FORMATION OF SATELLITES from a tidal disk

Aurélien CRIDA

\& Sébastien CHARNOZ

JUPITER

SATURN

URANUS

NEPTUNE

ALL GIANT PLANETS

INTRODUCTION

Distributions of giant planets' regular satellites:
> don't reach the planet
> ranked by mass
> pile-up at a few planetary radii (small bodies)

Why?

Giant planets

orbital radius [Mm]

It's not a power law, which question the Circum-Planetary Disc model...

CONCLUSION

Spreading of a tidal disk

1D model.
Inside the Roche radius r_{R}, there is a « tidal disk », that spreads with a mass flux F.

Notations

Be T_{R} the orbital period at r_{R}, and
$\mathrm{T}_{\text {disk }}=\mathrm{M}_{\text {disk }} / \mathrm{FT}_{\mathrm{R}}$, the normalized life-time of the disk.

The disk spreads with a viscous time $t_{v}=r_{R}{ }^{2} / v$.
Using Daisaka et al. (2001)'s prescription for v, we find $T_{\text {disk }}=t_{v} / T_{R}=0.0425 D^{-2} \quad$ where $D=M_{\text {disk }} / M_{p}$, and $F=23 D^{3} M_{p} / T_{R}$.

Continuous regime

Say 1 satellite forms. Its mass is: $M=F t$
It feels a torque from the tidal disk : $\Gamma=\frac{8}{27}\left(\frac{M}{M_{p}}\right)^{2} \Sigma r^{4} \Omega^{2} \Delta^{-3}$ where $\Delta=\left(r-r_{R}\right) / r_{R}$ (Lin \& Papaloizou 1979).
\rightarrow Migration rate :

$$
\frac{d \Delta}{d t}=\frac{32}{27} q D T_{R}^{-1} \Delta^{-3}
$$

where $q=M / M_{p}$.

$$
\begin{equation*}
q=\left(\frac{\sqrt{3}}{2}\right)^{3} T_{\text {disk }}^{-1 / 2} \Delta^{2} \tag{3}
\end{equation*}
$$

We call this the continuous regime .

Continuous regime

This holds as long as the satellite captures immediately what comes through r_{R}.

That is, as long as $\left(r-r_{R}\right)<2 r_{\text {Hill }}$, or $\Delta<2(q / 3)^{1 / 3}$.

Input into Eq.(3), this gives a condition of validity for the continuous regime :

$$
\begin{aligned}
& \Delta<\Delta_{c}=\sqrt{\frac{3}{T_{\text {disk }}}}=\sim 8.4 \mathrm{D} \\
& q<q_{c}=\frac{3^{5 / 2}}{2^{3}} T_{\text {disk }}^{-3 / 2}=\sim 222 \mathrm{D}^{3}
\end{aligned}
$$

Duration of the continuous regime: $10 \mathrm{~T}_{\mathrm{R}}$.

Discrete regime

When the satellite is beyond $\Delta_{c}\left(\right.$ or $\left._{\mathrm{c}}\right)$, the material flowing through r_{R} forms a new satellite at r_{R}.

This new satellite is immediately accreted by the first one.

And so on...

The first satellite still grows as $\mathrm{M}=\mathrm{Ft}$, but by steps : discrete regime.

Discrete regime

This holds as long as $\Delta<\Delta_{\mathrm{c}}+2(\mathrm{q} / 3)^{1 / 3}$.
It gives the condition :

$$
\begin{aligned}
& \Delta<\Delta_{d}=r . \text { If } \Delta_{c}=\sim 26 \mathrm{D} \\
& q<q_{d}=9.9 q_{c}=-2200 \mathrm{D}^{3}
\end{aligned}
$$

The duration of the discrete regime is $\sim 100 T_{R}$.

Discrete regime

This holds as long as $\Delta<\Delta_{\mathrm{c}}+2(q / 3)^{1 / 3}$.
It gives the condition :

$$
\begin{aligned}
& \Delta<\Delta_{d}=3.14 \Delta_{c}=\sim 26 \mathrm{D} \\
& q<q_{d}=9.9 q_{c} \quad=\sim 2200 \mathrm{D}^{3}
\end{aligned}
$$

The duration of the discrete regime is $\sim 100 T_{R}$.
Applications:

1) Earth's Moon forming disk : $q_{d}=$ mass of the Moon!
2) Charon never left the continuous regime.
3) Saturn's rings: $q_{d}=\sim 10^{-18}$.

Pyramidal regime

Satellites of mass q_{d} are produced at Δ_{d} every $\mathrm{q}_{\mathrm{d}} / \mathrm{F}$.
Then, many satellites of constant mass migrate outwards, at decreasing rates. They approach each other.

If their distance decreases below 2 mutual Hill radii, they merge.

This leads to the formation of satellites of masses $2 q_{d}$, every $2 q_{d} / F$. They migrate away and merge further...

And so on, hierachicaly... We call this the pyramidal regime.

Pyramidal regime

- Using Eq.(2), we show that in the pyramidal regime, while the mass is doubled, Δ is multiplied by $2^{5 / 9}$.

Thus, $q \alpha \Delta^{9 / 5}$.
In addition, the number density of satellites should be proportionnal to $1 / \Delta$, explaining the pile-up.

Pyramidal regime

- Using Eq.(2), we show that in the pyramidal regime, while the mass is doubled, Δ is multiplied by $2^{5 / 9}$.

Thus, $q \alpha \Delta^{9 / 5}$.
In addition, the number density of satellites should be proportionnal to $1 / \Delta$, explaining the pile-up.

- Beyond the 2:1 Lindblad resonance with $r_{R}(\Delta=0.58)$, Eq.(2) doesn't apply. Migration is driven by planetary tides:

$$
\begin{equation*}
\frac{d r}{d t}=\frac{3 k_{2 \mathrm{p}} M \sqrt{G} R_{p}^{5}}{Q_{p} \sqrt{M_{p}} r^{11 / 2}} \tag{4}
\end{equation*}
$$

Using Eq.(4), we find $q \alpha r^{3.8}$

Pyramidal regime

The result spectacularly matches the distribution of the Saturnian, Uranian, and Neptunian systems !

Pyramidal regime

The result spectacularly matches the distribution of the Saturnian, Uranian, and Neptunian systems !

Summary

1) Continuous regime: ${ }_{10^{1}}$

1 moon grows
$\mathrm{q} \alpha \Delta^{2}$ until Δ_{c} or q_{c}.
2) Discrete regime: 2 moons, growth by steps until Δ_{d} or q_{d}.

3) Pyramidal regime:

 Many moons in the system. $\mathrm{q} \alpha \Delta^{9 / 5}$ or $\mathrm{r}^{3.8}$.
Continuous regime
 (1 moon)

Pyramidal regime

 (many moons)Distance to planet's Roche limit (normalised)

Summary

Take $M_{\text {disk }}=1.5 \mathrm{x}$ the mass of the present satellite system.

Giant planets must be dominated by the pyramidal regime, while we expect the Earth and Pluto to have 1 large satellite.

Conclusion \& Discussion

The spreading of a tidal disk beyond the Roche radius

- explains the mass-distance distribution of the regular satellites of the giant planets (observational signature of this process)
- unifies terrestrial and giant planets in the same paradigm.
\bullet most Solar System regular satellites formed this way.
* Jupiter doesn't fit in this picture : probably formed in a circum-planetary disk (e.g. Canup \& Ward 2002, 2006; Sasaki et al 2010)
- Titan fits very well in this picture, though its « tidal age » is too large... Cóncidence?

Thanks!

Aurélien CRIDA

\& Sébastien CHARNOZ
()bservatoire de la COTE d'AZUR

