Atmospheric structure and dynamics

E. Chassefière

Laboratoire IDES, Université de Paris-Sud/CNRS, Orsay, France

Second ESA-CAS Mars Advanced School in China, 12-22 September 2011, Weihai, Shandong, China

Mars : the smallest terrestrial planet

Condensation/ sublimation of water on Mars

Seasonal polar caps

• Fogs, clouds

Main characteristics of Mars' atmosphere

- Pressure : 7 mbars (mainly CO_2).
 - Most of CO₂ probably lost to space and/or to the subsurface (carbonates)
- Composition : 95% de CO₂, 2,7% de N₂, 1,6% de Ar, 0,13% de O₂, 0,07% de CO.
 - Very little O₂, contrary to Earth (oxygen from photosynthetic origin)
- Water vapor : between 1% and 0,001% (10 pr. µm in an average).
- Dust at the surface and suspended in the atmosphere (micron size) : storms.

 Triple point of H₂O: 6 mbars, therefore no liquid water(only vapor or ice).

Diurnal cycle of temperature measured by Viking landers

- Large amplitude(like on the Moon) because of the tenuous atmosphere:
 - Small greenhouse effect (≈3 K, vs ≈33 K for Earth, and ≈500 K for Vénus).
 - Low thermal inertia.

Strong temperature contrasts

ressure (mbar)

10

-90

-60

-30

0

Latitude

30

60

Near Surface Temperature on Mars

(Pathfinder, july 1997, martian summer 20°N)

Ē

90

0 km

No ocean/ tenuous atmosphere

- Tenuous atmosphere, weak greenhouse effect (3 °C), atmosphere unable to store heat at night \rightarrow large diurnal thermal variation.
- No ocean :
 - no heat storage during winter \rightarrow large seasonal thermal variation.
 - global solar heating at hemispheric scale → one single Hadley cell (contrary to Earth).

Global picture of meteorology and climate

- Atmosphere heated from below by the surface (directly heated by the Sun).
- Rotation axis tilt angle (24,6°) and day duration (24h39mn) similar to Earth' s values. Twice longer year (687 jours).

- Similar meteorological systems:
 - Hadley cell in intertropical regions, eastern trade winds.
 - cyclones-anticyclones (baroclinic waves) at mid-latitudes.
 - Tidal waves, planetary waves.
 - Water ice clouds.

The CO₂ cycle (mosaic of the northern polar cap in spring)

CO₂ cycle : alternate condensation on polar caps

Température (en °C)

gistré par la sonde Pathfinder en 1997 montre que l'atmosphère en altitude peut atteindre le point de condensation du CO₂, même en été et sous les tropiques.

CO₂ ice on the permanent south polar cap

90

J.-P. Bibring & OMEGA team

J.-P. Bibring & OMEGA team

The water cycle

A large glacier (1000 km) : the permanent Northern polar cap

MOC-MGS image (beginning of Northern summer). Residual water ice during summer. Corona of dark dunes. Diameter : 1100 km. Global equivalent layer of 10 m depth

- Image MOC-MGS (Souther summer).
- Condensation temperature of CO₂ : - 125°C.
- Diameter : 420 km.
- CO₂ atmosphere at condensation equilibrium with CO₂ ice at the top of the southern polar cap.

Residual Southern cap of H_2O ice with a supercicial layer of CO_2 ice

Seasonal cycle of H₂O recorded by Viking by near-IR reflectance spectroscopy

- Condensation of H₂O on the Northern polar cap and sublimation during spring.
- At the South, the very cold superficial layer of CO₂ ice acts as a trap of H₂O.
- Trapping of H₂O in the regolith at mid latitudes during winter

Observation and GCM modelling

Past water cycle

Head et al (2005)

The cloud cycle

Hazes in Valles Marineris (HRSC/OMEGA, Mars Express, Inada et al, 2008)

Whiteway et al. 2008

Lidar of Mars Polar Lander

- Clouds concentrate in two principal regions and seasons:
 - Intertropical latitudes during northern spring/summer = « cloud belt »
 - Polar regions in fall/winter of both hemispheres = « polar hoods »

High clouds observed by solar occultation from Phobos 2 spacecraft

• Transmission and tangent optical depths of high cloud layers

Chassefière et al, Icarus 97, 46, 1992

High clouds observed by solar occultation from Phobos 2 spacecraft

Characteristics of the 5 clouds observed by Phobos

	Peak altitude (km)	W (km)	∫ ^τ ext (10 ⁻²)	τ _{ext} at peak (10 ⁻³ km ⁻¹)	layer	eff. radius (μm)	eff. var.	n _{part} at peak (cm ⁻³)	∫S (mm ² cm ⁻²)	∫V (10 ⁻⁴ mm ³ cm ⁻²)
C231	48 (+4, -3)	3	0.23 ±0.02	0.65 ±0.01	peak	0.65 ± 0.15	> 0.15	0.7 ±0.5	0.4 ±0.04	0.8 ±0.25
C236	56 (+?, -5)	6	2.7 ±0.2	3.4 ±0.2	top	0.3 ± 0.1	-	4.7 ±3.3	4.7 ±0.2	7.8 ±2.1
					peak	0.55 ± 0.1	-			
C237	50 (+4, -2)	~3				1	-			
C245	53 (+2, -2)	4	0.36 ±0.02	0.79 <u>+</u> 0.01	peak	0.15 ± 0.1	-	0.5 ±0.3	5.3 ±0.4	9.7 ±2.5
C 25 1	51 (+?, -7)	4.5	0.51 ±0.08	1.1 ±0.1	top	0.85 ± 0.2	-	0.8 ±0.5	6.1 ±0.5	12.4 ±3.2
					peak	0.9 ± 0.2	0.25 ± 0.15			

Chassefière et al, 1992

Vertical distribution and size of dust particles from Phobos observations

Occurrence of dust storms

Global storms

- No vertical stratification and unique Hadley cell : small global scale mixing time (a few days).
- Rapid transport of dust to the whole plate → global storms
- Formation at the boundary of the retreating south polar cap.

Storm generation process

