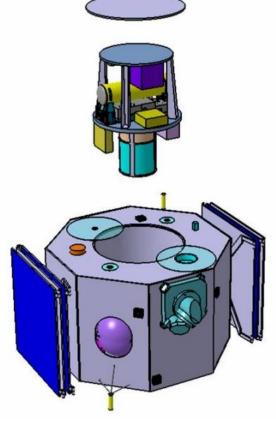


STE-QUEST Mission Design Overview and Status

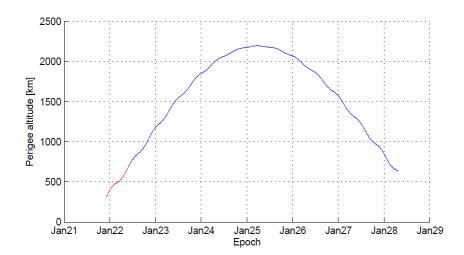
M. Gehler ESTEC - STE-QUEST Science WS 22/05/2013

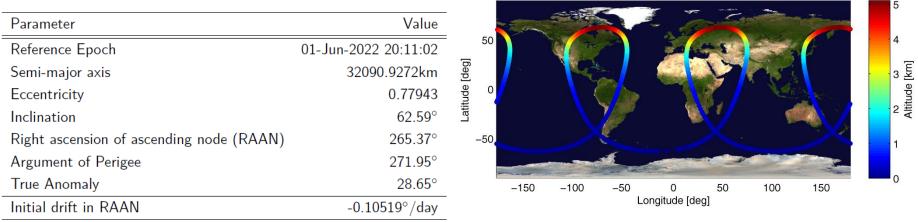
Mission Concept



Spacecraft Key Properties

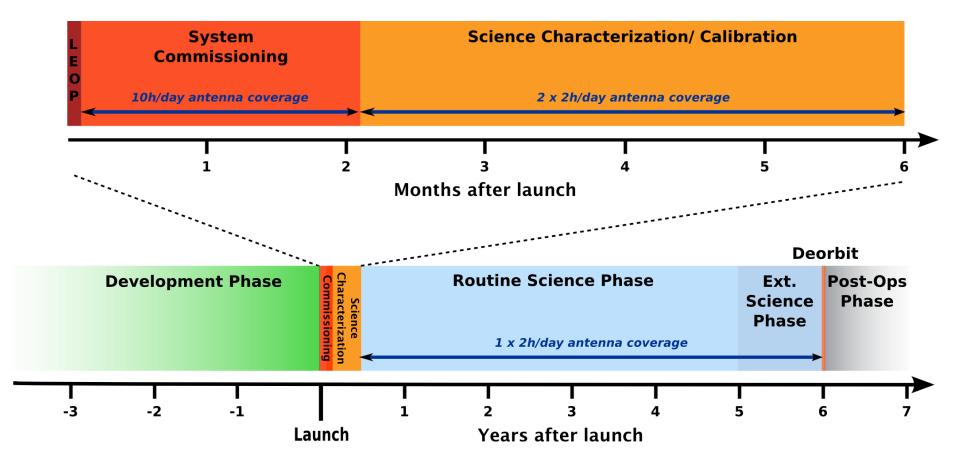
- Launch Mass: ~2100 kg
- Electrical Power: ~2 kW
- □ Instrument mass: ~450 kg, power: ~1040W
- 3-axis stabilized S/C, cold gas attitude control (tbc)
- Power: GaAs solar array, Batteries
- Thermal: Radiators, payload cooling via heat pipes
- □ X-band TT&C (~3-8 Gbit/orbit)
- Mission Lifetime: 5 years
- Challenges: P/L thermal control, radiation, P/L accommodation




CDF configuration

STE-QUEST Baseline Mission Profile

- Launch with Soyuz/Fregat from Kourou
- Highly Elliptical Orbit (HEO): ~700 x 51000 km altitude
- Perigee altitude evolving 700 -> 2100 -> 700 km
- Apogee locations for maximum common visibility of ground terminals
- Exact orbit parameters dependent on launch date



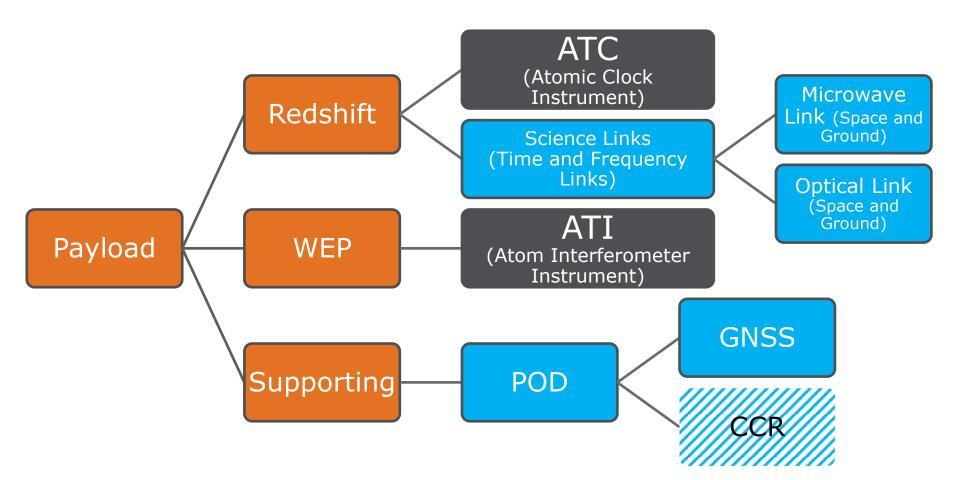
STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 4

x 10⁴

Mission Phases

STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 5

Design Constraints (non-exhaustive)



Programmatic Launcher choice:

- Launch mass constraint
- Injection constraints -> orbit limitations (launch site, safety)
- Link availability:
 - Orbit design
 - Pointing
- Payload requirements:
 - Attitude control
 - Power/Thermal
- Policies/Regulations:
 - Active de-orbiting (Space Debris mitigation)
 - Link design (flux densities, bandwidths, frequencies)

Payload Architecture/Responsibilities

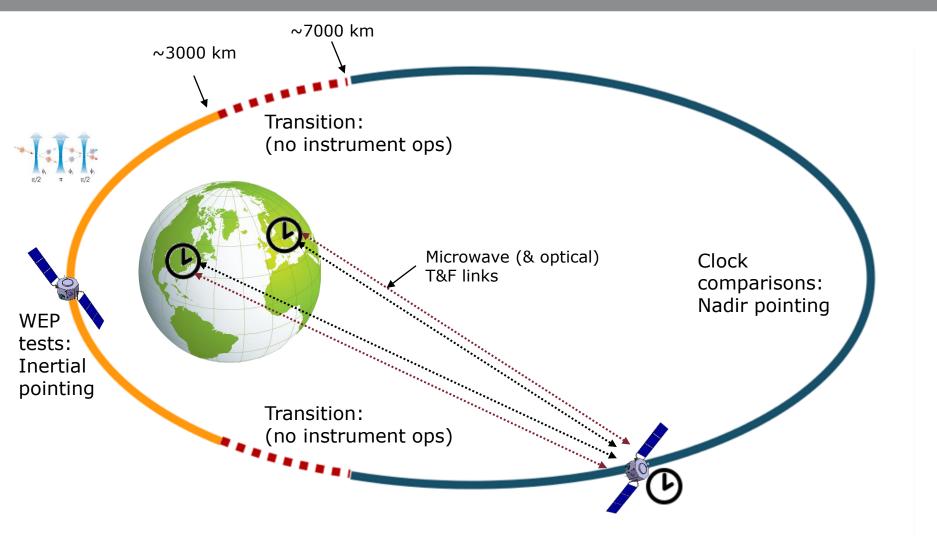
STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 7

Instruments Overview

Instrument	Acronym	High Level Description
Atomic Clock	ATC	Cold atom microwave clock with optical oscillator for short term performance.
Atom Interferometer	ATI	Dual-species Rb85, Rb87 cold atom interferometer for differential acceleration measurements.

STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 8

Additional Payload Items



Time and Frequency Links	High Level Description
Microwave Links	X, K(a) band links Up to four links w/ ground simultaneously Up to 10 W Tx power on board Three (min) ground terminals connected to metrology institutes
Optical Links	2 Optical Communication Terminals on board Up to two links simultaneously Three (min) ground terminals
Instruments	High Level Description
GNSS	GNSS receiver for POD in post-processing and for quick-look orbitography data. Based on multi-constellation designs.
Radiation Monitor	Verification of radiation models, possible warning system for radiation events / trace to effects.
Shielding	High Level Description
Spacecraft	S/C structure acts as shielding (location dependent)
Equipment Level	Box shielding, equipment box acts as shield
Component Level	Dedicated component shielding for sensitive components
Part Level	Spot shielding, highly specific

STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 9

Instrument Operations

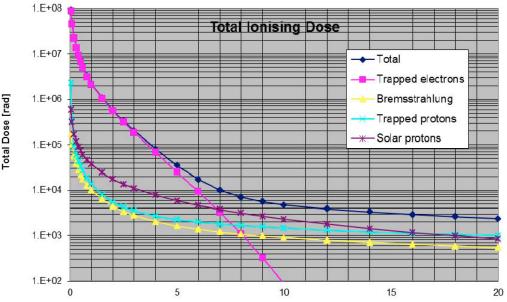
STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 10

Radiation Environment

- Major Influences:
 - Total Ionizing Dose: Trapped Electrons (Electronics, material degradation, internal charging (-> fields)
 - Displacement Damage: (Solar) Protons (optical/opto-electronics components)
- STE-QUEST Environment:
 - Two belt-crossings per orbit
 - Environment dominated by electrons (comparable to GEO doses, efficient shielding)
 - Proton environment higher than for GEO (delta-qualification for some parts)

	Parameter	
Electronic component degradation	Total ionizing dose.	
Material degradation	"	
Material degradation (bulk damage)	Non-ionizing dose (NIEL).	
CCD, sensor and opto-electronic component	NIEL	
degradation		
Solar cell degradation	NIEL & equivalent fluence.	
Single-event upset, latch-up, etc.	LET spectra (ions);	
	proton energy spectra;	
	explicit SEU/SEL rate of devices.	
Sensor interference (background signals)	Flux above above energy threshold and/or flux	
	threshold;	
	explicit background rate.	
Internal electrostatic charging	Electron flux and fluence;	
	dielectric E-field.	

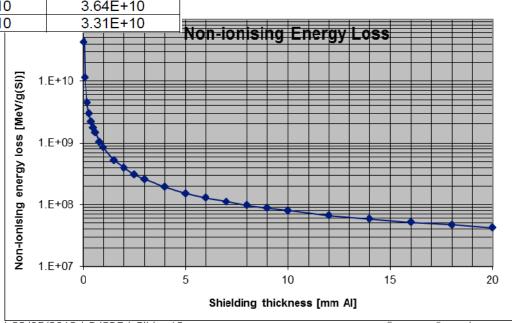
STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 11


Total Dose

Shielding Thickness	T	erical Al Shieldi	Al Shielding		
[mm]	Total	Trapped Electrons	Brems strahlung	Trapped Protons	Solar Protons
3	2.01E+05	1.84E+05	2.75E+03	3.52E+03	1.09E+04
4	7.95E+04	6.71E+04	2.02E+03	2.69E+03	7.66E+03
5	3.47E+04	2.51E+04	1.62E+03	2.24E+03	5.76E+03
6	1.72E+04	9.25E+03	1.37E+03	1.98E+03	4.59E+03
7	9.97E+03	3.27E+03	1.19E+03	1.79E+03	3.72E+03
8	6.89E+03	1.07E+03	1.06E+03	1.65E+03	3.10E+03
9	5.50E+03	3.21E+02	9.67E+02	1.55E+03	2.66E+03
10	4.71E+03	8.67E+01	8.94E+02	1.45E+03	2.28E+03

- Shielding thickness by s/c structure between 3 and 10 mm equivalent Al-sphere
- Can be handled efficiently on S/C side (GEO-qualified components)
- Payload design to use qualified parts as much as possible STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS |

ESA UNCLASSIFIED – Releasable to the Public

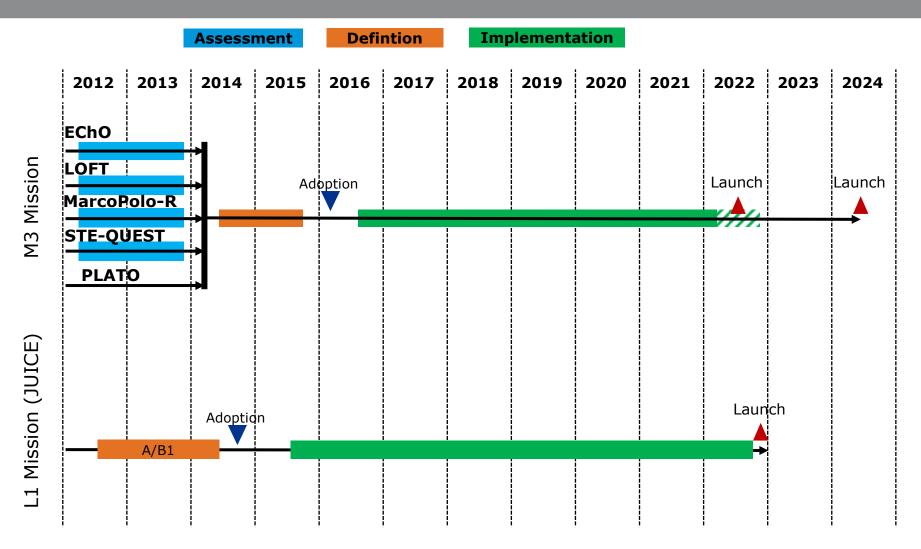

Spherical Aluminium Shielding Thickness [mm]

Non-Ionizing

Aluminium shielding	Non ionising energy loss and equivalent proton fluence				
thickness [mm]	Energy loss [MeV/g(Si)]	Eq 10MeV Proton fluence [#/cm2]	Eq 60MeV Proton fluence [#/cm2]	Eq 200MeV Proton fluence [#/cm2]	
3	2.58E+08	3.75E+10	7.48E+10	1.08E+11	
4	1.91E+08	2.77E+10	5.54E+10	7.98E+10	
5	1.50E+08	2.18E+10	4.35E+10	6.26E+10	
6	1.29E+08	1.86E+10	3.72E+10	5.36E+10	
7	1.12E+08	1.62E+10	3.23E+10	4.65E+10	
8	9.66E+07	1.40E+10	2.80E+10	4.02E+10	
9	8.74E+07	1.27E+10	2.53E+10	3.64E+10	
10	7.94E+07	1.15E+10	2.30E+10	3.31E+10	

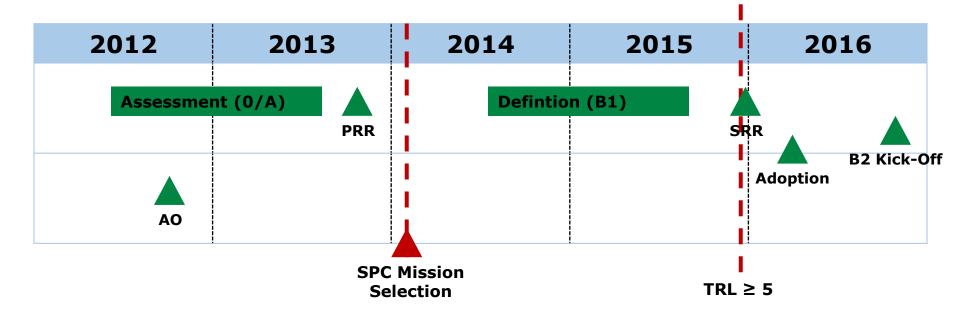
- Shielding thickness by s/c structure between 3 and 10 mm equivalent Al-sphere
- Proton environment relatively high, of concern for optical components, fibers.
- Main problem for components located outside/close to outer walls

STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 13


Outlook & Programmatics

- □ Industrial Studies: Completed by July 2013
- □ Instrument Studies: Completed by September 2013
- □ Preliminary Requirements Review: October/November 2013
 - Technical and Programmatic Assessment
 - Outcome supports the M3 mission down-selection by SPC in February 2014

Cosmic Vision Implementation Schedule (Tentative)



STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 15

Tentative Near-Term Mission Planning

STE-QUEST Mission | M. Gehler | ESTEC - STE-QUEST Science WS | 22/05/2013 | D/SRE | Slide 16