Mars Express investigations of Phobos

Olivier Witasse, Tom Duxbury and all Mars Express teams

Outline

- Mars Express flybys
- A selection of results
- Future flybys

Mars Express flybys

Phobos is a very interesting target for Mars Express for two reasons:

- Elliptical and polar orbit
- Instrumentation well suited

Flybys every 5 months - Closest flyby: March 2010, at 67 km from the surface

MEx orbit 7915 (2nd flyby) - time 1000 x faster - objects are not to scale

Copyright: ESA/DLR/FU-Berlin (G. Neukum) - author: Sebastian Walter - credits: Celestia, NAIF/SPICE

MEx orbit 7915 (2nd flyby) - time 100 x faster - objects are not to scale

EEENEE

Copyright: ESA/DLR/FU-Berlin (G. Neukum) - author: Sebastian Walter - credits: Celestia, NAIF/SPICE

© ESA/DLR/FU Berlin (G. Neukum)

Mars Express results

- 1. Precise determination of the locations of the moons
- 2. Landing site characterisation
- 3. Radar sounding
- 4. Surface and volume characterisation
- 5. Accurate determination of the mass
- 6. Phobos solar wind interaction

Precise location [HRSC and radio-science]

- Flybys
- Shadow
- Special events
- Tracking data

Position known with an accuracy < 1 km now

Image taken on 5 November 09

Evolution of the orbit, crash of Phobos on Mars in a few Myears

Imaging Phobos ... and Jupiter

src frame 0031

src frame 0075

© ESA/DLR/FU Berlin (G. Neukum)

HRSC orbit 9463

Landing site imaging

2. PI Science Objectives of future MTPs

MEX occulted by Phobos, on 30/04/12

MEX - GROUND RECEIVE AGC LEVEL DURING OCCULTATION BY PHOBOS

Rare opportunity to confirm the position of Phobos, and to even improve the moon ephemerids.

Surface and volume characterization [HRSC, OMEGA, PFS, SPICAM]

- Sharpest images ever (1 m/pixel with SRC)
- Atlas of the surface, shape and volume
- New evidence on the origin of grooves
- Spectrum from 0.1 up to 35 microns

100 km distance

Surface temperature determination

Best wavelength range to know the surface composition?

UV VISIBLE INFRARED

Features

No features

Features

MEX elevation model

Gravity experiment [Radio-science]

Change in the MEX trajectory due to the gravity of Phobos is detectable and allows the determination of the gravity field.

 $m_{Phobos} = 1.072 \times 10^{16} \text{ kg} \pm 0.3\%$ $\rho_{Phobos} = 1.87 \pm 0.03 \text{ g/cm}3$

Phobos - solar wind interaction [ASPERA]

•In the vicinity of Phobos, protons with energy slightly less than the solar wind were observed (3 events)

• Observation of backscattered solar wind protons from the Phobos surface, as a result of the solar wind interaction.

•Phobos interacts strongly with the solar wind reflecting ~0.1-1% of the solar wind protons

 The phenomenon is similar to the Moon

Ion detected coming from Phobos

Next Mars Express flybys:

December 2013 and October 2014:

Distance from the surface less than 50 km

End of mission: a new crater on Phobos!

© ESA/DLR/FU Berlin (G. Neukum)