NUMERICAL SIMULATIONS OF SMALL SOLAR SYSTEM BINARY FORMATION

Derek C. Richardson (U Maryland)
Patrick Michel (OCA) • Kevin J. Walsh (SwRI)

First Asteroid Binary: Ida-Dactyl

Galileo spacecraft discovery, 1993

Ida
$54 \times 20 \mathrm{~km}$
1.4 km diameter

Eugenia-Petit Prince

45 Eugenia and moon, Petit Prince. Keck H-band AO. (Merline et al., 1999, Nature)

Petit-Prince

Eugenia
214 km

$$
\rho_{\text {bulk }} \sim 1.1 \mathrm{~g} / \mathrm{cc}
$$

SSSB System Demographics

Confirmed or probable detections as at June 14, 2012:

- 39 near-Earth asteroids (2 with two satellites each);
- 14 Mars-crossing asteroids;
- 76 main-belt asteroids (5 with two satellites each);
- 4 Jupiter Trojan asteroids; and
- 76 trans-Neptunian objects* (2 with two satellites, 1 with four satellites).
*Includes Pluto, Haumea, \& Eris (dwarf planets).

Data from Johnston's Archive:
http://www.johnstonsarchive.net/astro/asteroidmoons.html

Properties of Binaries (out of date)

- 37 binary NEAs. Primaries tend to be small,
- Mean size ratios ~4.2:1 (median 3.5).
- Mean separations $\sim 4.5 \mathrm{R}_{\text {primary }}$ (median 4).
- $\sim 15 \%$ of NEAs are binaries.
- 53 binary MBAs (incl. 2 Trojans).
- Mean size ratio ~ 9.8:1 (4.4).
- Mean separation ~ 24 R (11) among small
- ~2-3\% of MBAs are binaries.
- 49 binary TNOs (incl. Pluto/Charon).
- Size ratios ~ 2:1-1:1.
- Separations ~10-1000 $R_{\text {primary }}$.

Small Solar System Bodies with Satellites

- Over 200 binary or multiple asteroids (and other small solar system bodies) discovered.
- Detection techniques include:
- Direct imaging (33 ground, 64 space, mostly MBAs \& TNOs).
- Photometric lightcurves (86, mostly MBAs).
- Radar (25, all NEAs, from Arecibo and Goldstone).

Detection by Direct Imaging

Antiope (double)
90 km diameters

Detection by Lightcurves

2000 DP107 $0.8 \& 0.3 \mathrm{~km}$ diameters

Detection by Radar

Origins of Binaries

1. Direct capture during "close" approach.

- Variants invoked to explain "primordial" Kuiper Belt binaries.

2. Capture of ejecta following impact.

- Orbital reaccumulation of debris.
- Most important in Main Belt.

3. Rotational disruption.

- Includes tidal disruption and (mostly) YORP effect.
- Applies to near-Earth and small, inner Main Belt asteroids.

Binary Trans-Neptunian Objects

- May be primordial.
- Size ratios near unity and large separations energetically prohibited by collisions in present-day Kuiper Belt.
- No large, dense bodies for tidal disruption to be efficient; YORP far too weak.
- Several models:
- Weidenschilling (2002): two bodies collide and merge near third body \rightarrow capture.
- Goldreich et al. (2002): dynamical friction on two larger bodies $\boldsymbol{\rightarrow}$ mutual capture.
- Funato et al. (2004): binary exchange reactions.
- Nesvorný et al. (2010): direct collapse from spinning cloud.

Binary Main Belt Asteroids

- Capture of collisional ejecta most likely (outer belt).
- High collision frequency.
- No bodies capable of tidal disruption.
- Encounter speeds too fast for capture.
- Collisions that make asteroid families also make satellites.
- Gravitational reaccumulation explains family size and velocity distributions.
- YORP effect plays a role in (at least) the inner Main Belt.

Numerical Methods

- Impacts: carry out fragmentation phase using hydrocode, then reaccumulation phase using N-body code.
- Hydrocode: solve equations of fluid mechanics with a crack propagation model and suitable equation of state-short timescale. E.g., Lagrangian SPH or Eulerian grid codes with AMR.
- N-body code: solve gravity equations of motion with low-speed collision constraint-long timescale. E.g., PKDGRAV (parallel hierarchical tree code with explicit treatment of particle collisions).
- Rotational disruption: model encounter or thermal spin-up using N-body code.
- Construct "rubble pile" of self-gravitating particles in contact.
- Outcome determined by angle of friction and any cohesion among components. E.g., monodisperse spheres \rightarrow friction angle $\sim 40^{\circ}$.

Example Code Details

SPH Code

- Lagrangian method.
- Tillotson equation of state for basalt.
- von Mises yielding relation \rightarrow plasticity.
- Nucleation of incipient flaws \rightarrow brittle failure.

N-body Code

- Parallel hierarchical tree code (PKDGRAV).
- Second-order leapfrog integrator.
- Collision detection by fast neighbor search.
- Perfect sticking.

Impacts Make Families and Satellites

- Asteroids reaccumulate debris after big impacts.
- Explains velocity and size distributions of asteroid families, and satellites.
- Implies rubble structures.

Michel et al. 2001, 2003

SPH Fragmentation Phase

Impacts Make Families and Satellites

- Asteroids reaccumulate debris after big impacts.
- Explains velocity and size distributions of asteroid families, and satellites.
- Implies rubble structures.

Michel et al. 2001, 2003

PKDGRAV Reaccumulation Phase

Ejecta Capture (Durda et al. 2004)

Lots of Impact-generated Binaries...

- Good match to size ratio but no shape/spin info (reaccreting particles become larger spheres).
- Benavidez et al. (2012): rubble pile targets give similar results, but fewer overall binaries compared to monolithic.

Binary NEAs

- Binary NEAs are common (~15\%), and have properties suggestive of rotational disruption.
- Rapidly rotating primaries (2-4 h periods).
- Small (20-50\% R_{p}) secondaries.
- Close secondaries ($a=2-5 R_{p}$).
- Primary lightcurves have low amplitude < 0.3 mags.
- Satellites have low eccentricity.
- Tidal disruption and YORP spin-up are favored for making such binaries.
- Need fragile progenitor: low strength/cohesion.

Evidence for Fragile Asteroids

Courtesy: P. Pravec

Evidence for Fragile Asteroids

Itokawa: A Gravitational Aggregate

Tidal Disruption of Asteroids

- If asteroids are fragile, they can be broken up like SL9.

Binary Asteroids from Tidal Disruption

- Tidal disruption of NEAs makes ~1-2\% binary population (Walsh \& Richardson 2008).
- Binaries are high-e, primaries elongated.
- Subsequent encounters often disrupt binary system.
- Need a different mechanism to explain the 15\% binary NEA population-YORP!

Spin-up by YORP

- Spin state change due to reflectance/re-emission of absorbed solar radiation.
- Depends on body size and distance from Sun.
- Spin-up timescale \sim Myr.

1999 KW $_{4}$: Made by YORP?

1999 KW $_{4}$: Made by YORP?

Alpha

Simulating KW_{4}

- Start with arbitrary-shape rubble pile, with angle of friction determined by (spherical) particle size distribution.
- Cases: fluid-like; 20° angle of friction (sand); 40° (typical rubble?).
- Largest body spun up periodically to mimic YORP effect, with pauses in between to allow system to equilibrate.
- Only gravity and collisions modeled; no cohesion.
- Energy loss parameterized by coefficients of restitution.
- Some dissipation required to ensure secondary accretion.

Determining the Angle of Friction

- The angle of friction of a material can be inferred by the equilibrium shape it adopts under rapid spin.
- Fluids follow the Jacobi/ Maclaurin curves exactly.
- Granular materials can occupy any region to the left of the limiting curves.

Simulating KW_{4}

(High angle of friction case)

nature

Rotational breakup as the origin of small binary asteroids

Kevin J. Walsh ${ }^{1,2}$, Derek C. Richardson ${ }^{2}$ \& Patrick Michel ${ }^{1}$

Initially Spherical Body

Simulating KW_{4} (High angle of ficition case)

- As body spins up, it bulges at equator (becomes oblate), mass moves down from the poles, and a satellite forms from material shed from ridge in equatorial plane.
- Satellite has low eccentricity and gradually moves away.
- Explains shape, fast rotation rate, and KW_{4} satellite.

General Properties from Simulations

- YORP binaries enabled by:
- High angle of friction (e.g., monodisperse spheres, or large rigid core).
- Moderate dissipation.
- Resulting systems have:
- Oblate primaries.
- Low-e secondaries.
- Moderate size ratios.

Core Model: Binary Formation

\rightarrow

Rigid core (green) surrounded by smaller particles (white)

Marginal Binary Formation

No Binary: Small Core of Larger Particles

When the core is too small, the body becomes too elongated and binary formation is suppressed.

Fission Model (Conceptual)

Two Different Models

- Walsh et al.: binary via mass shedding from primary.
- Requires high angle of friction (moderate reshaping resistance).
- Secondary accretes in orbit; primary shape \& ridge from shedding.
- Fresh material exposed at primary poles.
- Jacobson \& Scheeres: binary via fission from primary.
- Requires fluid-like body (no resistance/low shear strength)—or contact binary-followed by dynamical evolution of components.
- Primary shape/equatorial ridge formed after secondary breakup.
- The two models predict different internal structures.
- Walsh et al.: moderate shear strength, e.g., crystallization, rigid core, and/or irregular blocks; porous material to reaccrete?
- Jacobson \& Scheeres: near-zero shear strength, e.g., free-flowing material; shape adopts global minimum energy configuration.*

Conclusions \& Future Work

- Numerical simulations of SSSB binary formation show good match to Main Belt and NEA binaries via impacts and rotational disruption.
- Need to preserve shape \& spin for impact simulations.
- Is YORP torque self-reinforcing or self-defeating (how does shape change/mass loss after torque)? Is it a random walk (so it takes much longer to evolve)?
- New SSDEM codes needed to better model rubble pile contact physics (landslides instead of individual particle loss?), and investigate effect of weak cohesion.
- Marco Polo-R mission to FG_{3} will distinguish between binary formation models.

EXTRA SLIDES

Asteroid/TNO companions: size ratio vs. separation

Asteroid/TNO companions: size ratio vs. separation relative to Hill radius

(Binary Semimajor Axis in Units of Hill Radius)

First Triple Asteroid: 87 Sylvia

200 mas

Recent Triple Asteroid

- 2001 SN $_{263}$.
- Companions found Feb. 12/13, 2008.
- 2 km primary.
. 75 m resolution.

Comet 8P/Tuttle: Contact Binary?

- Arecibo Jan. 4, 2008.
- Spheres 3-4 km.
- Resolution 300 m.
- Rotation 7.7 h.

Gravitational Aggregates

Some Important Concepts About Strength

- The Mohr-Coulomb (or Drucker-Prager) model:

Simulating Gravity and Collisions

- PKDGRAV: "Parallel k-D tree GRAVity code"
- Combine parallelism and tree code to compute forces rapidly.
- Started as pure cosmology code written at U Washington.
- PKDGRAV solves the equations of motion for gravity (point masses):

$$
\ddot{\mathbf{r}}_{i}=-\sum_{j \neq i} \frac{G m_{j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

```
                                    m = mass
                                    r = vector position
```

- Introduce collision constraint (requires collision search):

$$
\text { Separation } \longrightarrow\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|=s_{i}+s_{j} . \longleftarrow \text { Sum of radii }
$$

SSDEM Equations

EEB Example: Flora Impact

Low Bulk Densities Imply Porosity

253 Mathilde (1.3 g/cc)
45 Eugenia ($1.1 \mathrm{~g} / \mathrm{cc}$)

Rotational Disruption

- Centrifugal force > gravitational force.

$$
\frac{P_{\min }}{2.2 \mathrm{~h}} \approx \sqrt{\frac{2.2 \mathrm{~g} / \mathrm{cc}}{\rho}}
$$

Tidal Disruption

Example: SL9 Breakup at Jupiter

- Simplest explanation: Jupiter tides pulled comet into many pieces, which then reaccumulated.
- Implies weak structure.

Comet P/Shoemaker-Levy 9 (1993e) • May 1994

Encounter in comet frame of reference.

Crater Chains (Catenae)

- Historical evidence of tidal disruption.

Asteroid breakups may explain a few catenae seen on our Moon.

Davy Chain, ~47 km

