possibly): Quad core LEON (under development)

- All these processors are General Purpose Processors (GPP)
- Good at control processing, <u>NOT</u> good (=fast/power efficient) at signal processing
- radiation hardness acceptable ? TBC

European Space Agency

### Data Processing Hardware: Recent ESA Developments



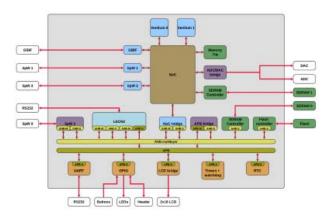
### **General Purpose Processors:**

- LEON 2 based devices are mainstream
- Quad-core LEON is under development:
  - based on new STM 65nm (radiation properties TBD)
  - high performance for GPP applications
  - real time application issues under investigation

### **Signal Processors:**

- Analog Devices based DSP (TSC21020) still used but outdated
- Next Generation European DSP IP evaluation / pre-selection ongoing
  - but: funding for next steps not clear
  - based on new STM 65nm (radiation properties TBD)
- <u>Massively Parallel Processor Breadboarding study</u>
  - Multicore fixed point DSP system, high performance, power efficient
  - single LEON control processor
  - Network-on-chip based, scalable, high on-chip bandwidth

# MPPB




### **Massively Parallel Processor Breadboarding (MPPB) Study**

- TRP study, RECORE Systems, NL, 2009 2011
- Scalable high performance multicore architecture
- GPP + fixed-point DSPs + NoC
- FPGA based prototype, LEON2 + 2 DSP cores
- Goal is demonstration of key system aspects

Original requirements:

- 1 GFLOP achievable on space ASIC platform
- High scalability (up to dozens of DSP cores)
- low power consumption of space ASIC platform
- Space standard interfaces (SpW), ADC / DAC
- SDE, high level (C) programmable, assembler programmable
- FPGA based breadboard, DSP SDE, SEE hardening analysis, benchmark software



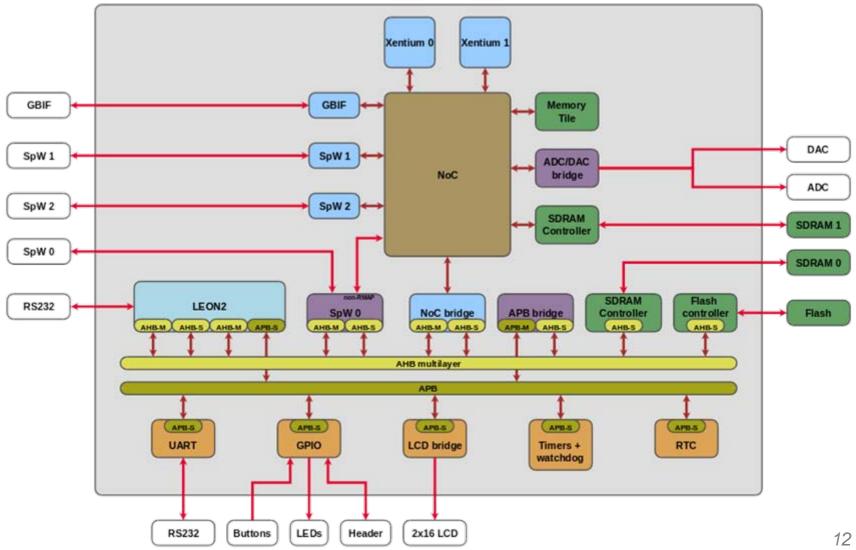
## **MPPB demonstrator hardware**





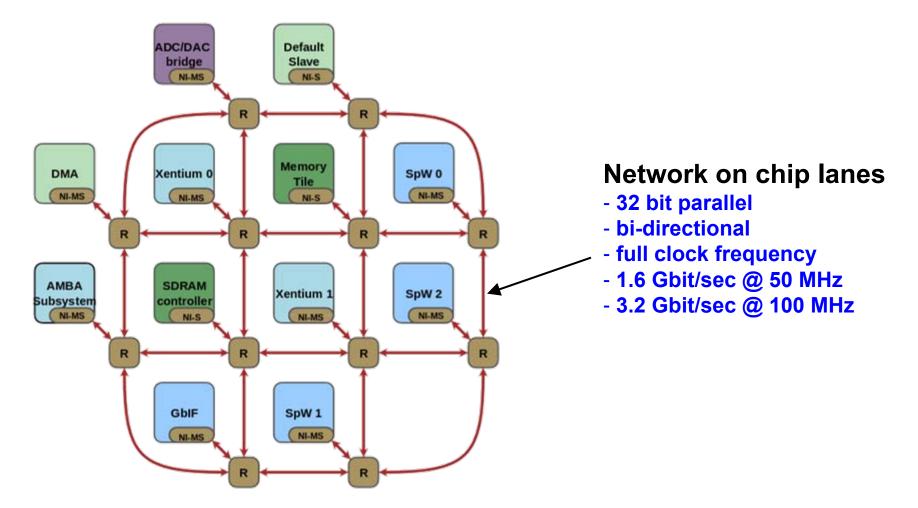
# MPPB breadboard / demonstrator




- 50 MHz system clock
- 2 Xentium DSP tiles (@ 50MHz)
  - 400 16-bit MMAC/s
  - 200 32-bit MMAC/s
  - 200 16-bit complex MMAC/s
  - 64 KB data memory
  - 16 KB instruction cache
- 1 Leon2 processor (@ 50MHz)
  - 32-bit SPARC V8
  - Debug Support Unit / UART
- Network-on-Chip (@ 50MHz)
  - 32-bit packet-switched
  - 1.6 Gbps per link
    - In each direction

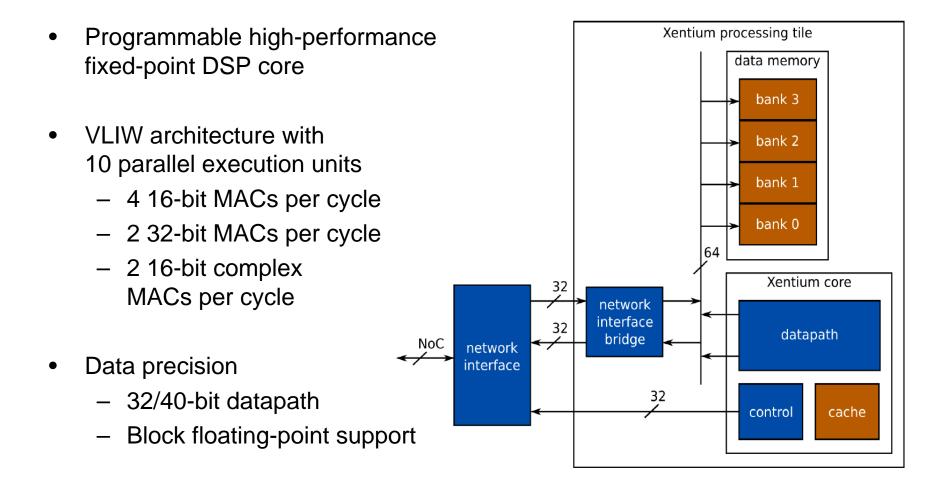
- Memories
  - 256 KB memory tile on NoC
  - 256 MB SDRAM on NoC
  - 256 MB SDRAM on AHB
  - 128 MB Flash on AHB
- SpaceWire (100 Mbps link)
  - 2 SpW-NoC interfaces
  - 1 RMAP-target interface
- Gigabit interface
  - 1.1 Gbps full-duplex
    - Aurora link layer protocol
- ADC/DAC-NoC interface
  - Configurable sampling rate
  - 14-bit, 40 MS/s AD6644
  - 12-bit, 40 MS/s DAC5662

11


## **MPPB** architecture






# Network on chip subsystem





### 

## 



## **MPPB SW Development & Benchmarking**



### **Benchmark Specification for MPPB**

Based on the need identified at ADCSS07, ESA has defined an application oriented benchmark specification for payload data processing:

"Next Generation Space Digital Signal Processor Software Benchmark", TEC-EDP 2008/018/RT, available via email to <u>SpaceDSP.benchmark@esa.int</u>

#### Included:

- I/O bandwidth
- Digital filters (FIR, various numbers of taps)
- FFT (1024pt, 2048pt, 4096 pt, 1920 pt)
- CCSDS lossless (RICE) data compression
- CCSDS lossless image data compression
- CCSDS lossy image data compression
- Kernel & application benchmarks

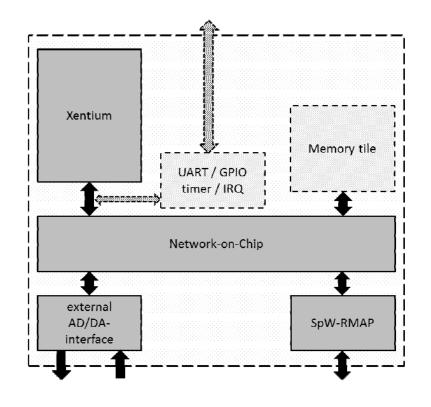


 $\Rightarrow$  Many kernels and algorithms needed by payloads are already developed

 $\Rightarrow$  Can be re-used in instrument on-board software

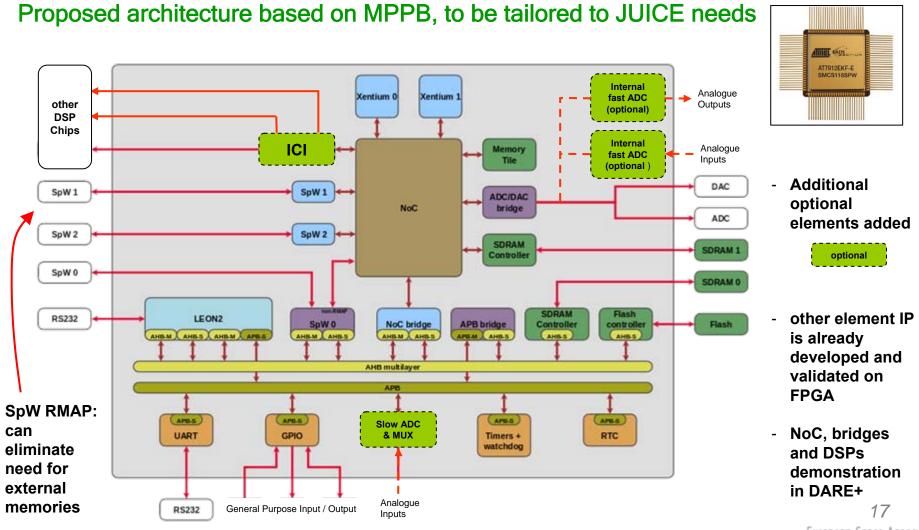
### MPPB prototyping on DARE180 in DARE+




### Key elements of MPPB architecture will be prototyped in DARE+:

- Xentium ® fixed-point DSP @ ca 125 MHz
- NoC (Network on Chip) routers and bridges
- NoC connected SpW with RMAP support
- NoC connected Memory Tile
- bridge to external ADC (STM RH1401)\*
- bridge to external DAC (ADI AD768)\*
- UART/I2C/SPI interface to external chips

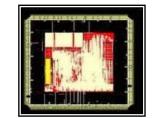
Other useful prototyping:


- analogue multiplexer elements





## Data Processor Chip for Exploration Missions


esa



## Data Processor Chip for Exploration Missions



| Chip area<br>DARE180                              |               |                    |            |
|---------------------------------------------------|---------------|--------------------|------------|
|                                                   | Minimum       | HK ADC             | High speed |
|                                                   | AD&DA bridges | slow ADC & bridges | AD & DA    |
| Element                                           |               |                    |            |
| LEON2 processor                                   | 9.00          | 9.00               | 9.00       |
| Xentium DSP #1                                    | 24.00         | 24.00              | 24.00      |
| Xentium DSP #2                                    | 24.00         | 24.00              | 24.00      |
| Memory Tile 64 kbyte                              | 17.00         | 17.00              | 17.00      |
| 4 x SpW                                           | 24.00         | 24.00              | 24.00      |
| GPIO/UART                                         | 1.50          | 1.50               | 1.50       |
| ADC/DAC bridges for ext converters                | 4.60          | 4.60               |            |
| NoC                                               | 3.60          | 3.60               | 3.60       |
| low speed ADC+multiplexer                         |               | 0.20               |            |
| High speed ADC                                    |               |                    | 7.00       |
| High speed DAC                                    |               |                    | 2.00       |
| Subtotal without margin & pads/rings/saw lanes    | 107.70        | 107.90             | 112.10     |
| Margin 30% (P&R, pad ring, power ring, saw lanes) | 32.31         | 32.37              | 33.63      |
| Total chip area incl. margin                      | 140.01        | 140.27             | 145.73     |
| min square area                                   | 11.83         | 11.84              | 12.07      |
|                                                   |               |                    |            |



Performances: 1 Mrad, max DSP clock ca. 125 MHz => max ca > 1 Giga-Ops per sec

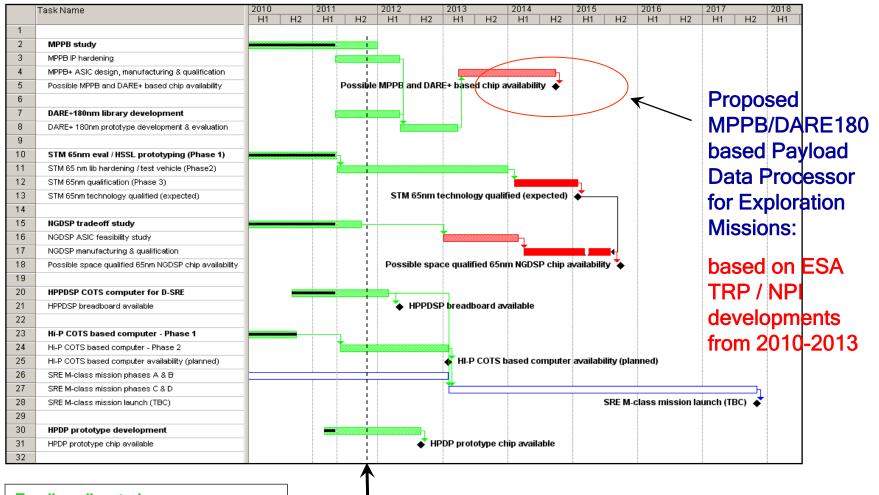
Chip die size ~12x12mm => suitable packages exist:: CQFP, CCGAm, etc



## Data Processor Chip for Exploration Missions



### Expected Performance - proposed MPPB based chip vs. LEON2


| Benchmark                                                           | Proposed Chip<br>@ 50 MHz               | LEON2 @ 50<br>MHz | Speedup factor                |
|---------------------------------------------------------------------|-----------------------------------------|-------------------|-------------------------------|
| 1024 pt FFT                                                         | ~ 66 µsec                               | ~2430 µsec        | ~37                           |
| FIR filter 1 tap                                                    | <b>~10 nsec</b><br>(1 DSP; 2 available) | ~166 nsec*        | ~16/33<br>(1 DSP / both DSPs) |
| 1 Megapixel image (random 12 bit)<br>Lossless CCSDS compression     | few seconds**                           | ~71.7 sec         | ~3…5 (TBC)**                  |
| 1 Megapixel image (random 12 bit)<br>Lossy (20 x) CCSDS compression | TBD**                                   | ~22.4 sec         | TBD**                         |
| 1 Megasample random data<br>Lossless RICE comp.                     | <b>TBD**</b><br>(LEON used)             | ~3.5 sec          | ≥1**                          |

- Internal ADC, DAC and multiplexer save power and PCB space

- High radiation hardness (1 Mrad), FDIR options, power saving modes (redundant DSP)
- operation without external RAM possible (SpW RMAP + on-chip memory)

\* Extrapolated form similar GPP; \*\* final benchmark results not available yet

## Payload Data Processing Hardware developments: Schedule @esa



**Funding allocated** 

No funding allocated

No Funding allocated and expensive

November 2011

# Presentation Summary (1)



#### JUICE has demanding requirements for payload data processing

- Efficient, mature software needed
- Sufficiently performant, low power, rad-hard processing hardware needed

### Data compression is essential for efficient use of resources

- A range of standardized algorithms is available, evaluation software too
- Compression should be used for both science and housekeeping data

#### Novel data processing DSP IP and hardware is becoming mature

- MPPB project has developed scalable LEON2/NoC/ fixed-point DSP system
- Multicore system (3 cores; # DSPs scalable from 2 -> more than 10)
- Performant (~450 Mops @ 50 MHz), 1.6 Gbit/sec NoC bandwidth, flexible
- Includes ADC, DAC, multicore, on-chip RAM
- Comprehensive benchmark software including standard payload algorithms

#### DARE+ activity will create and validate prototype chip

- Xentium® DSP core, NoC, SpW RMAP, UART, memory tile, etc
- Software benchmarks, ADC/DAC interface, radiation performance

# **Presentation Summary (2)**



#### Payload Data Processor Chip for Exploration Missions is proposed

- Based on MPPB project and DARE+ library development and chip prototyping
- LEON2, NoC, 2 or more fixed-point DSP system
- <u>Performant</u> (1 GOps or more @ > 100 MHz), 3.2 Gbit/sec NoC bandwidth
- **<u>Power efficient</u>** (fixed point DSP, clock gating, minimized component number)
- Very high integration: ADC, DAC, multiplexer, HK DAQ, multicore, on-chip RAM
- 3-core chip with on-board ADC/ DAC, RAM feasible with 12x12mm die
- Actual architecture, on-chip peripherals to be tailored for JUICE processing needs

#### Chip is on TEC-ED's roadmap for data processing hardware development

- Based on MPPB, DARE+ TRP activities, and on-going NPI (2010-2013)
- Development is part of ESA TRP proposals for 2013-2015 period: <u>"Data Processor for Exploration Missions and Small Satellites"</u>
- => Funding of chip development in TRP requested but not guaranteed (competitive)
- => Alternative (partial ?) funding via the project, or D-SRE CTP ? <u>TBC</u>
- => Funding of a part of the development via GSTP ? <u>TBC</u>

#### Identification of instrument / mission data processing requirements important

- To be collected at this workshop, consolidated lateron
- Chip architecture to be tailored to cover JUICE payload and mission needs

### Day #2 of JUICE instrument workshop

16:00-18:00 Splinter session on data processing: collection of information

- -Data throughput
- -Peak data rates
- -Processing Algorithms
- -Performance needs
- -Compression needs
- -Constraints
- -AOB

Consolidation of data processing requirements => input to chip architecture definition Splinter mtg: 2 hours planned, 14 instruments (?) => <u>ca. 8-10 min per instrument</u> (!)

=> Questionnaire for all instruments has been submitted to team leaders, please return asap – will be discussed in splinter meeting.



### Day #2 of JUICE instrument workshop

<u>16:00-18:00</u> Splinter session – proposed sequence (TBC)

16:00 Wide angle camera
16:10 High Res Camera
16:20 Plasma particle package

lon mass spectrometer
Low energy Neutral detector (P)

16:40 CIRIS compositional IR spectrometer
16:50 ENA imaging (P)
17:00 PRIDE radio interf. & DE
17:10 Subsurface radar

- 17:20 Magnetometer
- 17:30 GALA laser altimeter
- 17:40 Radio Science instrument
- **17:50 VIRHIS imaging spectrometer**
- **18:00 ORTIS terahertz IR spectrometer**
- **18:10 Sub-milimetre wave instrument**
- 18:20 Dust telescope
- 18:30 miniaturized plasma analyzer
- 18:40 thermal plasma sensor
- 18:50 DSI-echoes

=> Please submit your Questionnaire in time ! Roland.trautner@esa.int