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Motivation 
• Centuries old fascination. Lots of 

data amassed. 

• Common! 
– 4 data points in 1 solar system 
– by-product of planet formation 
– extra solar giant planet satellite 

systems – a matter of time! 

• Window into understanding the 
early solar system environment.  

– Composition 
– Chemistry nebula/subnebula 
– Initial conditions 

• How do we get these mini-solar 
systems?  

– as diverse as planetary systems 
– differences 
– similarities   

Is there a common framework that 
applies to all the satellite systems? 



The Giant Planet Satellite Systems 

(Mosqueira and Estrada 2003a) 



Summary of Constraints 

• Strong indirect evidence for a two 
component (subnebula) disk  
 

– satellite systems are mostly 
compact 

– Iapetus forces a long tail 
– Irregulars? 

 
• Most of the satellite systems are 

empty 
 
• Primordial Ar in Jupiter’s 

atmosphere but not Titan’s 

Bulk Compositional 
Properties 

• Non-stochastic compositions of 
Ganymede, Callisto, Titan and 
Iapetus 

• The Ganymede/Titan/Callisto 
moment of inertia trend 

*** Tie to planet and disk formation *** 



  Giant Planet and Disk Formation 
 
• Main issues 

 
– Angular momentum 

 
– Turbulence 

 
– Distribution of solids in the solar 

nebula  

 
 A combined model for Jupiter  

and Saturn 
 

(See Estrada et al. 2009) 
 

Ultimate Goal 



Angular Momentum: Disk Sizes 

• Prior to opening a clean gap, planet 
accretes low specific ang. mom. gas 
from within RH 
 

• Estimate of disk size   
 

– compact disk forms consistent 
with numerical estimates  
(Machida et al. 2008; Lissauer et 
al. 2009) 

(Lissauer et al. 1995) 

Potentially massive disk 

giant planet 
gaseous envelope  

To Sun 

Gas flow 
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Specific Angular Momentum of Gas Inflow Through Giant 
Planet Gap 

 
 

• Both 2D and 3D simulations 
of gas accretion through a 
clean gap form an 
extended circumplanetary 
disk compared with the 
locations of the regular 
satellites (D’Angelo et al. 
2003; D’Angelo 2007; 
Ayliffe and Bate 2009; 
Tanigawa et al. 2012). 
 

Extended low density tail 



Turbulence in a Keplerian Disk 

• The α-prescription (where α = ν/cH) in the nebula 
 
- Traditionally is used to remove the gas disk. 
- Unbounded Keplerian disk is linearly stable (Ryu and Goodman 

1992, Balbus et al. 1996). 
- Disks may be insufficiently ionized to sustain MRI. Presence of 

“dead zones” a robust result. 
- There is no evidence that α (typical value is ~10-3) can be 

transplanted from the nebula around a star to the subnebula 
around the planet. 

− α is a free parameter. This can lead to fine-tuning. 

 
Once the inflow, which drives disk evolution, wanes as the planet opens a 

deep, clean gas gap one would expect turbulence to decay in the 
absence of another driving mechanism. 



Distribution of Solids at the time of Satellite Formation 

• Most of the solids mass in the nebula contained within ~ 10 km 
planetesimals 
 

• Reasons to treat planetesimals 
 

– Observations of comets (e.g., Charnoz and Morbidelli 2007) 
 

– Nice model needs many Pluto-sized planetesimals to power planet 
migration (LHB) 
 

– Asteroid belt mass problem (top-heavy size distribution) 
 

– Formation of cores of giant planets 
 

– Volatile enhancement in giant planet atmospheres 



Planetesimal Processing and Delivery of Volatiles 
to Giant Planets 

(Estrada et al. 2009) (Estrada et al. 2009) 



Regular Satellite Formation 

• Key Issues 
– Turbulence 
– Delivery of solids to the disk 
– Satellite survival 

 
• Bulk constraints 

– Mass 
– Angular momentum 
– Satellite compositions 

• Solar nebula to subnebula 
• Subnebula gradients 

 
• Galileo & Cassini constraints 

– Phoebe, Iapetus, Hyperion, Titan, 
Ganymede/Titan/Callisto MOI trend, 
inner icy moons and rings… 
 

 
Combined model for Jupiter and Saturn 

  



 
• Gaseous Solids-Enhanced Minimum Mass model (Mosqueira and 

Estrada 2003a,b) 
 

– Not a “minimum mass” or local accretion model 
 

• Gas-Poor (not gas-free) Planetesimal Capture model (Estrada and 
Mosqueira 2006). 
 

• Both models are attractive because: 
 

– Self-consistent 
– Neither model relies on fine-tuning of the turbulence α 
– Properly account for the angular momentum 
– Link subnebulae to outer solar nebula 
– Both treat planetesimal dynamics explicitly 

The SEMM and GPPC Models 



Model Comparison 

• Solids-Enhanced Minimum Mass Model (Mosqueira and Estrada 2001; Estrada 
2002; Mosqueira and Estrada 2003a,b) 

 
- Turbulence decays as gas inflow wanes during tail end of planet formation. 
- Survival of satellites by gap-opening (determines Σgas). 
- Formation time for Callisto (around Jupiter) and Iapetus (around Saturn) 

determined by time it takes gas drag to clear the extended subnebula disk 
from as far as ~ RH/5. 

- Compositional gradient of Galilean satellites is due to planet’s luminosity. 
 

• Gas-poor Model (Ruskol 1975; Safronov et al. 1986; Estrada and Mosqueira 2006) 
 

- Relies on sustained turbulence OR some other dissipation mechanism. 
- Satellite survival due to gas disk removal (undetermined Σgas). 
- All the satellites form in a timescale set by external planetesimal feeding. 
- Impacts and Laplace resonances may explain compositional gradient of 

Galilean satellites. 
 



Possibly too hot for re-condensation 
of CH4 and NH3. 

Too hot for re-trapping of Ar. 

Planetesimal Re-Processing and Delivery of Volatiles to Satellites 

(Estrada et al. 2009) (Estrada et al. 2009) 



SUMMARY OF SEMM INITIAL CONDITIONS 

• Massive disk compared to the 
mass of the satellites (~ 10 times 
in gas) 
 

• Dense inner portion containing 
most of the mass of gas and 
solids. 
 

• Extended, low density tail out 
the location of the irregular 
satellites. 
 

• Non-local accretion, gas-drag 
clearing/resonance trapping. 
 

• Delivery of solids by ablation 
through the circumplanetary 
disk of planetesimal fragments. 

(e.g., see Mosquiera and Estrada 2003a,b; Estrada et al. 2009;  
Johnson and Estrada 2009; Mosqueira, Charnoz and Estrada 2010) 



Ablation and Capture of Disk Crossers 
(e.g. Podolak et al. 1988) 

Planetesimal size distribution following giant planet formation? 

Non-homogeneous ice/rock distribution? 

• At Titan and Callisto, one can ablate meter-to-kilometer-sized planetesimals 
(or capture). 
 

• At Iapetus, one can ablate meter-sized icy planetesimals (e.g., Iapetus’ 
composition. 



Explaining Iapetus’ Composition 

• Assume unmixed population of 
planetesimal fragments 

– 1st generation of planetesimals 
contain 26Al 

– 70% rock, 30% ice by mass 
– 1 meter to ~10-100 km fragments 

 
• Use N-body simulations (e.g. 

Charnoz and Morbidelli 2003) to 
calculate how much mass passes 
within ~ RH/5   
 

• This process can naturally account 
for the compositional trend we 
see: 

– Fractionated ice/rock population 
due to the collisional cascade 

– Lower density + lower velocities in 
the outer disk favors ice. 

(Mosqueira, Estrada, and Charnoz 2010) 



Ganymede/Titan/Callisto MOI Trend 
 

• Relevant observations: 
 

- Ganymede (MOI = 0.311)\Callisto (MOI = 0.358) dichotomy. 
- Titan’s moment of inertia (MOI = 0.34). 
- Dichotomy has morphed into a (Ganymede\Titan\Callisto) trend. 
- Major caveat: Are all three satellites in hydrostatic equilibrium?  

 
• Geophysical issues: 

 
- Sources of Energy: Accretion, sinking rock, radiogenic heating. 
- Will melting lead to runaway sinking rock resulting in full differentiation 

(e.g., Friedson and Stevenson 1983)? 
 
 Observational evidence argues against this for Titan and Callisto. 

 
- Accretion DOES bury energy BUT how much heat is trapped by 

(conductive?) ice shell (if present)? 
 
 Hotspots (we do not model yet). 
 Collisional overturn (we do model; Squyres et al. 1988). 
 Atmosphere (we do not model yet). 



Key Satellite Formation Model Parameters 

All in the right sense to explain observed MOI trend without 
resorting to fine-tuning uncertain parameters. 

 
• Background temperature (of accreting material plus background 

radiation): 
- Ganymede ~ 200 K 
- Titan ~ 100 K 
- Callisto ~ 100 K 

 
 Strong dependence of viscosity of interior with temperature. 

 
• Accretion timescale: 

- Ganymede ~ 104 years. 
- Titan ~ 105 years. 
- Callisto ~ 106 years. 

 
 A million years is long enough to allow heat of accretion to be radiated 

away. 



Accretion in a  
Two-component Gas Disk 

Ganymede:  Embryo forms 
quickly due to sweep up of dust 
and debris. Timescale for 
completion controlled by time 
gas drag clears region of 
satellitesimals out to Callisto. 

Callisto: Timescale for formation 
is controlled by the time it takes 
gas drag to clear the extended 
outer disk. 

Titan: May accrete material from 
as far out as Iapetus. Hyperion 
may be a leftover satellitesimal 
fragment captured into 
resonance. 



Accretion of Large Regular Satellites 

• Combined model of 
satellite accretion and 
thermal evolution using 
ACCTHERM code. 
 

– Impactor size distribution 
– 80/20 burial/surface 

heat 
– 3-5 Myrs after CAIs 

 
• Key Points to take away 

 
– Large satellites do not 

form undifferentiated. 
– Rocky carapace  
– Cold interior + relatively 

long formation times 
may prevent full 
overturn 







Conclusions 
 
• A Solids-enhanced Minimum Mass (SEMM) model can account for: 

 
- The mass and angular momentum budgets of the regular satellites. 
 
- Non-stochastic satellite compositions (cf. Ganymede, Callisto, Titan, and 

Iapetus). 
 
- It is possible to enhance the I/R at Iapetus by ablating icy m-sized planetesimal 

fragments crossing the circumplanetary gas disk-as well as those of 
Ganymede, Titan and Callisto. 

 
- The Ganymede/Titan/Callisto trend. 
 
- Satellite survival by gap-opening. 
 
- Other constraints such as the lack of primordial Ar in Titan’s atmosphere may 

also fit within this framework. 
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