Climates of Mars and Venus

E. Chassefière

Laboratoire IDES, Université de Paris-Sud/CNRS, Orsay, France

Second ESA-CAS Mars Advanced School in China, 12-22 September 2011, Weihai, Shandong, China

	v chius	Laith	111115
Distance Sun-planet	0,7	1	1,5
Radius	0,95	1	0,54
Mass	0,815	1	0,107
Volumic mass (kg/m ³)	5250	5515	3940
Uncompressed volumic mass (kg/m ³)	4000	4100	3800
Core radius	0,55	0,546	0,5

Space exploration of Venus

- 1974 : landing of 3 soviet probes : $T_s=470^{\circ}C$, $p_s =$ 90 bars (CO₂).
- Photography of the surface, then radar mapping(V15/16 , Magellan at the

beginning of

nineties)

Compared images in the visible (Mariner 10) and obtained by radar sounding(Magel lan)

Magellan topographic map of Venus

Compared composition of the atmospheres of terrestrial planets

	PLANÈTE				
Gaz	Vénus	Terre sans vie	Mars	Terre actuelle	
Gaz carbonique Azote Oxygène Argon Méthane Températures en surface (°C) Pression totale (bars)	96,5 % 3,5 % traces 70 ppm * 0,0 459 90	98 % 1,9 % 0,0 0,1 % 0,0 240-340 60	95 % 2,7 % 0,13 % 1,6 % 0,0 - 53 0,0064	0,03 % 79 % 21 % 1 % 1,7 ppm * 13 1,0	

* ppm : parties par million.

VENUS AND EARTH ARE SISTER PLANETS

Global scale carbon cycle on Earth

- Most of Earth's carbon dioxide is sequestrated in limestone
- Mars : CO₂ partly escaped to space, but mostly trapped in the subsurface (carbonates?).
- Vénus : Most CO₂ presently in the atmosphere (?) due to hot atmosphere and subsurface.

Compared thermal structures of the atmospheres of the three terrestrial planets

- P, T conditions at the top of Venus' clouds similar to conditions on Earth and Mars.
- No stratosphere on Venus and Mars (due to O₃ on Earth)

 The radiative temperature of Venus (230 K) is the atmospheric temperature at 100 mbar (65 km) at cloud top.

Greenhouse effect on the 3 terrestrial planets

	Venus	Earth	Mars
Surface temperature	735 K	288 K	218 K
Effective temperature	230 K	255 K	215 K
Involved greenhouse	$\mathrm{CO}_2,\mathrm{H}_2\mathrm{O},$	$H_2O, CO_2,$	CO ₂
gases	SO_2 , CO and	O ₃ ,	
	clouds H ₂ SO ₄		
ΔΤ	+505 K	+33 K	+3 K

Attenuation of solar radiation by Venus' atmosphere

Venus' case

Earth's case

Less than 10% of solar radiation can reach Venus' surface

Principle of atmospheric IR sounding

Temperature (K)

Temperature sounding in the 4.3 μ m CO₂ band by VIRTIS

Cloud investigations

Venus clouds in the IR at 2.3 µm -left- (35 km) and 1.7 µm -right-(25 km)

Cloud wave structure at 2.3 µm (35 km)

Cloud wave structure on Mars

Wave Clouds (Viking)

Lee Wave Cloud Crater with Wavy Fog MGS MOC Release No. MOC2-424, 17 July 2003

Double eyed vortex

- Brightest spot : centre of the vortex where radiation from the deeper layers becomes clearly visible.

- Dark circular structures surrounding the brighter area belonging to the big vortex structure - 2500 km across.

Double vortex structure at South Pole at 5 µm (59 km)

Clouds and hazes

Atmospheric super-rotation

- Venusian day duration: 243 days (slow retrograde rotation)
- At 60 km altitude, rotation in 4 days (60 times faster than solid planet).
- Winds of 100 m/s at 60 km.
- Origin of super-rotation : the principle is understood (angular momentum conservation), but difficult to model.

Atmospheric dynamics

Atmospheric composition

Synthesis of the composition measurements

Is volcanism still active on Venus?

- Global resurfacing
 ≈600 Myr ago.
- Great volcanoes like Sepas Mons (Φ 400 km, H 1500 m).
- Some variability of SO₂ measured above clouds.

Evolution of the solar luminosity

- The luminosity of the early Sun was about 70-80% of its present value (see e.g. Graedel and Crutzen, 1993).
- Continuous presence of liquid water requires Earth temperature has ever been above 0°C (ref. id.).
- How was such a mild temperature maintained?

A solution for the faint young sun paradox

Minimal values of CO2 partial pressure required to obtain chosen surface temperatures of 273 and 288 K at a fixed N2 partial pressure for different solar constants. Symbols are included which represent the upper CO2 limits derived from the sediment record).

Scenario of a primitive wet Venus

• A water ocean may have formed or not, depending on thermodynamical conditions :

Solution → Neglecting clouds, $T_s > T_c$ for Venus at the end of accretion : water vapor doesn't condense to an ocean (Matsui and Abe, 1986).

 $F_0 = 10$ Earth 3 Venus $F_0 = 10$ 3 $\log \tau_{ir}$

→ But, in presence of clouds,
 smaller surface temperature and
 formation of an ocean (with further
 evaporation by runaway/moist
 greenhouse) (Kasting, 1988)

Matsui and Abe, 1986

Principle of runaway greenhouse

Evaporation of the primitive ocean

What happens following runaway greenhouse?

- Further photodissociation of H₂O by solar UV radiation in the upper atmosphere.
- Hydrodynamic escape of H due to strong solar EUV energy depoisition at the top, yielding the present massive CO₂ atmosphere (Kasting and Pollack, 1983, Chassefière, 1997).
- Removal of the totality of H contained in 1 TO (Terrestrial Ocean) during the first billion years (Kasting and Pollack, 1983).
- Remaining 90 bar atmosphere of CO₂ maintaining strong greenhouse.

Hypothesis of an early dessicated Venus

Gillmann et al, 2009

Potential implications :

- Early crystallization of the Venus magma ocean due to vanishing atmospheric greenhouse (<u>no water left</u> for an Earth-size ocean).
- ➡ Late veneer of water on Venus (comets), but <0.1 TO.</p>
- Earth (endowed with more water) left with large amounts of water at 100-200 Myr : subsequent formation of the ocean.

Comparison Venus wrt Earth :

- → Lower initial water endowment (likely).
- → Closer to the Sun/no magnetic field : more intense escape.
- ➡ Venus possibly « dried up » early (≈70-100 Myr)

A possible evolution scenario of Venus

Gillmann et al, 2009