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ecision Measurement Technolo

Laser cooling and atom trapping

Atom optics

Ultra-stable lasers

Self-referenced optical frequency comb
Atomic clocks

Atomic sensors

Unique space environment

Global access

Free from atmospheric interference
Microgravity

Low vibration

Large spatial extent

Large gravitational field variation
Inertial frame

Space for Fundamental Physics and Applications

Fundamental Physics and Applications

-Relativity theories

-Standard Model

—Equivalence Principle

-Gravity physics

—-Cosmology and quantum decoherence
-Gravitational wave detection

-Earth and planetary gravity measurements
-Astrophysics observations
—Communication

-Navigation

-Geodesy

-Global timekeeping
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Mercury ion clock technology Ground LITS clock

Linear Quadrupole lon Trap
(4 rods)

DIA

J. Prestage et al.

5 MHz Tjoelker et al.
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LITS-9 clock based on the Trapped Ion Mercury
Ton Technology demonstrated long-term fractional RUERVARGIAETTERIENVR LT
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E.A. Burt, W. A. Diener, and R.L. Tjoelker, “A Compensated Multi-
pole Linear lon Trap Mercury Frequency Standard for Ultra-Stable
Timekeeping,” IEEE Trans. UFFC 55, 2586 (2008).
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JPL ACES Ground Terminal Site Preparation

ISS Orbit Decays
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Technology Challenges: Miniaturize lon Clock Technology to 1kg

—_—

« Eliminate moving parts, ovens, vacuum pumps,
pressure gauges, buffer gas flow w/ heaters, ~1000x
volume reduction.

» Employ vacuum methods of space TWTA Tube devices.

* Tube materials, UV windows seals must withstand
vacuum bake-out. (Sapphire/Alumina and Titanium),

« Bulk chemical Getters pump residual gases.

« ~10° Torr Neon Buffer gas sealed within tube,

« Ultra-clean/low vacuum pressure is essential/for clock
stability and lifetime.

Ground Based lon Clock Technolog
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~ e Miniature '""Yb ion clock
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Locking
feedback
\

Trapping/ . . ,
c O(I)Dllzngg Atomic Optical LO \WOptlcal staildard output
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To realize the ultra-compact optical clocks

* Miniature physics packages

* Whispering gallery mode (WGM) resonator based narrow line lasers
*  WGM resonator stabilized optical local oscillator

*  WGM resonator comb generation
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JPL 3 cc trap vacuum package
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Laser Stabilization with Micro Resonator

Fractional Instability

Dual mode stabilized frequency stability.
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e 200 nm width from 52 mW pump
« Single mode resonator

« “Native” spacing, first tooth appears
at 1 FSR.

=» Coherent comb
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Microcomb
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[Grudinin et al., Opt. Exp., Vol. 20, pp 6604 (2012)]
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Freefall test mass o Displacement Detection - Atomic system stability
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Laser-cooled Cs atom-wave interferometer

Use totally freefall atomic particles as ideal test masses

identical atomic particles are collected, cooled, and set in free fall in vacuum with no external
perturbation other than gravity/inertial forces; laser-cooling and trapping are used to produce the atomic
test masses at uK and nK; no cryogenics and no mechanical moving parts.

Matter-wave interference for displacement measurements

displacement measurements trough interaction of lasers and atoms, pm/Hz2 when in space;
laser control and manipulation of atoms with opto-atomic optics.
Intrinsic high stability of atomic system

use the very same atoms and measurement schemes as those for the most precise atomic
clocks, allowing high measurement stabilities.

Enable orders of magnitude sensitivity gain when in space
microgravity environment in space offers long interrogation times with atoms, resulting orders of
magnitude higher sensitivity compared terrestrial operations.
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- Cold atoms as truly drag-free test masses
- Gravity gradiometer (better resolution)
— Simpler mission architecture (single spacecraft)

— More flexible orbits and satellite constellation
(more comprehensive data for data analyses)

Geodesy

Earth and Planetary Interiors
— Lithospheric thickness, composition Jlan e grachent A
— Lateral mantle density heterogeneity < l

Multiple flexible orbit

— Deep interior studies
— Translational oscillation between core/mantle N
Earth and Planetary Climate Effects
— Oceanic circulation
— Tectonic and glacial movements
— Tidal variations
— Surface and ground water storage
— Polar ice sheets

— Earthquake monitoring —
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+ Single axis differential acceleration of two co-located matter wave
interferometers with different atomic species
a WZ7Z7ZZZ + Seckaviolation of Einstein’s Equivalence Principle by improving the test
T limit by three orders of magnitude, to 1x10-'> level and better.
+ First non-trivial precision experiment of quantum particles under the
influence of gravity, and may stimulate discussions of General Relativity in
the framework of quantum mechanics.
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«— Two species differential accelerometer

NASA is supporting US collaboration in QWEDP, investigating science significance and systematics.
NASA is also very much interested in the area of EP and fundamental physics tests with atom
interferometers.
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Cold Atom Laboratory -

coldatomlab.jpl.nasa.gov

Project manager: Anita Sengupta
Project Scientist: Robert J. Thompson

Cold Atom Laboratory (CAL)

a multi-user microgravity facility
CAL Objectives

Study ultra-cold quantum gases in the
microgravity environment of the International
Space Station

Study Rb?%, K and K%, and interactions
between mixtures of Rb and either of the K

isotopes

Study quantum gases with residual Kinetic
energy below 100 pK (goal 20 pK); with free
expansion times greater than five seconds (goal
10 seconds)

Study the properties of both Rb%7, K4, and K4
quantum gases loaded into optical lattices, in
the presence of external magnetic fields tuned
near interspecies and single species Feshbach
resonances
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CAL at a glance

Atom Chip based apparatus
Dual species 8’Rb and 4°K or 4K

e Target > 200,000 Rb atoms at BEC
transition

e Target > 30000 K atoms in degenerate
Fermi Gas (E <0.1Ep)

 (Condensate lifetime > 10 seconds

* Optical lattice at 850 nm w/ depth up to
10X recoil energy

* Observe Feshbach resonances up to 225 G

e State control via microwave, rf
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CAL instrument
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CAL Mission Architecture and Schedule

Phase A

Sequence Control
with Ground via
TDRSS

12 month science
operations phase
no down mass required

Data to
) MSFC
via White

Science
Operations
Team at

NASA/JPL 2015 Launch in

Pressurized
Cargo Vehicle in

installation

soft stowage ) into
. ] Express
Pressurized Cargo Vehicle: Rack
D HTV, P
ragon, , Progress, Soyuz (ARIS)
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