Atom Interferometry In Free Fall

<u>A. Landragin</u> and the QUANTUS and ICE teams

Systèmes de Référence Temps-Espace

Context

- ✓ First atom interferometer: 1991
- First proposal to ESA of Atom Interferometry for a test of fundamental Physics: 2000 (HYPER)
- ✓ Development of ground experiment (gyro, gravimeter, gradiometer...)
- ✓ National programs to develop Atom Interferometry in 0-g (2005-06):
 - QUANTUS program by DLR in Germany
 - ICE Program by CNES in France
- ✓ Other propositions for COSMIC vision 2007 and 2011
- ✓ ESA program (SAI based Italy (G. Tino) 2007: merging national expertise on a ground demonstrator in the frame of the ELIPS program.

AI in Free Fall

National programs to develop Atom Interferometry in 0-g (2005-06):

- QUANTUS program by DLR in Germany
- ICE Program by CNES in France

Means:

- developing the technology (increasing TRL levels)
- improving science knowledge of cold atom interferometry in Free Fall

Goal: to prepare for next calls

platform	µg-quality [g]	µg-duration
ground	10 ⁻⁶	1-2 seconds
droptower	10 ⁻⁶	4.8 s, 9s with catapult
airplanes	10-2	20 seconds
ballistic rockets	10 ⁻⁵	up to 6 minutes
space carrier	10-6	3 days
ISS	10-4	days to years
Dedicated satellite	10-7	2-5 years

Outline

ICE : test of EP in O-g plane QUANTUS: Chip based AI in free fall Conclusion

Outline

ICE : test of EP in O-g plane QUANTUS: Conclusion

The I.C.E. project: Towards a test of the Universality of Free Fall with atoms in O-G plane

P.A. Gominet, B. Battelier, B. Barrett, <u>P. Bouyer</u> Laboratoire Photonique Numérique et Nanoscience, Bordeaux

N. Zahzam ONERA, Palaiseau

A. Landragin LNE-SYRTE, Observatoire de Paris

Systèmes de Référence Temps-Espace

The I.C.E. setup in the flying lab

- Demonstrator for test of EP in Free fall in O-g plane
- Choice of the ⁸⁷ Rb and ³⁹ K atoms: ratio of mass and composition
- Fiber laser sources @ 1560 nm and 1534 nm, second harmonic generation
 → 780 and 767 nm for cooling and manipulating atoms
 (Reliability of telecom lasers)

• 4 racks, 700 kg, 1000 W power consumption

An aircraft as experimental platform

Novespace A300-0g Airbus (Bordeaux, France)

- 3 flight days in a campaign: microgravity total time ~ 30 minutes
- Measurement during 1-g and 0-g phases
- Rate of measurement: 500 ms (40 measures per parabola)

Experimental conditions

Transportability Laboratory →plane Thermal environment 5°C → 30°C Stabilization duration <3h Vibrations 0,5 m.s⁻² in flight+ shocks (transport, takeoff, landing)

Modular experiment Passive pumping for the vacuum system Laser system: telecom + frequency doubling fibered, robust

•••

Laser system

- ✓ Two-wavelength laser system
 - Rb : 780 nm
 - K : 767 nm
- ✓ Second Harmonic Generation from telecom lasers
 @ 1560 and 1534 nm
 - Fibered qualified components
 - Robust against temperature fluctuations and vibrations
- ✓ Common frequency reference
 - Self-referenced optical frequency comb (Menlo Systems)

Telecom components

✓ Long lifetimes (25 years)

- Very convenient for modifications and assembling (fiber soldering, no global mechanical design modification)
- ✓ Wide and established market : no supply concern for the next 50 years
- Telcordia qualified (very demanding standard but nothing for radiation)
- ✓ Tests on temperature, aging, vibration, humidity...

Precise acceleration measurements with Rb

l'Observatoire SYRTE

Solution to overcome the non-reciprocity problem: 1. Use an external device to measure the coarse accelerations 2. Use the AI for the high resolution measurement

Correlation method

MAs-AI correlations

R. Geiger et al, Nature Comm. 2, 474 (2011)

bservatoire SYRTE

Two-step acceleration measurement

 \checkmark Coarse measurement with the MAs \rightarrow fringe number where the AI operates every shot

bservatoire

SYRTE

Resolution of the accelerometer: 300 times below the vibrations level in the plane! Final sensitivity of 2.10^{-4} m.s⁻².Hz^{-1/2}

Limited by performances of the MAs at low frequencies

Vibration rejection in a two-species AI

G. Varoquaux et al. NJP 11, 113010 (2009)

Ramsey fringes with 39K in O-g

T=5 ms

Co-propagating Raman transition (σ +- σ + polarization)

"Clock": $\pi/2-\pi/2$ interferometer

 T_{max} = 15 ms in the plane

Next step under preparation

- ✓ Demonstrate K interferometer in 0-g (next week?)
- ✓ Dual interferometer Rb/K in O-g plane
- Use of Ultra cold atoms in Dipole trap for extended time dual specie atom interferometry (use of same telecom laser for Dipole trap)

J.-F. Clément, et al. PRA 79 061406(R) (2009)

Outline

ICE: QUANTUS: Chip based AI in free fall Conclusion

Chip-based Al in extended free fall

QUANTUS II

MAIUS

The ZARM drop tower Bremen

146 m tall 110 m drop height Free fall: 4.7 s Catapult: 9.2 s 10⁻⁵ m/s² below 100 Hz 3 flights per day Capsule deceleration up to 500 m/s²

Laser system

Control system

Ion Getter Pump and electronics

Payload: Diameter 0.6 m Height 1.73 m Weight < 234 kg Vacuum chamber

Batteries

BEC by the numbers

- 10⁷ atoms in the MOT
- -5.10^{6} in the magnetic IP trap
- 10⁴ in the BEC after ~1.5 s evaporation
- 10 Hz to 30 Hz trap frequencies
- 10 nK kinetic energy
- F = 2, m_F = 2 state

van Zoest et al., *Science* **328**, 1540 (2010) H. Müntinga et al., PRL 110, 093602 (2013)

QUANTUS I

Delta-kick cooling

QUANTUS I

Interferometry in µg

Catapult-capable capsule

2094 mm

Payload mass of 163.8 kg

Compact laser system for manipulation and detection of ⁸⁷Rb/⁴⁰K

Stackable and miniaturized electronics

MOT loading

Characteristics:

- Double-MOT-system
- Mirror MOT setup
- MOT quadrupole field formed by a mesoscopic U structure @9A and a bias field

Performance:

• 2D⁺-MOT flux: 1,4x10⁹ @1s

QUANTUS II

• N_{max}: 2,5x10⁹ @5s

Chip trap

Evaporation & BEC

Particle number in dependence of total cycle time:

- Largest BEC: 5x10⁵ atoms in 3.5s
- Optimal BEC: 4x10⁵ atoms in 2s
- Fastest BEC: 4x10⁴ atoms in 1s

Next step: extended interferometry times in a catapult launch

MAIUS: BEC in Space

Objectives:

- Proof of concept of a rocketborne atom optical experiment
- Automated operation of a Bose-Einstein-Condensate in space
- Demonstration of a Braggbased atom interferometer

MAIUS: BEC in Space

- Platform: VSB-30
- 400 kg pay load with apogee at 240 km
- 6 minutes of μg (<10⁻⁶ g_0)
- **Orientation stabilization**

R- El-

Residual rotation rate < 0,03 Deg/s

MAIUS Payload

Umbilical Section

- Experiment Section
- Laser section
- Electronics Section
- Battery section

MAIUS: BEC in Space

Launch November 2014 ESRANGE, Sweden

Outline

ICE: QUANTUS: Conclusion

Conclusion

- Two projects with similar goals but different approaches
 - → ICE:
 - O-g Plane
 - Telecom lasers
 - Dipole Trap
 - Interferometers and ultra-cold atoms
 - QUANTUS:
 - Bremen Tower
 - Semi-conductor diode lasers
 - Magnetic trap on chip
 - Ultra-cold atoms and Interferometers
- Technologies and concepts used for the definition of the AI in STE-QUEST

Thanks to the QUANTUS and ICE projects

