EUROPEAN SPACE AGENCY

MARS ROBOTIC EXPLORATION PREPARATION -2 PROGRAMME

TECHNOLOGY PLAN

Programme of Work and relevant Procurement Plan

SUMMARY

This document presents the work plan update for the MREP-2 Programme, defining the activities to be implemented in 2014.

This document is provided for information only and may be subjected to future updates.

December 2013

Page 2 – This page is left intentionally blank

1 Background and scope

The MREP-2 programme (Mars Robotic Exploration Preparation-2, ESA/PB-HME(2012)56, rev.1) was subscribed at the C/MIN 2012, with the objective to reinforce Europe's position in Mars robotic exploration and prepare for a European contribution to a future international Mars Sample Return (MSR) mission.

This document provides the programme of work defining the activities to be initiated in 2014.

When building this work plan, the Executive took into account the preliminary findings and recommendations of the PB-HME Working Group - as summarized in the report ESA/PB-HME(2013)48 – on the candidate missions following ExoMars missions 2016/2018 and the European strategy for future participation to MSR. The emphasis on Mars Sample Return technology preparation is reinforced. In particular, all proposed activities have a direct link to the envisaged European contribution to Mars Sample Return international mission as identified in Working Group report, while equally serving in many cases the technology preparation of the identified intermediate missions.

With regard to the long term enabling technologies - namely on Nuclear Power Sources and Propulsion - the activities as approved in previous work plans are either running or being initiated. No new activity was added in this work plan update.

2 Work Plan Elaboration and Implementation

2.1 - Definition of the activities

As for previous MREP work plans, the programme of work presented here was defined using the ESA End-to-End process as described in ESA/IPC(2005)39, involving the TECNET (TEChnology NETwork) Service Domain 9 (SD9), who is specifically in charge of Robotic Exploration and constituted of technical and mission experts from all ESA Directorates. The process ensures coordination with activities planned in other Directorates, in particular in HSO, and makes the best use of the industrial and internal studies achieved so far for Mars future missions. The work plan makes use essentially of MREP-2 (ETP) and TRP. Some activities are also recommended for implementation in GSTP.

For the practical implementation of ESA TDAs, all the newly proposed activities seeking approval are to be initiated in 2014. Some contracts are intended to be contractually phased and in these cases the budget intended for Phase 1 is shown in the "Remarks" column of the tables in Annex 1. It is planned to revisit the MREP-2 Technology Plan on a regular basis and update the plan with the results ongoing activities (e.g. system studies, technology developments) and discussions with Member States and international partners (e.g. bilateral discussions with Roscosmos, IMEWG Working Groups on MSR)

The baseline approach is to have a single contract for each activity, unless otherwise stated in the work plan. In case of specific interest for the Programme - e.g. risk reduction, investigation of different technical solutions, or for enabling competition on critical hardware in the future phases - the Executive may envisage placing parallel contracts provided that

good quality offers are received and subject to budget compatibility. In such a case, the parallel contract will be reflected in the regular update of the work plan, which occurs as a minimum on a yearly basis, for keeping the PB-HME and IPC fully informed of the work plan implementation.

2.2 - ESA Technology Development Activities: role of TRP, ETP and GSTP

Robotic Exploration technology activities mainly rely on ETP, TRP and GSTP technology budgets. The TRP budget is devoted to initial technology developments, leading to an experimental feasibility verification of critical functions or to a validation at breadboard level in laboratory environment (TRL 4). In case of components this might be extended to e.g. radiation hardening, since otherwise a proof of feasibility is not possible.

The ETP (Exploration Technology Programme) is constituted of technology activities that are directly funded by the MREP-1 and/or MREP-2 programmes. It is used to fund robotic exploration-related activities at any TRL level. However, it focuses on TRL >3, building on earlier developments funded through TRP.

For ETP, the activities will be implemented so as to meet a geographical distribution reflecting the Participating States subscriptions to MREP-2.

For both TRP/ETP funding, some changes in procurement policies are possible in the frame of the measures necessary to structurally recover georeturn deficits.

The GSTP (General Support Technology Programme) budget is used mainly for activities at a high TRL level (TRL 4 or higher) to complement the availability of ETP funding. Note however that while the GSTP activities shown in this work plan have been defined and internally agreed through the SD9 TECNET process, they are only provided here for information and not for approval. Approval for all GSTP activities will be submitted to IPC in dedicated GSTP work plans.

2.3- Annexes and detailed information

Annex 1 provides the summary tables for the new activities to be implemented in 2014, and the corresponding detailed description sheets. Only MREP-2 funded activities are submitted to PB-HME approval.

Annex 2 provides the update of MREP technology roadmaps, reflecting the latest developments and enabling a visual understanding of the logic underlying the proposed activities.

Annex 3, 4 and 5 provide additional background information.

Annex	Title	Content
Annex 1	Definition of 2014 activities (for approval)	Summary tables and description for new activities to be implemented in 2014, under ETP (MREP-2) and TRP funding.
		Note: Only MREP-2 funded activities are submitted for PB-HME approval.
Annex 2	Update of MREP technology roadmaps (for information)	The following technology roadmaps have been updated: Phootprint, Inspire, Mars Precision Lander, Mars Sample Return and Long term enabling technologies (Nuclear Power Systems and Propulsion)
Annex 3	Activities recommended for implementation in GSTP	The proposed activities could be implemented in 2014
	(for information)	
Annex 4	Summary description of future Mars missions	Summary of current definition of future Mars missions:
	(for information)	- PHOOTPRINT (Phobos Sample Return)
		- INSPIRE (Network science mission)
		- Mars Precision Lander (MPL)
		- Mars Sample Return (MSR)
Annex 5	Summary of Technology Development Activities (for information)	Summary tables and description of activities from the previous MREP work plans. The tables include: running activities; approved activities under preparation; and activities to be possibly

Table 1- List and content of the Annexes

KEY TO TABLES

Each activity is given a programmatic reference, which will remain unchanged until completion. Additional planning elements associated with each of the activities are:

Programme:	Programme budget foreseen for the activity
Reference:	Unique ESA generated reference for TDA
Activity Title:	Title of the proposed TDA
Budget:	The total Contract Authorisation (CA) values are given in KEURO, at yearly economic conditions. The year for which
	the budget is intended is specified.
Procurement Policy (PP):	Procurement Types: C = Open Competitive Tender; (Ref. Article 13.1 ESA Procurement Regulations) C(1)* = Activity restricted to non-prime contractors (incl. SMEs). C(2)* = A relevant participation (in terms of quality and quantity) of non-primes (incl. SMEs) is required. C(3)* = Activity restricted to SMEs & R&D Entities C(4)* = Activity subject to SME subcontracting clause C(R) = Competition is restricted to a few companies, indicated in the "Remarks" column; (Ref. Article 13.2 ESA Procurement Regulations). DN/C = Direct Negotiation/Continuation; the contract will be awarded in continuation to an existing contract; (Ref.
	be awarded in continuation to an existing contract; (Ref. Article 14.1.D ESA Procurement Regulations) DN/S = Direct Negotiation/Specialisation; the contract will be awarded by direct negotiation in implementation of a defined industrial policy or resulting from a sole supplier situation; (Ref. Articles 14.1.A,C ESA Procurement Regulations) * See ESA/IPC(2005)87, rev4., Industry has been informed, through the EMITS "News", of the content of that document.
SW clause applicability:	Special approval is required for activities labelled: either "Operational Software" or "Open Source Code", for which the Clauses/sub-clauses 42.8 and 42.9 ("Operational Software") and 42.10 and 42.11 ("Open Source Code") of the General Clauses and Conditions for ESA Contracts (ESA/REG/002), respectively, are applicable.
Objectives:	The aims of the proposed TDA.
Description:	Overview of the work to be performed.
Deliverables:	Provides a short description of the tangible outcome e.g. breadboard, demonstrator, S/W, test data. A final report is standard for every activity.
Current TRL:	Describes the current Technology Readiness Level of the product that is going to be developed in this activity.
Target TRL:	The TRL expected for the product at the end of the activity . For equipment, TRP usually concludes with TRL 3, ETP at TRL 5/6. However in the case of components target TRL in TRP could be higher. It is also understood that TRLs do not apply to S/W and tools. For these cases description of SW quality, i.e.: architecture, beta version, prototype, or full

	operational, achieved at the end of the activity.
Application Need/Date:	Describes the required TRL and date for the technology
	development of which the respective activity is part of on
	the base of the maturity required by the application. The
	general rule is that a requirement specifies the need date for
	a product. For equipment/payloads this is in general TRL
	5/6, - the level generally required for Phase B of a project.
	The exceptions are components, where TRL 8 (flight
	readiness) should be achieved. For S/W and tools separate
	readiness levels are defined below
Technology Readiness Level	TRL1 - Basic principles observed and reported
	TRL2 - Technology concept and/or application formulated
	TRL3 - Analytical and experimental critical function and/or
	characteristic proof-of-concept
	TRL4 - Component and/or breadboard validation in
	laboratory environment
	TRL5 - Component and/or breadboard validation in relevant
	environment
	TRL6 - System/subsystem model or prototype
	demonstration in a relevant environment (ground or space)
	TRL7 - System prototype demonstration in a space
	environment
	TRL8 - Actual system completed and "flight qualified"
	through test and demonstration (ground or space)
	TRL9 - Actual system "flight proven" through successful
Technology Decdiners Lough	mission operations
Technology Readiness Levels for S/W and tools	Algorithm: Single algorithms are implemented and tested to allow their characterisation and feasibility
101 S/ W and tools	demonstration.
	Prototype: A subset of the overall functionality is
	implemented to allow e.g. the demonstration of
	performance.
	Beta Version: Implementation of all the software (software
	tool) functionality is complete. Verification & Validation
	process is partially completed (or completed for only a
	subset of the functionality).
	S/W Release: Verification and Validation process is
	complete for the intended scope. The software (software
	tool) can be used in an operational context.
Application Mission:	Possible mission application/follow-on.
Contract Duration:	Duration of the activity in months.
Reference to ESTER:	Identifies the related requirement in the ESTER database
Consistency with	Identifies the related Harmonisation Roadmap Requirement
Harmonisation Roadmap	
and conclusion:	

Intentionally left blank

Annex 1:

- Summary table of 2014 ETP and TRP activities 1.
- 2.
- Budget summary Detailed descriptions of 2014 ETP and TRP activities 3.

Summary of all new activities seeking approval for 2014

D	IPC	ESA Ref.	A -4114 T141-		Buc	lget		РР	CIL	SW Clause	D
Prog.	Appr.	ESA KEI.	Activity Title	2013	2014	2015	2016	PP	C'try	applicab.	Remarks
Phootp	orint			_							
ETP	IPC	E913-012MM	Sample Acquisition Means for the Phootprint Lander: Experiments and first Realisation (SAMPLER)	0	1500	0	0	С		NA	Intended phased contract (Phase1, 700kEuros)
ETP	AC	E905-017EC	Guidance, Navigation, and Control (GNC) for PHOOTPRINT descent and landing	0	400	0	0	C(R)	РО	N/A	
ETP	IPC	E920-005MS	Phootprint Landing Gear System to TRL5 (PLanGS)	0	1500	0	0	C(2)		N/A	Intended phased contract (Phase 1, 400kEuros)
ETP	N/A	E913-013MM	Robotically-Enhanced Surface Touchdown (REST)	0	430	0	0	C(1)		N/A	
TRP	AC	T921-004MT	Development of a rigid conformal ablator for extreme heat flux applications	0	400	0	0	DN/S	FR	N/A	
Mars F	Precisior	n Lander									
ETP	IPC	E918-008MP	Preliminary design and performance verification of critical elements for guided entry thrusters	0	800	0	0	С		N/A	
ETP	IPC	E905-021EC	Stand Alone 3 Axis European Accelerometer Unit	0	500	0	0	C(1)		N/A	
TRP	N/A	T916-004MM	Compressive Sensing Technologies for compact LIDAR systems	0	475	0	0	C(3)		N/A	
TRP	N/A	T906-008ET	Entry, Descent and Landing Communications technology assessment	0	350	0	0	(C)		N/A	
SFR R	obotics	and Mechanisms									
ETP	IPC	E915-004FP	Mechanisms Technologies that operate at very low temperatures (Extended test campaign) - CCN	0	350	0	0	DN/C	IT,AT	N/A	This activity will be implemented as a CCN to ESTEC contract # 4000105947/12/NL/HB, budget 475 k€

MSR	ISR										
ETP	N/A	E904-005EE	Modelling of the Mars Environment for Future Missions	0	400	0	0	C(2)		N/A	
ETP	IPC	E914-004QI	Biosealing and Monitoring Technologies for a Sample Containment System - Sealing tests and EM design	0	1000	0	0	DN/C IT N/A			
TRP	IPC	T912-005GS	X-Band cryogenic feed prototyping	0	600	0	0	C(1)		N/A	
TRP	N/A	T921-005MT	Deployable & Inflatable Heatshield & Hypersonic Decelerator Concepts - Phase 1	0	400	0	0	(C) N/A			
	Total of all 2014 ETP activities seeking approval				6880	0	0				
	Total of all 2014 TRP activities seeking approval				2225	0	0				
	Total of all 2014 ETP and TRP activities seeking approval			0	9105	0	0				

Intentionally left blank

Application/Mission	Progr.	2013	2014	2015	2016	Total	
Phootprint							
1	ETP (15)	1300	4830	5100	800	12030	
	TRP (3)	450	400	400		1250	
	GSTP(1)			400		400	
Total		1750	5230	5900	800	13680	
MPL							
MPL	ETP (17)	500	1300	5500	7800	15100	
	TRP (6)	800	1300	5500	7800	2275	
	GSTP (3)	300	1473			1500	
Total	0311 (3)	1300	4275	5500	7800	18875	
Total		1500	4275	5500	7800	10075	
SFR Robotics and Mechanism	s						
	ETP (7)	500	1350	2400		4250	
	TRP (7)	1100				1100	
	GSTP(1)			2000		2000	
Total		1600	1350	4400		7350	
INSPIRE							
	ETP (11)	570		2000	4800	7370	
	TRP (6)	300				430	
Total		870		2000	4800	7800	
	I	II					
MSR	ETP (17)	2100	2100	5650	2500	12350	
	TRP (11)	2100	1000	800	2300	3970	
	GSTP (2)	2170	500	800		500	
Total	0011 (2)	4270	3600	6450	2500	16820	
Total		4270	5000	0450	2500	10020	
Long Term			i	i			
	ETP (11)	4000		5300	8300	17600	
	TRP (2)					0	
Total		4000		5300	8300	17600	
Total ETP MREP-1 2013		2570				2570	
Total ETP MREP-2		6400	9580	25950	24200	66130	
Grand Total TRP (35)		4820	2875	1200		8895	
Grand Total GSTP (7)			2000	2400		4400	
Grand Total ESA		13790	14455	29550	24200	81995	

Budget summary table per commitment year Note: MREP-2 total budget for the 2014 activities to be approved in this workplan under MREP-2 is 6880 k€ (see summary table above). All budgets beyond 2014 are indicative and may be updated.

Detailed descriptions of 2014 ETP and TRP activities

Phootprint

Sample Acquisition	1 Means for the Phootp	orint Lander: Expe	riments and first Reali	sation (SAMPLE	R)		
Programme:	ETP		Reference:	E913-012MM			
litle:	Sample Acquisition M	leans for the Phootph	rint Lander: Experiment	s and first Realisat	ion (SAMPLER)		
Fotal Budget:	1500						
Objectives							
letailed requiremen					experimentally assess th ironment) a breadboard		
he operation.							
Description Background:							
lynamic motion ind properties of the lan ool to effectively sa lynamics can be rea mply different cost lamping provisions	uced by the sampling op der, its legs and even th ample the surface, the to dised on the sampling-to s. Experiments on the w in the sampling chain (a	peration (to be expect rust or anchoring me tal dynamic motion bol, on the arm and o hole sampling opera arm and sampling to	eted in a non-homogeneous echanism. For the total s must be damped signific on the lander. However t tion are needed to ascer- ol).	bus material) coupl ystem to remain st cantly. Possible pro- hese provide differ tain the need/exten	able and for the samplin ovisions for damping rent performance and t/implementation of		
irst phase intends to rrough tests.	the focus shifts into the	ding of the dynamic		g chain by deliver	th incremental TRL. The ing a simulator, validated		
ii. Design and deve ools/strategies with v. Development of r. Execution of the Phase 2 . Trade-off and des i. Develop a real-sc	ber of sampling-tools as lopment of a parametric a range of representativ dynamic model and rela test campaign and correl ign the complete sampli ale breadboard of the sa	test campaign (usin re soil analogues. ted simulator lation of the test data ng chain (supported mpling chain, a moo	ategies. Realisation of b g an air bearing table) f a with the model produce by the validated simulat skup of platform with re- testing of the breadboar	for testing the chos ed at iv. for). presentative dynam	en sampling nics and a test		
v. Evaluate results	from the tests						
Deliverables							
Project documenta Mathematical mod Breadboards Software Test rig Data archive conta		essed data from all t	ests				
Current TRL:	1	Target TRL:	5	Application Need/Date:	2017		
Application Mission:	Phootprint		Contract Duration:	24			
W Clause:	se: N/A Reference to ESTER T-9012						
Consistency with H	Iarmonisation Roadma	ap and conclusion:					
The estivity was not	t addressed by the 2012	home on isotion avan					

Guidance, Navigation, and Control (GNC) for PHOOTPRINT descent and landing

Programme:	ETP		Reference:	E905-017EC				
Title:	Guidance, Navigation, and Control (GNC) for PHOOTPRINT descent and landing							
Total Budget:	400							
Objectives								
vehicle managemer		for the PHOOTPR	for PHOOTPRINT up to INT mission with Model environment.					
Description								
proximity operation (MVM) for this PH Isolation and Recov The MVM is respon- robust to safely ach The following tasks - Consolidation of fa account the mission - Definition of the C - Detailed analysis - Implementation of - Validation of the s - Update of PANGI - Implementation of - Implementation of - Implementation of - Implementation of	is, descent, landing and OOTPRINT mission tak very (FDIR) system. isible for selecting the C ieve the required performed: unctional, operational, p objectives and constrai GNC architecture, includ and definition of the GN f a Model In the Loop si simulator and performan J for the specific case of f the modification of the	departure. Moreove king into account the GNC modes providi mances in the prese performance and en- nts. ding sensor suite tra IC algorithms, inclu- mulator with the co- ice tests for the PHO f the PHOOTPRINT MIL to perform au p in a RASTA-like d.	e GNC system, the operating scheduling service and nee of possibly large unconvironment requirements f de-off. ding MVM, FDIR. mplete GNC system arch DOTPRINT landing. f mission.	be defined the miss ting modes and the d FDIR functionali ertainties. For the PHOOTPRI itecture, FDIR and	sion vehicle management Failure Detection, ties. The system shall be NT mission taking into MVM.			
Deliverables								
	simulator, including the oop test bench software	e GNC, MVM, and	FDIR					
Current TRL:	2	Target TRL:	4	Application Need/Date:	2015			
Application Mission:	PHOOTPRINT		Contract Duration:	15				
S/W Clause:	N/A		Reference to ESTER					
Consistance with I								
Consistency with I	Harmonisation Roadm	ap and conclusion	· · · · · · · · · · · · · · · · · · ·					

Phootprint Landin	Phootprint Landing Gear System to TRL5 (PLanGS)							
Programme:	ETP Reference: E920-005MS							
Title:	Phootprint Landing Gear System to TRL5 (Phootprint Landing Gear System to TRL5 (PLanGS)						
Total Budget:	1500							
Objectives								
			safe landing on the surface of Phobos (micro- operations (i.e. sample acquisition and robotic					
Description								
S/C) will end with a range of <0.6 m/s v	a free fall without using the braking thrusters, vertical and < 0.15 m/s horizontal. Therefore th	from 15m (TBC) e landing gear des	1500kg (with CoG at 1m above the base of the above the surface and with a landing velocities sign, including the foot-pad and possibly ght system with respect to its dynamic behaviour					

in the landing configuration for the final touchdown and surface operations. This activity shall also aim at the minimization of the mass of the landing gear system considering the use of CFRP components for the main structural elements (i.e. main and secondary struts) or other lightweight technological solutions. The need of damping of the shock transferred to the spacecraft at touchdown has to be considered in frame of the activity and simple solutions (possibly passive systems such as crushable materials, foams) shall be implemented and validated by test. Moreover, the possibility of implementing load limiting capabilities (i.e. collapsible load limiters) at the interfaces of the landing gear with the spacecraft need to be considered. In the frame of this activity, the functionality

The activity will consi		of the landing gear system shall also include provisions for deployment, latching and touchdown sensors.								
The activity will consist on two (2) contractual phases: Phase 1 (400 kEuros, 9 months) with the following main tasks to be implemented - Review of the state of the art of configurations, design solutions and materials; - Analysis of mission/system requirements and definition of the requirements for the landing gear subsystem; - Perform characterisation tests on possible crushable materials and landing pads (the latter for friction coefficient characterisation) - Establish the design concept of the complete landing gear system including all active (e.g. actuators) and passive (e.g. damping systems) solutions and including provisions for sampling handling and operations in micro-gravity conditions; - Establish a dynamic model for landing simulations, using previous characterisation tests results for correlation, and identify by analysis the worst cases among the landing scenarios; - Define the requirements for the manufacturing and validation of a landing gear demonstrator; - Define the demonstrator verification approach considering all the environmental conditions and the relevant operational approaches.										
Phase 2 (1100 kEuros. - Design the landing g - Breadboard manufac - Design, manufacturir - Manufacturing of the - Execution of the land Deliverables	ear demonstrator on cturing and verification ng and assembly of the breadboard compon	the basis of the required on plan. Establish the landing test setup ents and assembly;	uirements and verification the test procedures; p;	approach establis	hed during phase 1;					
Demonstrator(s), Dyna	amic model and Tec	hnical Notes includ	ing test Reports							
-	3	Target TRL:	5	Application Need/Date:	2016					
Application Mission:	Phootprint		Contract Duration:	24						
S/W Clause: N/A Reference to ESTER										
Consistency with Ha	rmonisation Roadm	ap and conclusion	:							

Robotically-Enhanced Surface Touchdown (REST)							
Programme:	ETP	Reference:	E913-013MM				
Title:	Robotically-Enhanced Surface Touchdow	vn (REST)					
Total Budget:	430						
Objectives							
Develop a prototyp	e of an actively compliant landing gear for l	ow-G environment	t using robotics derived technology				
Description							
implement smarter residual elasticity o lading is achieved. hence compatible w uses linear (or rotat of the impact/settlir induced by samplin order to allow robo absortion of forces	Background: Landing in low-g environments provides for some difficult issues for conventional landing gears but also for opportunity to mplement smarter and more flexible landing gears. Essentially the issues are related to the possibility of rebounding due to the residual elasticity of the landing gear (which is impossible to eliminate completely), and the difficulty of leveling the platform once ading is achieved. The opportunities come from the fact that impact/settling forces and velocities during landing are minimal and nence compatible with the capabilities of electromagnetic actuators. Therefore it is possible to conceive an active landing gear that ises linear (or rotational) DC brushless motors to implement 1) deployment of the landing legs, 2) impedence-controlled absortion of the impact/settling forces and compensation of residual elasticity, 3) re-levelling of the lander platform, 4) rejection of vibration nduced by sampling devices. To note, the use of impedence-control schemes for brushless DC motors is common in robotics in order to allow robotic joints to simulate virtual mechanical properties (i.e mass, damping and elasticity). The use of motor-driven absortion of forces at landing is not new: the PHILAE lander in the ROSETTA mission uses a capstan actuator						
 requirement defi design of prototy 	Programme of work: 1) requirement definition 2) design of prototype 3) manufacturing and assembly 4) test on air bearing table 5) closure						
Deliverables							
 standard project d technical notes, prototype hardward 							

- videos									
Current TRL:	1	Target TRL:	3/4	Application 2015					
Application Mission:	PHOOTPRINT,		Contract Duration:	18					
S/W Clause:	N/A		Reference to ESTER	T-8937					
Consistency with Ha	Consistency with Harmonisation Roadmap and conclusion:								
The activity was not addressed by the 2012 harmonisation exercise on A&R. To be noted the PHOOTPRINT mission at that time was not manifested yet.									

Dovelopment of	rigid conformal ablato	n fon ortuon o bast	flur on lighting		
Programme:	TRP	r for extreme neat	Reference:	T921-004MT	
Title:	Development of a rigi	d conformal ablato	r for extreme heat flux ap	plications	
Total Budget:	400		1	1	
Objectives					
characterised for a		e-entry capsule of sa	nformal ablative heatshiel ample return missions (e., manufactured.		
Description					
graphite felt with a Recent developme flexible felt can lea making the materia therefore lower ma	phenolic resin. nts by NASA have demo ad to a significant improv al more robust to loads ar	nstrated that by rep vement of the mater and deflections; them	henolic ablator and is pro- lacing the rigid graphite f ial performance: Internal nal performance is impro- which might more easily	felt in the manufactur thermo-mechanical s wed leading to lower	ring process by a stresses are reduced required thickness and
Study reports					
Material samples a	nd demonstrator				
Current TRL:	2	Target TRL:	5	Application Need/Date:	2016
Application Mission:	Sample return missior	18	Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8947, T-8142	
Consistency with	Harmonisation Roadm	ap and conclusion	:		
Consistent with D/	TEC technology roadma	p			

Mar Precision Lander

Preliminary desig	gn and performance ve	erification of cri <u>tical</u>	elements for guided en	try thrusters	
Programme:	ETP		Reference:	E918-008MP	
Title:	Preliminary design a	and performance verif	ication of critical elemen	ts for guided entry	thrusters
Total Budget:	800				
Objectives					
Preliminary design	n and performance verif	ication of critical elen	nents for thrustes guided	entry on Mars	
Description					
The NASA Phoen the jets of the Rea interference capab removed from the The activity shall - the preliminary of mission. To this er account the heat fl preliminary tests i accommodation, p - derive the require system. Particular - Prepare (and eve	ction Control System (R ble to reduce the efficien Phoenix EDL architectu focus on 3 sequential as design of a RCS capable nd the contribution of th luxes on the capsule surf f necessary) shall be for performance, flight mech ements for a test campai importance shall be giv ntually modify/upgrade	a aiming at a controlle acCS) and the flow at h cy of the thrusters or a ure in 2005. pects: to control and guide a e RCS to forces and m faces due to the impin eseen. The jet flow in nanics?) implications/a ign (in an aerodynami en to appropriate dupl) the selected facility a	ypersonic and supersoni even produce control rev a reference entry probe o noments in low density f gement of the hot gases. teraction shall be assessed	c conditions sugge ersal. The hyperso of the ESA?s Mars low have to be esti DSMC-CFD calcue ed in view of system rify the performan- ns and accurate mo- ques where to performan-	nic guidance was finally Precision Lander mated taking into alations (and ad-hoc n (propulsion, ce of the designed easurement techniques. ormed the test campaign
Deliverables	<u>r - r</u>				
	T ,	d experimental) data.	Test campaing requirem	ents. Preparation (modification/upgrade) of
Current TRL:	2	Target TRL:	3	Application Need/Date:	2019
Application Mission:	MPL		Contract Duration:	24	
S/W Clause:	N/A		Reference to	T-8101, T-8940, T-8093	
			ESTER	T-8101, T-8940, 7	Г-8093
	Harmonisation Roadr	nap and conclusion:		T-8101, T-8940, T	Г-8093
		nap and conclusion:		T-8101, T-8940, 7	Г-8093
Consistency with		nap and conclusion:		T-8101, T-8940, ′	Г-8093
Consistency with ATD Harmonisati				T-8101, T-8940, ′	Г-8093

Stand Alone 3 Axis European Accelometer Unit						
Programme:	ETP	Reference:	E905-021EC			
Title:	itle: Stand Alone 3 Axis European Accelometer Unit					
Total Budget:	500					
Objectives						
T 1 1 1						

To develop and test an Engineering Model (EM) of a miniaturised 3 Axis European Accelerometer unit based on a European accelerometer detector already being developed and suitable for use on Rovers and EDL missions. The target for the unit would be for PHOOTPRINT, Mars Precision Lander and other future Mars lander missions.

Description

European accelerometer components are currently in development (Colibrys (CH) and ESS (GR)); this activity will result in the availability of a miniaturised stand alone 3 axis unit based on these components. The general characteristics of the unit are expected to be:

< 350g

< 60*60* 60mm

< 2.5 W

28 Volt primary power supply

with both $\pm/-1g$ and $\pm/-20g$ measurement ranges per axis.

The activity will include the preliminary design, breadboarding, detailed design and EM manufacture and test. The tests will include performance and environmental testing (thermal and mechanical).

Deliverables							
Unit EM, data package							
Current TRL:	3	Target TRL:		Application Need/Date:	2017		
Application Mission:	All Mars missions		Contract Duration:	18			
S/W Clause:	IN/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							

Compressive Sensing Technologies for compact LIDAR systems						
Programme:	TRP	Reference:	T916-004MM			
Title:	Compressive Sensing Technologies for con	Compressive Sensing Technologies for compact LIDAR systems				
Total Budget:	Total Budget: 475					
Objectives						
	The objective of this activity is to assess and develop to TRL4, novel technologies for future compact imaging LIDARs based on compressive sensing techniques.					
Description						
planetary spacecraft	sors are currently foreseen to be used in varie or supporting the rendezvous operation betw	veen two spacecraft (wi	th or without cooperative targets).			
Nowadays the major drawback of using traditional Imaging LIDAR sensors is still their high mass (>12Kg for the overall unit) and high power consumption (>80Watts). In addition these sensors, typically single element detectors using large mirror scanners, have limited performances for some of the space applications. For example for the planetary lander application the desired high number of image elements that the system has to scan, on a fixed field of view, to image the target full frame has a strong time constraint due to the dynamics of the landing. Several novel detector array technologies have emerged in Europe in the last years that can lead to the development of more compact Imaging LIDARs systems. However the current state of the art of these detector arrays in Europe is still far away (limited number of detector elements and fill factor) from the development of a fully flash type Imaging LIDAR system (no scanning).						
Recently a novel imaging technique, designated as compressive sensing, has been identified as a possible technique also for ranging applications. Since only a single element detector is required for the measurements (ranging and imaging) based on compressive sensing the current lack of high pixel resolution arrays in Europe could be overcome. In addition the system can be used, in the same application, or as a single element ranging system (like an altimeter) or as 3D imager, depending only on the illumination/imaging modulation technology used and on the implemented operational mode. Imaging LIDARs based on compressive sensing offer more compact systems, as they do not need mechanical scanners, and in addition the signal to noise ratio available for each measurement is much higher than when directly compared with flash type systems, thereby offering longer range/lower power operation than other techniques.						
breadboarded and te elaborated and execu tested in laboratory of	echnologies for a Imaging LIDAR system ba sted. A technology development plan for the tted. The technologies shall be integrated into conditions. As a result of this activity the feas assessed for different space applications.	performance optimizat o a Imaging LIDAR teo	tion of the selected technologies shall be chnology demonstration breadboard and			
Deliverables						
Novel Imaging LID.	AR technologies, Imaging LIDAR breadboar	d, data package				

Current TRL:	2	Target TRL:		Application Need/Date:	2017	
Application Mission:	MPL, MSR		Contract Duration:	18		
S/W Clause:	IN/A		Reference to ESTER	T-7860		
Consistency with Harmonisation Roadmap and conclusion:						

	Entry, Descent and Landing Communications technology assessment					
Programme: TRP Reference:	T906-008ET					

Title:	Entry, Descent and L	anding Communica	tions technology assessme	ent	
Total Budget:	350				
Objectives					
Lander health, posit operations. - To carry out invest antennas on-ground if needed	ion and its tracking dur	ring Entry Descent a output possible with	n (DTE) allowing limited i and Landing and - if neces given radio signals transr hardware.	ssary after landing	- during robotic
Description					
occurred during the It is therefore requir EDL phase. Moreov solution compatible Increasing on-groun has proved to be ext will be applicable to corresponding missi environment, black- A Multiple Frequen- task for a receiver. O C/No to receive spe- The Contractor shal hardware, noting EI -Study different type provide a required E -Evaluate time accur- Investigate other ap The Contractor shal -Addition of apertur Demonstrate how t -Exploit latest capat -Cooperate with Eun High bit-rate interc -Exploitation of soft The contractor shall -Consolidate the reco- -Study ways to impro of the activity with I	critical entry, descent a ed that future missions ver, since the existence with the transmission of d available aperture an remely useful for detec on teentry, descent and ion scenarios and syster out effect, signal dynar cy Shift Keying (MFSI Current investigations i cific MFSK tones is no l investigate the follow DL power limits. es of on-board antennas Earth coverage at all tim racies needed and oscil oproaches for the transr l investigate for such so res and VLBI/interferor o arrive at accuracies li pilities of the radio-astr ropean VLBI Network onnect to central correl tware code developed f investigate the signal n eiver requirements; rove the receiver archit	and landing (EDL) p implement a comm or the visibility of a of information direct d combining different ction and determinate l landing phase on an m requirements; com mics, etc. K) X-band system h ndicate that with a 3 of fulfilled in all circ ing concepts: ?Defines llator performances mission of data (e.g. cenarios the possible meter capabilities, co ike 100m rms, assist onomy community a as external service. llator will need to be for Huygens trajecto reception by a G/S r	tion of the trajectory of Hu ny planet or moon. Initiall nsidering among others the as been implemented by N 35m G/S and the state of t umstances at the ground s ne precise communication ifferent EDL module conf coherent/non-coherent to e ground system solutions ooperating with radio astr ted by experiments, and the ground segment c e adapted for SC tracking. ry determination as applic	erform an investig e of transmitting in nteed, it is mandat lase. cometer (Very Lon aygens when land ly the Contractor s e following system NASA but its deteche art on board tect tation receiver a scenarios RF req figurations and and ones, modulation s : conomy communit ommunity, includ cable.	ation in case of failure. nformation during the ory to investigate a g Baseline Interferometry) ing on Titan. The activity shall analyse the ns aspects e.g. plasma ction is a very demanding chnology, the required uirements for on-board alyse antenna patterns to chemes, etc.) y ing E-VLBI
Deliverables					
	cal technologies with su		most promising one for a rding (proof-of-concept) r		
Current TRL:	2	Target TRL:	3	Application Need/Date:	2018
Application Mission:	INSPIRE, PHOOTPF	RINT, MPL	Contract Duration:	18	
S/W Clause:	N/A Reference to T 9738				
			ESTER	1-0750	
Consistency with H	 Iarmonisation Roadm	ap and conclusion		1-8738	

SFR Robotics and Mechanisms

Mechanisms Techr	Mechanisms Technologies that operate at very low temperatures (Extended test campaign) - CCN					
Programme:	ETP		Reference:	E915-004FP		
Title:	Mechanisms Technolo	ogies that operate at v	ery low temperatures (H	Extended test campai	gn) - CCN	
Total Budget:	350					
Objectives						
	ndertake a more compr der to achieve a higher		paign within the ongoin	g MREP "Cold mech	anisms" activity	
Description						
In the activity, MREP Mechanisms Technologies that operate at very low temperature, the rover locomotion subsystem was identified as one of the main critical mechanism onboard a Mars surface element (Rovers/Lander) that would impose the most challenging requirements in terms of low temperature (benefits from early start-up operations at -80C) and total lifetime (Sample Fetching Rover (SFR) application 21km ground track). Among other parts of the locomotion subsystem, this imposes that the drive mechanism is expected to achieve more than 100 million cycles on the motor, more than 6 million cycles on the planetary gearbox and around 63,000 cycles on the harmonic drive (all intended at output shaft).						
hand, the liquid lubr	ents are far from been a icants (i.e. Braycote) du e to the long lifetime.					
In the course of the activity, during the trade-offs and preliminary testing (i.e. Pin-On-Disc and fretting tests) of the most promising non-space and space mechanisms technologies, several solutions have shown interesting results: - 4 solid lubricants based on MoSx/WC and MoS2+Sb2O3 have preliminary demonstrated an increase in the lifetime by a factor of a 100 versus sputtered MoS2. - 2 liquid lubricants with specific additives have shown similar friction coefficients to Braycote601EF at -80C however they remain more promising since their viscosity at -80C is significantly lower.						
On top of this, it has been estimated that different Harmonic Drive configuration designs could be promising e.g. the type specifically designed for dry lubrication (by maximising synergies with the harmLES project (EU)) with the option of reducing the preload on the teeth (TBC). Also new materials, such as ceramics for the planetary gears or a breakthrough concept based on contactless magnetic transmission were found promising.						
Considering all these promising findings and the limited resources of the initial activity in regards to the testing campaign (i. e. only first ranked solutions, only two components selected from the full drive chain, HD and PG, will be tested) it is believed that there is a need for extending the test campaign. This way will substantiate the final outcome by increasing the reliability of the results and/or by increasing the range potential solutions, including hybrid (according to a consolidated "best practise" approach) and/or even extend to other components of the kinematic chain of a drive meachnisms by covering also, the bearings, hall sensors and motors.						
Collateral effect of a efforts.	an adequate implementa	tion of this extended	test campaign will be th	ne minimisation of the	e cost and design	
Coordination and synergies with other European projects (i.e. harmLES) and ESA activities (Dry lubricated Gearbox) will also be maximised.						
Deliverables						
Technical notes, bre temperatures,	adboards, qualified tech	nnologies that allow r	nechanisms used in Lan	der and Rovers to op	erate at very low	
Current TRL:	3	Target TRL:	5	Application Need/Date:	2015	
Application Mission:	Sample Fetching Rove Inspire	er, Phootprint and	Contract Duration:	12		
S/W Clause:	N/A		Reference to ESTER			
Consistency with H	Iarmonisation Roadma	ap and conclusion:				

MSR

Modelling of the Mars Environment for Future Missions							
Programme:	ETP		Reference:	E904-005EE			
Title:	Modelling of the Mars	Modelling of the Mars Environment for Future Missions					
Total Budget:	400						
Objectives							
To develop user-oriented, integrated tools to analyse aspects of the Mars environment required for mission design, including atmosphere, dust, regolith, and radiation.							
Description							
Various studies have analysed aspects of the Martian environment, including climate data derived from global circulation models, radiation data derived from monte-carlo studies of cosmic ray propagation in the atmosphere and regolith, and various dust investigations. This activity will review the available models, and develop tools around them that allow easier use in engineering. This avoids that the engineer will have to work with complex tools whose subtleties require considerable effort to work with. Requirements will be established for both the underlying physical modelling, and the engineering tools.							
Deliverables							
Engineering tools and	d associated document	ation.					
Current TRL:	3	Target TRL:	37	Application Need/Date:	2017		
Application Mission:	All Mars missions		Contract Duration:	36			
S/W Clause:	N/A		Reference to ESTER				
Consistency with Ha	armonisation Roadma	ap and conclusion:					

	ETP	Reference:	E914-004QI
Title:	Biosealing and Monitor	ing Technologies for a Sample Conta	inment System - Sealing tests and EM design
Total Budget:	1000		
Objectives			
the objective of th	is TDA is to perform additi- ainer accordingly, perform a	onal, already identified, tests on critic	Technologies for a Sample Containment System cal components of the sealing system, adapt the e a design of an EM of the biosealing and
Description			
		nt for MSR is a continuation of a 2.5 system for a MSR mission.	year 1500 kEuro contract completed in June 201
necessary: -Aging of polyme -Further developm -Optimisation of t	ric seals nent of metal energized seal he Nanofoil application for	s, incl. change from internal to extern	al components of the sealing system are al compression, seal mating surface
application -Optimisation of 1 -Update of PRA	nonitoring system	(sealing system performance validati	on) in line with PRA and updated metal seal
application -Optimisation of 1 -Update of PRA -Opening process Some of these tes	s will introduce a design me d therefore will also result in	odification of the container (e.g., stiff	on) in line with PRA and updated metal seal

Updated breadboards for the sealing and for the containment system, design of EM updated PRA, DDVP for QM and FM.						
Current TRL:	3	Target TRL:	4	Application Need/Date:	2017	
Application Mission:	MSR		Contract Duration:	20		
S/W Clause:	N/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

X-Band cryogenic feed prototyping							
Programme:	TRP		Reference:	T912-005GS			
Title:	X-Band cryogenic fee	ed prototyping					
Total Budget:	600						
Objectives							
To design an innovative X-Band cryogenic feed to be installed in the future in the Deep Space antennas. G/T in X-Band will be maximised by an integrated design of the feed (receive and transmit in X band) and the cryo- cooled LNA sub- systems							
Description							
this noise will allow to increase the data transmitted or to reduce the required mass and power on the spacecraft transmitter. X band is presently used for the telemetry of all deep space missions and will still be the preferred frequency band for future Mars exploration missions. The existing feed and LNA systems have been designed separately. Therefore, the feed system is operated at room temperature while the LNA is operated at 12 K. The overall system noise temperature is therefore suboptimal due to the insertion loss of the waveguide connection and passive elements at room temperature. In order to increase the mission data return, it would be extremely beneficial improving the present G/T by more than 1 dB. This will be achieved by reducing the loss of the feed system as possible the passive components of the receiver front end (diplexer, polarizer, waveguides, tracking coupler). The interconnection of the feed and LNA subsystems will be optimised and the cryo-cooler subsystem will be designed to guarantee a maximum availability and redundancy. The same feed is going to be used for the uplink at 20 kW. A proper study will be conducted to minimise the effect of the high power uplink on the cryogenic subsystem.							
Deliverables							
A prototype of X-Ba	nd cryo-feed subsystem	n.					
Current TRL:	2	Target TRL:	4	Application Need/Date:	2016		
Application Mission:	All future missions in	X band	Contract Duration:	24			
S/W Clause:	N/A		Reference to ESTER				
Consistency with H	armonisation Roadma	ap and conclusion:					
No Harmonisation d	No Harmonisation dossier						

Deployable & Inflatable Heatshield & Hypersonic Decelerator Concepts - Phase 1						
Programme:	ramme: TRP Reference: T921-005MT					
Title:	Deployable & Inflatable Heatshield & Hypersonic Decelerator Concepts - Phase 1					
Total Budget:	400					
Objectives						

Objectives

To review the European capabilities in terms of deployable and inflatable heatshield and hypersonic decelerator technologies and to assess the potential which such technologies might bring to enable new mission concepts for Mars exploration. Eventually to initiate development of the main technological elements of the concept identified as most suited for Europe.

Description

Europe has previously invested in early development of inflatable decelerator technology which resulted in a partially successful flight demonstration (IRDT). This technology has strong potential for enabling new Mars mission concepts and is therefore proposed for further investigation.

Very significant effort was spent by NASA in recent years on related technologies (hypersonic inflatable decelerators, mechanically deployable structures, multi-functional carbon fabrics for deployable heatshields, etc.). It is not viable for Europe to embark on similar developments in all of these fields, therefore it is recommend to initiate first a technology assessment to downselect the most

promising concepts for future missions.

The objectives of this activity shall be achieved through the following steps:

- Identify and study different inflatable and deployable heatshield & hypersonic aerodynamic decelerator concepts for atmospheric entry probes, and to assess their potential benefits for potential future Mars exploration missions. In particular, it shall be identified which missions such technologies could enable which are today considered not feasible.

- Review the related technological elements available in Europe, and assess their maturity for a relevant mission application. The required key technologies shall be identified, existing solutions be assessed and any required delta-development be identified. The expected technological limits shall be identified.

- Perform a trade-off on the various concepts considering the expected benefit/interest for future missions and the required development effort and risks.

- At system level the following aspects will have to be considered: Packing, configuration, aerodynamic stability, potential separation strategies.

- The technologies to be specifically assessed shall include high temperature fabrics, deployment and inflation mechanisms and integration of the TPS material.

The heatshields used so far for entry probes of planetary exploration missions are based on a thermal protection system on a rigid structure. The heatshield typically also acts as hypersonic decelerator. While its dimension is typically limited by geometrical constraints, like e.g. the fairing of the launcher, enlarging the hypersonic decelerator would allow to significantly reduce the ballistic coefficient and thereby the loads experienced by the heatshield during the atmospheric entry.

Deployable and inflatable heatshield concepts have therefore moved in the focus of interest in recent years. Such technology might enable future planetary exploration missions which are not feasible today, e.g. increased landed P/L masses or currently unreachable (higher altitude) landing sites on Mars.

Deliverables

Study reports (technological review, mission & application assessment, trade-off)							
Current TRL:	1-2	Target TRL:	3-4	Application Need/Date:	2018		
Application Mission:	Future planetary explo	oration missions	Contract Duration:	18			
S/W Clause:	N/A		Reference to ESTER	T-8079, T-7906, T-7879, T-8142			
Consistency with Harmonisation Roadmap and conclusion:							
Consistent with D/TEC technology roadmap							

Annex 2 (for information only): Update of MREP technology roadmaps

- 1. Phootprint
- 2. Mars Precision Lander and Small, Science Rover
- 3. Inspire
- 4. Mars Sample Return
- 5. Long term technologies

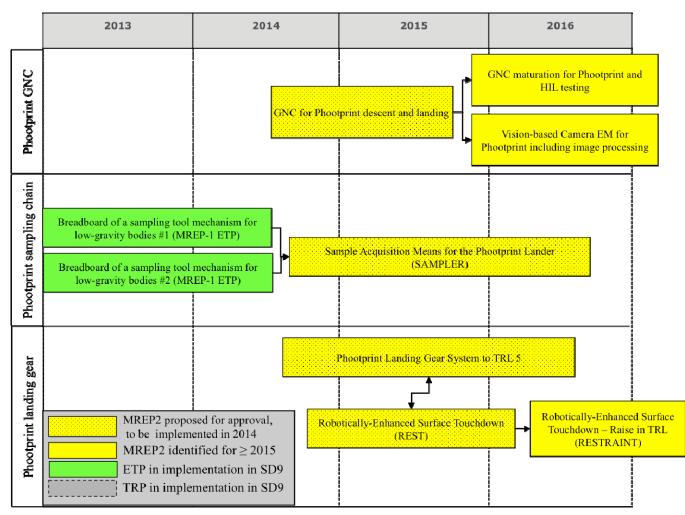


Figure 1: PHOOTPRINT technologies roadmap 1./3

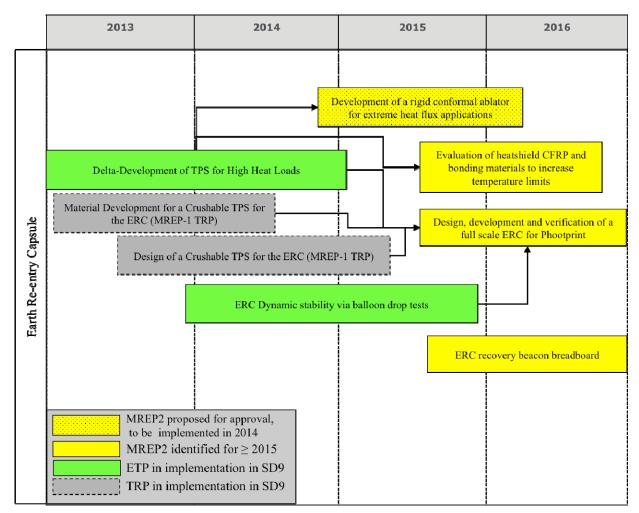


Figure 2: PHOOTPRINT technologies roadmap 2./3

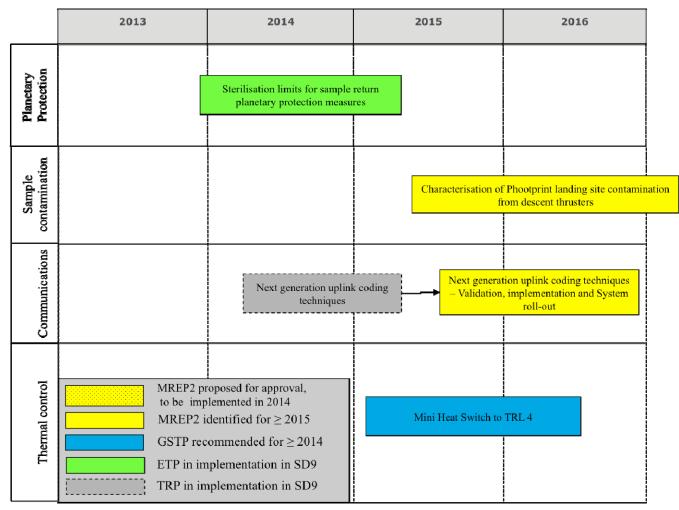


Figure 3: PHOOTPRINT technologies roadmap 3./3

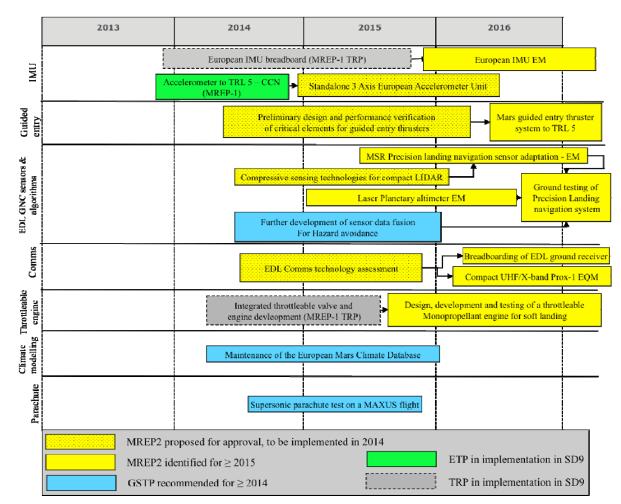


Figure 4: Mars Precision Lander technologies roadmap

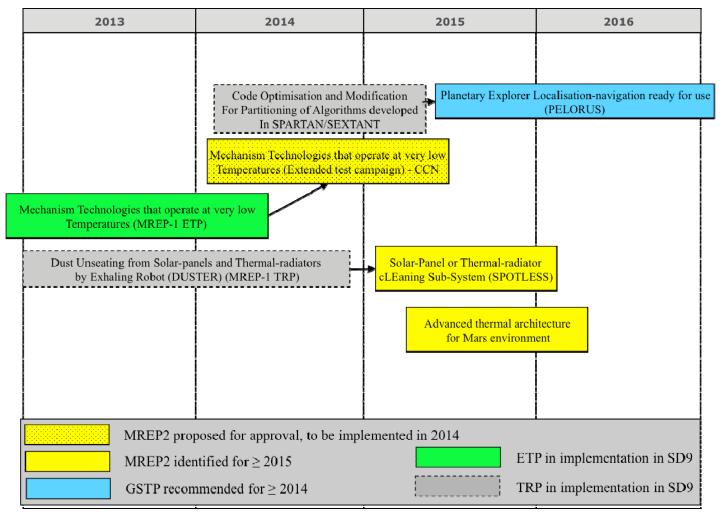


Figure 5: SFR Robotics and Mechanisms technologies roadmap

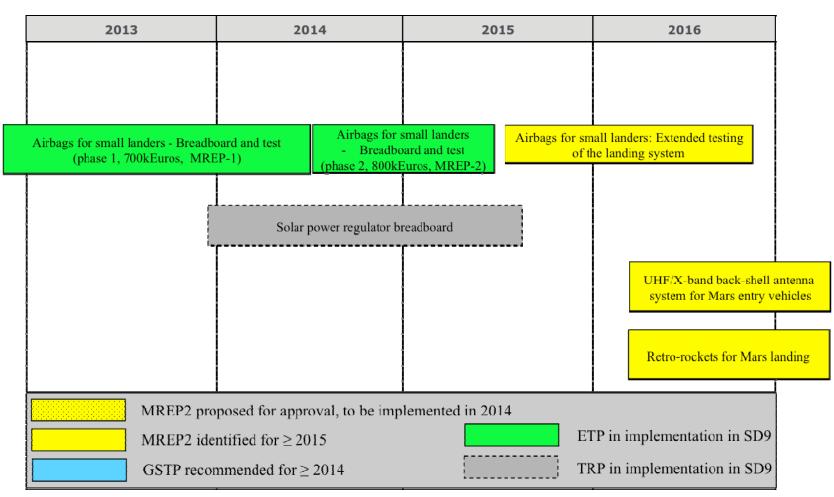


Figure 6: INSPIRE technologies roadmap

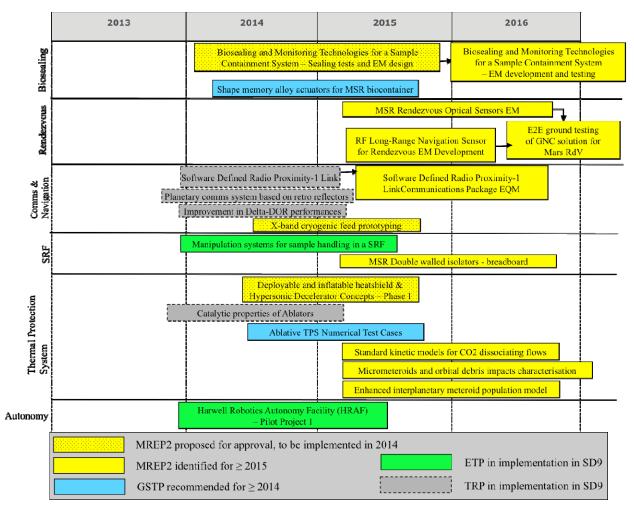


Figure 7: Mars Sample Return technologies roadmap

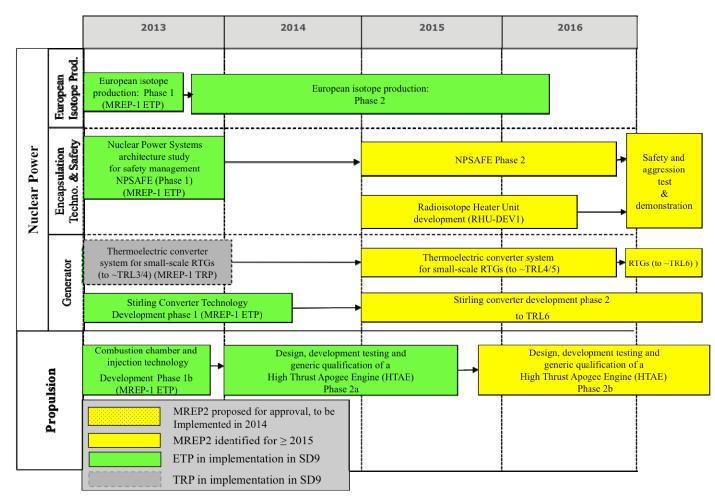


Figure 8: Long term technologies roadmap

Intentionally blank

Annex 3: Summary tables and descriptions of TDAs recommended for GSTP (for information only)

Prog IPC ESA D			A strike Tist.	Budget				DD	CIL	SW Clause	Democile
Prog.	Appr.	ESA Ref.	Activity Title	2013	2014	2015	2016	PP	C'try	applicab.	Remarks
GSTP	N/A	G921-008MT	Mini Heat Switch to TRL 4	0	0	400	0			N/A	
GSTP	N/A	G904-002EE	Maintenance of the European Mars Climate Database	0	300	0	0			N/A	
GSTP	N/A	G905-022EC	Further development of Sensor Data Fusion for Hazard Avoidance	0	700	0	0			N/A	
GSTP	N/A	G918-007MP	Supersonic parachute test on a MAXUS flight	0	500	0	0			N/A	
GSTP	N/A	G913-016MM	Planetary Explorer LOcalisation-navigation Ready for USe (PELORUS)	0	0	2000	0			N/A	
GSTP	N/A	G215-001FP	Shape Memory Alloy actuators for MSR biocontainer sealing - feasibility demonstration	0	200	0	0			N/A	
GSTP	N/A	G921-007MT	Ablative TPS Numerical Test Cases - Mathematical Code Assessment & Improvement	0	300	0	0			N/A	
	Total GSTP			0	2000	2400	0				

Summary table of TDAs recommended for GSTP (for information only)

Detailed descriptions of TDAs recommended for GSTP

Mini Heat Switch to TRL 4						
Programme:	GSTP		Reference:	G921-008MT		
Title:	Mini Heat Switch to T	RL 4				
Total Budget:	400					
Objectives						
	The objective is to develop and qualify a miniaturized heat switch capable of conducting 0.5 to 10W of waste heat to a radiator. The heat switch shall be a passive device, which at a specified temperature, makes a thermal link with a cold sink and reject the excess heat.					
Description						
cold external enviror frame of a TRP. The 50W of waste heat. I switch may be oversi have a mass lower th device is targeted to based on results from environmental testing validation using a rep	Robotic exploration missions that are subject to long diurnal cycles, require the used heat switches to thermally decouple from the cold external environment in order to save energy. A heat switch based on the Loop Heat Pipe technology was developed in the frame of a TRP. The technology is currently baselined for the Exomars Rover. The heat switch LHP was designed to transport 10 to 50W of waste heat. However, when managing small power dissipation coming from RHUs or payloads, a dedicated LHP Heat switch may be oversized and too complex for the application. A miniaturized heat switch TRP activity was initiated with a goal to have a mass lower than 60g and would be installed in series between the radiator and the dissipative unit. The heat transport of the device is targeted to be between 0.5W to 10W. The proposed activity, plans to further enhance the design of the mini heat switch based on results from previous developments activities. A qualification model shall be manufactured in order to perform environmental testing as well as extend life testing. In addition, the testing of the mini heat switch shall include an end to end validation using a representative payload and radiator mounted in a appropriate configuration.					
Deliverables						
Qualification Model	and a full set of design	and test documentation	on			
Current TRL:	4	Target TRL:	6	Application Need/Date:	2016	
Application Mission:	Robotic Exploration Missions Contract Duration: 18					
S/W Clause:	N/A Reference to ESTER T-8839					
Consistency with H	armonisation Roadma	ap and conclusion:				
Consistent with D/T	EC technology roadmap	p				

Maintenance of the	European Mars Clim	ate Database	_		
Programme:	GSTP		Reference:	G904-002EE	
Title:	Maintenance of the European Mars Climate Database				
Total Budget:	300				
Objectives					
To maintain and keep	p up-to-date Martian cli	imate models which h	ave been developed un	der TRP	
Description					
data base of atmosph cover all aspects of n be continually upgrad physical parameteriz of dust lifting and tra with phase two activit	Under TRP comprehensive models of the martian atmopsheric environement have been developed and used to develop a generic data base of atmospheric data, used in EDL. This database is supplemented with additional models at progessively smaller scales to cover all aspects of mission design, including near ground environment (z <20 m). The boundary conditions for these models need to be continually upgraded as data from current Mars missions become available. New data is also used for upgrade and validation of physical parameterizations used in these models. It is anticipated that some of the effort will be devoted to the improved modelling of dust lifting and transport mechanisms, hence giving access to realistic dust spatial variability. The activity will be in two phases, with phase two activities being more tightly defined in the light of progress in phase developments, and new problems and requirements arising in scenario analyses.				
Deliverables					
Upgraded Martian general circulation model and documentation. Upgraded Martian mesoscale/microscale model and documentation. New version of Mars Climate Database (refined dust scenarios) and validation documentation. Technical notes on scenario studies.					
Current TRL:	4	Target TRL:	7	Application Need/Date:	2017
Application Mission:	All Mars missions Contract Duration: 36				
S/W Clause:	N/A		Reference to ESTER		
Consistency with Ha	armonisation Roadma	ap and conclusion:			

)no ano m	ent of Sensor E			G905-022EC	
Programme:	GSTP		Reference:		
Fitle:	700	opment of Sensor Data Fus	sion for Hazard Avoidance	2	
Fotal Budget:	700				
tudies (Astrium S. The activity bring t mplementation of	AS and Spin.Wo he sensor data f the algorithms o	er develop the fusion of sen orks / T905-008EC). usion techniques for hazard on a dedicated processor, al	d avoidance and piloting from a sociated reliance of the second sec	com a TRL 3 to TF ative navigation sc	RL 5 through the
Description	al-time PIL, will	ich will include high-fidelit	ly models of passive and a	cuve sensors.	
boulders, shadowed cameras) with their letection algorithm when available) to fusing sensor data blatform and bench activity) and the ot The logical next sta processor for the H	d areas, slopes.) different charace is that would fus provide accurate at low- or high immarked within the her by SpinWorl ep is to further te DA and relative lts of the two pr elect for both M	ns will be targeting region of The availability of both car cteristics in term of measures se the data from these two se the hazard maps to the flight of level) and scenarios (Mars the frame of activity T905-0 ks (ETP and TRP). est the winning combination e navigation software. The r revious activities, including fars and asteroid missions a e values and identifying dan	meras and active optical se ement type, rate and field- sensor types (and additional control software. Several s and asteroid) are being de 008EC run by two parallel n(s) performance in a PIL main tasks of this follow-u their conclusion on the re t most 2 sets of sensors/al	ensors (scanning L of-view led to the ally from inertial a sets of sensors pain fined, implemente l teams, one lead b simulation test-be up activity shall be elevance of the HD gorithms (specifica	idars, flash Lidar/3-D investigation of hazard nd altimetric sensors rs, fusion algorithm d, simulated on SIL y Astrium SAS (TRP d with a dedicated : DA algorithm to relative ally, the reliability of the
a dedicated process DSP, LEON-FT); making use of ES control software with	sor, and in that c TEC laboratory ill be implement ne simulation, it	dSpace-based test bench, to tail the formation of the test bench, to test on a LEON2 processor, t might be necessary to rest r model:	d relative navigation algor o integrate this processor and high-fidelity models	rithm on the dedica into a PIL simulati of both optical sen	ated processor (e.g. FPC on, where the flight isors shall be used. In
	llation results, to	assess the sensor/algorithm	m simulations in term of a	ccuracy of hazard	detection, accuracy of
Deliverables					
Sensor data fusion	n processor	l associated real-time softw est documentation	/are		
Current TRL:	3	Target TRL:	5	Application Need/Date:	2017
Application Mission:	Mars/asteroid	l landing missions	Contract Duration:	18	
E/W Clause	N/A		Reference to		
S/W Clause:			ESTER		

Supersonic parachute test on a MAXUS flight				
Programme:	GSTP	Reference:	G918-007MP	
Title:	Supersonic parachute test on a MAXUS flight			
Total Budget:	500			
Objectives				

The objective of this activity is to demonstrate the capability to test new supersonic parachute designs in representative conditions for space missions and reduce the reliance on existing non-European parachute systems by using European sounding rockets. Description As already proved feasible by the flight of the CIRA Sounding Hypersonic Atmospheric Re-entering Kapsule (SHARK) on the MAXUS-8 sounding rocket, the present activity shall make use of the spare payload volume, otherwise used for ballast, to perform a low cost flight test of a supersonic parachute on the MAXUS mission in 2015. Also, an initial internal feasibility study showed that there is possible to test a suitable sized parachute (1m diameter) in the available mass and volume constraints given by MAXUS, therefore there is a very good opportunity to develop state-of-the-art technologies for testing supersonic parachutes in Europe. The proposed activity includes: the detailed design of the capsule, parachute and deployment system including instrumentation and avionics the procurement (COTS)/development/manufacture of all items above installation the payload on MAXUS - (launch) post flight analysis The following minimum instrumentation is foreseen to obtain flight data for design: ? Timer to measure events from MAXUS separation (initiation) to touchdown ? Video of the deployment and steady state descent, ? Accelerations and Angular rates of the capsule, ? Axial force during deployment, and ? Pressure sensor(s) Further, since the capsule will be analysed by CFD to assess the wake, heating and the stability for the reference mission, there is also an opportunity to test future mission capsule shape dynamics in relevant conditions Deliverables Reports of detail designs, flight data and post flight analysis. Also flight hardware (all items procured/developed/manufactured under the present activity). Application **Current TRL:** Target TRL: 7 2018 Need/Date: Application MREP **Contract Duration:** 36 Mission: **Reference** to S/W Clause: T-8101, T-8873, T-8940, T-7906 N/A ESTER Consistency with Harmonisation Roadmap and conclusion: ATD Harmonisation 2012

Planetary Explorer LOcalisation-navigation Ready for USe (PELORUS)					
Programme:	GSTP	Reference:	G913-016MM		
Title:	Planetary Explorer LOcalisation-navigation Ready for USe (PELORUS)				
Total Budget:	2000				
Objectives	Objectives				
This activity shall achieve Technology Readiness Level (TRL) 5 for the hardware logic cores of computer vision algorithms (for use by Martian rovers in visual navigation and localisation) that have been developed in the previous SPARTAN/SEXTANT and COMPASS activities.					
Description					

Background:

The "SPAring Robotics Technologies for Autonomous Navigation (SPARTAN)" activity has implemented in logic cores a series of computer vision algorithms necessary to implement navigation systems for planetary probes. Starting from their mainly sequential description, the algorithms have been turned into vectorial and highly-pipelined cores so that they can con work in the latest FPGA devices.

The "Spartan EXTension Activity - Not Tendered (SEXTANT)", in the final stage of development at the time of writing, has been extending the number of algorithms used (to allow robustness) and also it has been implementing a landmark-based global localisation scheme.

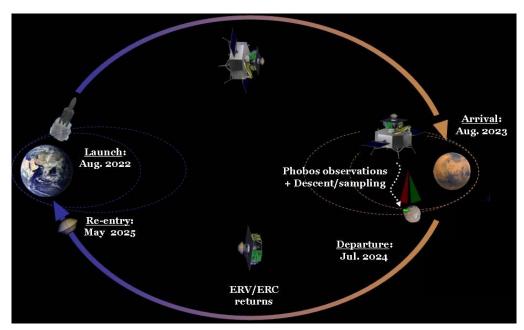
The activity "Code Optimisation and Modification for Partitioning of Algorithms developed in SPARTAN/SEXTANT (COMPASS)", in initiation at the time of writing, will partition the cores and port it from the present single-FPGA implementation (only possible with non qualified US FPGAs) into networks of smaller FPGA devices thus allowing the possibility of using European-

sourced FPGAs.

The timing of conclusion of the sequence of the three activities coincides with the first availability of high-density all-European FPGA (end of 2014). At the end of the three activities the logic cores will be mature for a transition into a hardware/software

The PELORUS activ	tative of a real space m vity will take advantage		onjunction to develop a ha	ardware implementation	on of the cores based		
on the new FPGA.	on the new FPGA.						
Programme of work: 1. Definition of requirements 2. Co-design of the hardware and software 3. Manufacturing Coding and Assembly of the co-design 4. Testing in relevant environment 5. Closure of activity							
Deliverables							
Normal project documentation Jogic cores and supporting software Andware implementation test environment							
Current TRL:	3	Target TRL:	5	Application Need/Date:	2017		
Application Mission:	MSR Contract Duration: 24						
S/W Clause:	N/A Reference to ESTER T-8937						
Consistency with H	armonisation Roadm	ap and conclusion	:				

Shape Memory Allo	y actuators for MSR	biocontainer sealing	- feasibility demonstr	ation	
Programme:	GSTP		Reference:	G215-001FP	
Title:	Shape Memory Alloy	actuators for MSR bio	ocontainer sealing - fea	sibility demonstratior	1
Total Budget:	200				
Objectives					
	ibility of using shape n state-of-the-art sealing		as an actuator to close,	/seal the MSR biocon	tainer structure as an
Description					
BioContainment for I - Required force to lo - Reliability of functi - Tolerance against er - Temperature, presse - Launch environmen - DHMR compatibility B) Literature survey of C) Definition of test set - How to proof functi - Develop analytical j - Pressure test vs. ma D) Design of test set- - Design of SMA claar - Analyse resource re - Design of seal strucc - Design of seals	ock the seal on nvironment and qualifi- ure, EMC, radiation tt ty of candidate SMAs and set up ion procedure to proof tigh terial research (analyse up	cation limit l application example tness slice by e.g. SEM, x ght etc.	S.		
Deliverables	11 1				
Documentation and b	breadboard			Application	
Current TRL:	2	Target TRL:	4	Application Need/Date:	2019
Application Mission:	MSR		Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Ha	armonisation Roadma	ap and conclusion:			


			Assessment & Improven	1	
Programme:	GSTP		Reference:	G921-007MT	
Title:		nerical Test Cases - Ma	athematical Code Assessn	nent & Improveme	ent
Fotal Budget:	300				
Objectives					
			the thickness of ablative int areas to improve the co		shields; to refine and
Description					
used by different literature data wh complemented by	partners to assess the p ich, however, turned o	performance of availab ut to be incomplete and trongly limited the suit	l simplified numerical abl le codes for ablative TPS d in several aspects not co ability of the derived test	sizing. Those test onsistent. Missing	cases were based on data had to be
tailored for the Ea data cannot be ma which in its physi process is not cor of Reference TPS	arth return capsule of s ade openly available du cal composition and p ssidered as candidate for	ample return missions. ue to industrial confide erformance is very sim or relevant flight applic set of plasma tests has	as been developed (TRP- Also for this new materia ntiality aspects. However ilar to ASTERM, but due cations. Within a previous been performed which ar	al, now called AST , a similar materia to its more compl s TRP (Thermal Re	TERM, material and test l exists, called AQ61, icated manufacturing esponse Characterisation
this activity. In or needed. This can charring ablators must be capable o	der to rebuild the num be achieved by the cou with a code for equilib of modelling the test sp	erical test case, an inte pling (exchange by fil prium chemistry calcula pecimen (an axis-symm	vailable, material characte grated solution for charrin es or on the fly evaluation ations. In order to rebuild tetric model), and the chen MONA, ASTERM,).	ng ablators (includ n of properties) of a the plasma test, th	ing thermo-chemistry), is a response code for e thermal response code
? Establish a bool ? Where necessar ? Coupling of a ra ? Model and run t ? Compare the resused codes ? Derive relevant	y the available data sh esponse code for charri he above test cases wi sults with the available uncertainties based on	rical ablation test cases all be complemented b ing ablators with a code th at least three of the a plasma test data, asses	s based on available plasn y relevant additional mate e for equilibrium chemistr ablative TPS sizing codes ss the code/model perforn apolate these uncertaintie ment	erial characterisation ry calculations available in Europenance and identify	on be the weaknesses of the
		ressive steps, starting f ould be an element of a	from a simple test case wh n advanced iteration.	nich is iteratively in	ncreasing in complexity.
Deliverables					
	e definition of a set of a on material characteria	numerical test cases. sation, test case results	and code assessment		
Current TRL:	2	Target TRL:	4	Application Need/Date:	2016
Application Mission:	Sample return mis	sions;	Contract Duration:	20	
S/W Clause:	N/A	N/A Reference to ESTER T-8282, T-8277			
			LOILK		
Consistency with	Harmonisation Roa	dmap and conclusion			

> Annex 4: Summary description of post-ExoMars candidate missions and Mars Sample Return

A4.1 The Phootprint mission

PHOOTPRINT will return a sample from the Mars moon Phobos. It is launched by Ariane 5 (or similar launcher) into direct escape to Mars in 2024. The spacecraft composite is made of three main elements:

- A <u>lander</u> carrying the ERV/ERC, performing the transfer to Mars, the Mars orbit insertion and operations around and on Phobos including landing and sampling
- An <u>Earth Return Vehicle</u> (ERV) performing Mars escape, transfer back to Earth and ERC release few hours before re-entry

> An Earth Re-entry Capsule (ERC) with hard landing on Earth

Figure 9: PHOOTPRINT mission scenario (note that foreseen launch date is now 2024)

The composite will transfer to Mars during 11 months. A number of burns will bring the spacecraft to a 6500 km circular Mars orbit near Phobos, where it will stay for about a year. Throughout this year, Phobos will be characterised and potential landing sites will be identified using its onboard instrumentation. First observations will take place from a remote distance of a few hundreds of km, then closer at to 50 to 100 km. After this characterisation and the selection of a scientifically interesting and technically suitable and safe landing site, the composite will descent towards Phobos and perform a soft landing on its surface.

Eventually, the spacecraft will stay on Phobos for a number of day/night cycles to allow iterations with the ground team to select a sampling spot. The 2-meter robotic arm will deploy a sampling tool to collect 100 gram samples on the chosen spot. If the soil is not appropriate for sampling the robotic arm can be repositioned to another location. As the surface gravity is extremely low (2 to 8 mm/s²), thrusters will be continuously fired to push the lander on the surface and ensure stability when sampling occurs.

After confirmation of a successful sampling procedure, the sample will be transferred to the re-entry capsule and sealed. The ERV/ERC-composite will take-off from Phobos and

transferred into a Mars escape orbit to perform from there the Mars escape manoeuvre and transfer back to Earth. After 8 months return trip the ERC will be released a few hours before Earth arrival and re-enter the atmosphere at 12 km/s.

	Value	Unit
Launch mass	~ 3900	kg
Total Delta V	~ 4500	m's ⁻¹
Mass around Phobos (Lander/ERV/ERC)	~ 1500	kg
Mass returned to Earth (ERC)	~ 30	kg
Re-entry velocity	~12	km's ⁻¹
Earth landing site	Woomera test Rang	je
Mission duration	< 3	year

Table 1: Key mission parameters

A4.2 The Mars Precision Lander (MPL) with Small, Science Rover (SFR) mission

The mission objective is to perform a soft precision landing on Mars with precision of 10 km (3 sigma) and to deliver a ~100kg rover to the Martian surface. The mission is launched by a Soyuz Fregat from Kourou either into a GTO orbit, or into a direct escape followed by an Earth fly-by. The spacecraft composite is made of three main elements:

- A <u>carrier</u> to support the lander during the cruise phase and deliver it to Mars. After release of the lander about 15 minutes before Mars entry, the carrier will break up and burn up in the Martian atmosphere.
- A lander performing the precision entry, descent and landing including hazard avoidance
- A 100 kg class highly-mobile rover for extended-range scientific exploration, which would also demonstrate the fast roving capability required for the MSR (Sample Fetch Rover),

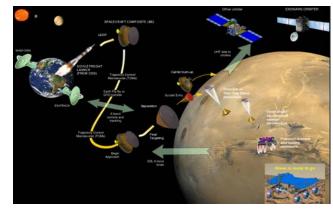


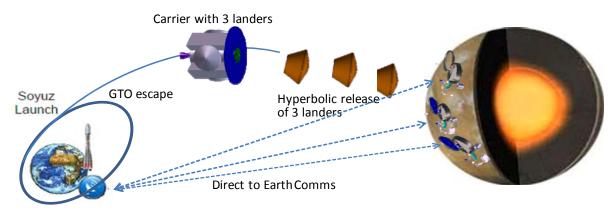
Figure 10: Mars Precision Lander mission scenario

Once safely landed, the rover will start its surface mission for over 180 sols, exploring a landing site normally not accessible without the precision landing capability. The technology to land more precisely on Mars directly offers a substantial increase in the number of available landing sites on the surface that could be targeted by future missions. As an example, without precision landing only 1 out of 12 last candidate landing sites from the MSR and MSL would be accessible. It should be noted that a data relay orbiter is required to support the rover operations.

	Earth Fly-By (EFB) + dropship	GTO + conventional lander	
Launcher capability	1625 kg	3180 kg	
Possible launch dates	November 2025 (or later)	October 2024 or November 2026	
Mars arrival	September 2025 or August 2027		
Delta-v for transfer	No DSM,	1.6 -1.9 m/s	
	70 m/s navigation delta/v		
Total launch mass including	1391 kg	3240 kg	
adapter			
Landing sites	Latitude : -15° to $+30^{\circ}$, Longitude : Any		
	Altitude: <0 km MOLA		

Table 2: Key mission parameters

A4.3 The INSPIRE mission


The INSPIRE mission aims at delivering a network of probes on the surface of Mars to perform simultaneous seismic and meteorological measurements.

Launch and Interplanetary Transfer

The mission concept is based on a Soyuz-Fregat launch from Kourou. Direct escape as well as launching into GTO can be considered for this mission. The GTO launch scenario is however preferred to increase the mass available per probe, which is needed to make the mission as robust as possible (i.e. to allow for implementation of a direct to Earth data link, to increase entry descent and landing margins and to allow for flexible payload deployment by means of a robotic arm). The GTO transfers within the 2022-2026 time frame have the additional benefit that the arrival conditions will be more favourable (i.e. lower arrival velocity and landing further away from the global dust storm season).

Lander release

Tens of days before arrival at Mars, the tracking campaign of the spacecraft will become more intense as preparations take place for the release of the landers. The first probe will be released about 12 days before arrival at Mars followed by further tracking and retargeting manoeuvres to release the second lander a few days later. The last lander can be released minutes before Mars entry. After all probes are released, the carrier will enter the Martian atmosphere and break-up and burn-up.

	Via GTO 2022	Via GTO 2024	Via GTO 2026
Launch	Sep-22	Oct-24	Nov-26
Arrival	Aug-23	Aug-25	Jul-27
Launch performance excl launch margin	3180	3180	3180
GTO Escape Delta-V [m/s]	1691	1539	1409
GTO Escape Mass [kg]	1785	1870	1952
Arrival Solar longitude [Ls]	111	126	139
Carrier propellant mass [kg]	1399	1311	1231

Figure 11:	Proposed	INSPIRE	Mission	Architecture
------------	----------	---------	---------	--------------

384 kg

413 kg

440 kg

Entry, Descent and Landing (EDL)

Maximum mass available per probe [kg]

The probes enter the Martian atmosphere performing a ballistic entry protected by its heatshields. At the appropriate conditions, the supersonic disc-gap-band parachute is opened,

further decelerating the probes. This is followed by a brief retro propulsion phase, a short freefall and finally a semi-soft landing using unvented (bouncy) airbags. Throughout this phase, critical event data is downlinked to Earth. A similar EDL strategy has been proven successfully by Mars Pathfinder (MPF) and Mars Exploration Rover (MER) missions.

Surface operations

After the lander has come to rest, the airbags are jettisoned to allow the clamshell to open and the solar panel will be deployed. The lander proceeds with check-outs and communications direct-to-earth are established. Highresolution, colour panoramic pictures of the landing sites are then taken for relay to earth providing an early opportunity to visualise the immediate surroundings of the lander for operational, scientific and especially public outreach purposes. The following days will see the deployment of the different payloads: the meteorological boom is unfolded and the mole and seismometer will be placed onto the surface by the robotic arm. The mole will start its hammering process to dig itself into the surface whilst making scientific measurements. Once fully deployed, the landers will become long term (goal of > 1 Martian year) seismic and atmospheric monitoring stations taking simultaneous measurements without the need for complex operational planning and cost.

Figure 12: Entry, Descent and Landing chain

A4.4 The Mars Sample Return mission

The summary presented here focuses on the MSR-Orbiter (MSR-O) mission that has been studied by ESA with two industrial teams. The entire MSR reference mission campaign, as resulting from i-Mars report and ESA/NASA joint effort in 2009-2011, is shown and described in the following figure. This reference mission campaign is subject to evolution, since the International Mars Exploration Working Group (IMEWG) has recently decided to re-initiate the work on MSR architecture, by extending the participation new partners such as Roscosmos.

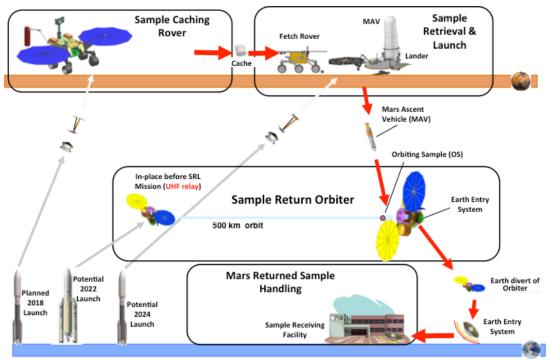


Figure 13: The four elements of the MSR campaign: The caching rover selects the samples and places them in a cache. The sample retrieval and launch mission retrieves later the pre-stored cache with a sample fetch rover, places it in the orbiting sample container, which is launched in low Mars orbit by the Mars Ascent Vehicle. The MSR-O searches, rendezvous and captures the OS, seals it and returns it to the Earth. Finally the Earth Reentry Capsule enters the Earth atmosphere and lands on the surface. Note: All launch dates are now delayed to late 2020s/early 2030s.

The baseline launcher for MSR-O is an Ariane 5, assuming late 2020's or early 2030's as launch dates. Two major injection strategies have been analysed: (1) direct injection to Mars and (2) injection into a high elliptical orbit (HEO) followed by an Earth escape performed by the propulsion module. This second strategy allows for increased mass delivered to Mars at the cost of a large propulsion module and some increased operational risk. Other alternatives, like Earth swing-by or long transfers have been also analysed. In general these lead to higher mass at Mars at the cost of a longer transfer duration. The baseline is focused on short transfers (typically 10 months) to minimise the overall mission lifetime and to provide a solid margin for covering the arrival of the MSR-R element, intended to be launched 2 years after MSR-O.

At Mars the spacecraft performs the Mars Orbit Insertion (MOI), followed by an apocentre lowering manoeuver and jettison of the propulsion module. Aerobraking is used to save

around 1.000 m/s delta-v for further lowering of the orbit apocentre down to parking orbit altitude of around 500 km. In the parking orbit MSR-O waits for the MSR-R descent module arrival to cover its entry, descent and landing on Mars. MSR-O serves also as communication relay for all operating MSR surface elements (lander and MAV, fetching rover) for a duration of 6 months. During this period the sample fetching rover is deployed, transfers to the pre-stored sample cache, returns it back to the lander, where the cache is put into the Orbiting Sample (OS) container, ready to launch with the Mars Ascent Vehicle (MAV). MSR-O follows the MAV launch and in particular the OS release, performs an orbit estimation of the OS, to size end execute the rendezvous manoeuvres up to the final capture of the OS. The rendezvous and capture phase nominally lasts less than 10 days.

The OS is placed inside the bio-container (BC) after capture and sealed according to planetary protection requirements. Once bio-sealed, the BC is transferred into the Earth Reentry Capsule (ERC). The OS handling system is no longer needed and is jettisoned to reduce the Orbiter mass.

MSR-O escapes from Mars to an Earth transfer leg of around 10 months. At Earth arrival the ERC is released for re-entry at ~12 km/s, followed by a hard landing (no parachute is used for reliability reasons) in Utah or Australia. The Mars samples are retrieved and transferred to the Sample Receiving Facility (SRF) for further storage and analysis.

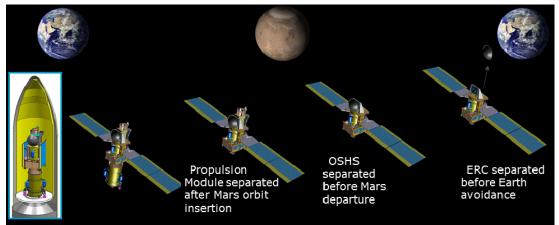


Figure 14: The MSR-O staging strategy is optimised for mass performance

MSR-O design is dominated by the high overall demanded delta-v, driven by the following major manoeuvres for typical typical direct escape scenario:

- Deep space manoeuver (DSM) of ~500 m/s
- Mars orbit insertion (MOI) of ~700 m/s followed by an aerobraking phase
- Mars escape orbit acquisition of ~1200 m/s and a Mars escape of ~1000 m/s

Numerous additional smaller manoeuvres are necessary. In the case of HEO injection additional ~800 m/s are needed for Earth escape.

Annex 5 (for information only):

- 1. List of completed MREP-1 Programme activities
- 2. List of Removed/replaced activities from previous MREP-1 programme workplans
- 3. Summary tables and detailed descriptions of all running, approved or proposed activities from the MREP-1 and MREP-2 Programmes

Completed MREP-1 Programme activities

Duran	IPC	ESA Ref.	A -42-24- TEAL		Bu	dget		РР	Cliferen	SW Clause	Demerika
Prog.	Appr.	ESA Kei.	Activity Title	2013	2014	2015	2016	rr	C'try	applicab.	Remarks
ETP	Y2009	E913-001MM	SPAring Robotics Technologies for Autonomous Navigation (SPARTAN)	0	0	0	0	С	BE	N/A	
ETP	Y2009	E913-002MM	Study of a Sample Fetching Rover for MSR	0	0	0	0	С	UK	N/A	
ETP	Y2009	Е913-002ММ-В	Study of a Sample Fetching Rover for MSR	0	0	0	0	С	IT	N/A	
ETP	Y2011	E913-007MM	Shock Mitigation Operating Only at Touch-down by use of minimalist/dispensable Hardware (SMOOTH)	0	0	0	0	С	IT	N/A	
TRP	Y2008	T305-031EC	Robust Autonomous Aerobraking Strategies	0	0	0	0	С	FR	N/A	
TRP	Y2008	Т305-031ЕС-В	Robust Autonomous Aerobraking Strategies	0	0	0	0	С	FR	N/A	
SI	Y2009	S901-001ED	Extremely low power timer board EM for landers	0	0	0	0	C(1)	DK	N/A	
TRP	Y2009	T319-035MC	Airbags for small landers - Design	0	0	0	0	C(1)	UK	N/A	
TRP	Y2008	T306-044ET	Lander Compact Dual UHF/X-band Frequency Communication Package Study	0	0	0	0	C(2)	UK	N/A	
TRP	Y2008	T314-033MM	Evaluation of Encapsulated Bioburden on Flight Hardware	0	0	0	0	C(2)	DE	N/A	
ETP	Y2009	E903-001EP	European isotope production: Phase 1, samples and testing. (Including safety provisions)	0	0	0	0	C(1)	UK	N/A	
TRP	Y2008	T303-039EP	European Nuclear Isotope Evaluation, Selection and Feasibility Study	0	0	0	0	C(1)	UK	N/A	
TRP	Y2008	Т303-039ЕР-В	European Nuclear Isotope Evaluation, Selection and Feasibility Study	0	0	0	0	C(1)	FR	N/A	
TRP	Y2009	T303-040EP	Nuclear fuel capsule and aeroshell design study	0	0	0	0	C(2)	UK	N/A	
TRP	Y2008	T203-006EP	Stirling Engine Radioisotopic Power System Requirement Study	0	0	0	0	С	UK	N/A	
TRP	Y2008	T304-038EE	Maintenance of Martian Atmospheric circulation models (large scale, mesoscale, upper atmosphere) and continued validation of Martian Climate database	0	0	0	0	DN/C	FR	N/A	
ACP	Y2007	CA10	On-Line Reconfiguration Control System and Avionics Technologies (ORCSAT)	0	0	0	0	С	UK	N/A	
ACP	Y2007	CE60	Validation of Aerothermodynamics Experimental and Computational Tools for the Support of Future Mars	0	0	0	0	С	BE	N/A	

Prog.	IPC	ESA Ref.	Activity Title		Bue	lget		РР	C'try	SW Clause	Remarks
110g.	Appr.	ESA KEI.	Activity The	2013	2014	2015	2016		Cuy	applicab.	Keinai KS
			Missions								
ACP	Y2007	CG10	GNC Maturation and Validation for Rendezvous in Elliptical Orbit (GNCOMAT)	0	0	0	0	DN	РО	N/A	
ACP		CG20	Automated Orbit Determination Techniques for Rendezvous (AODER)	0	0	0	0	C(R)	РО	N/A	
ACP		CG40	Worst Case & Safety Analysis Tools for Autonomous Rendezvous System	0	0	0	0	С	ES	N/A	
ACP	Y2007	CG60	Virtual Spacecraft Image Generator Tool	0	0	0	0	DN	UK	N/A	
ACP	Y2007	CK10	Bioburden and biodiversity evaluation in spacecraft facilities and lifetime test of rapid spore assay	0	0	0	0	С	DE	N/A	
ACP	Y2007	CK20	Extension of Dry Heat Sterilisation Process to High Temperature	0	0	0	0	С	DE	N/A	
ACP	Y2007	CK30	Development of a Complementary Low Temperature Sterilisation Method	0	0	0	0	С	UK	N/A	
ACP	Y2007	CK50	Definition of Functional Requirements for a MSR Biological Containment Facility	0	0	0	0	С	СН	N/A	
ACP	Y2007	CR10	Mars Surface Sample Transfer / Manipulation	0	0	0	0	C	UK	N/A	
				0	0	0	0			•	

Removed/replaced activities from previous MREP workplans

Dues	IPC	ECA D-6	Activity Title		Buc	lget		DD	("try	SW Clause	Remarks
Prog.	Appr.	ESA Ref.	Activity The	2013	2014	2015	2016	PP	Ciry	applicab.	Kemarks
MSR											
ETP	Y2010		Compact dual UHF/X-band Proximity-1 Communication EM	0	0	0	0			N/A	Budget of 700k in 2010. Replaced by new E906-009ET Compact Dual UHF/X-band Proximity-1 Communications Package EQM, 2500k for 2016.
ETP	Y2011		Compact dual UHF/X-band Proximity-1 Communication EM – Phase 2	0	0	0	0			N/A	Budget of 800k in 2011. Replaced by new E906-009ET Compact Dual UHF/X-band Proximity-1 Communications Package

											EQM, 2500k for 2016.
ETP	N/A	E914-006MM	Micro remote manipulation systems for MSR Sample Receiving Facility	400	0	0	0		Ν	√A	Replaced by new E913-010MM Manipulation systems for sample handling in a Sample Receiving Facility, 1000k for 2013.
Long to	erm						-	•			
ETP	Y2009	E903-007EP	Thermoelectric converter system for small-scale RTGs (to ~TRL4/5)	0	0	0	0		Ν	√A	Budget of 700k in 2009. Replaced by E903-007FP Small-scale RTG development to TRL 5, 1000k for 2015.
ETP	N/A	E903-004EP	Encapsulation further development to TRL 5.	1200	0	0	0		N	J∕A	Replaced by E903-004FP Nuclear Power Systems architecture study for safety management and fuel encapsulation NPSAFE (phase 2), 1000k for 2015.

All running, approved and proposed activities from MREP-1 and MREP-2

Phootprint

Deve e	IPC	ESA Ref.	A -42-24- T241-		Buc	dget		РР	C!!	SW Clause	Democks
Prog.	Appr.	ESA Kei.	Activity Title	2013	2014	2015	2016	PP	C'try	applicab.	Remarks
ETP (MREP1)	Y2011	E915-003MS	Breadboard of a sampling tool mechanism for low- gravity bodies	0	0	0	0	С	IT	N/A	Approved 2012 for 750kEuros. First phase of 450 kEuros, running activity with Selex-Galileo (IT). StrIn (95kEuro) to Finland.
ETP (MREP1)	Y2011	E915-003MS-B	Breadboard of a sampling tool mechanism for low- gravity bodies	0	0	0	0	С	ES	N/A	Approved 2012 for 750kEuros. First phase of 450 kEuros, running activity with AVS (ES).
ETP (MREP2)	IPC	E913-012MM	Sample Acquisition Means for the Phootprint Lander: Experiments and first Realisation (SAMPLER)	0	1500	0	0	С		N/A	Intended phased contract (Phase 1, 700kEuros)
ETP (MREP2)	N/A	E905-017EC	Guidance, Navigation, and Control (GNC) for PHOOTPRINT descent and landing	0	400	0	0	C(R)	РО	N/A	
ETP (MREP2)	N/A	E905-018EC	Guidance, navigation and control (GNC) maturation for PHOOTPRINT and hardware in the loop (HIL) testing	0	0	600	0			N/A	
ETP (MREP2)	N/A	E905-020EC	Vision-based navigation camera EM for PHOOTPRINT including image processing	0	0	1000	0			N/A	
ETP (MREP2)	IPC	E920-005MS	Phootprint Landing Gear System to TRL5 (PLanGS)	0	1500	0	0	C(2)		N/A	Intended phased contract (Phase 1, 400kEuros)
ETP (MREP2)	N/A	E913-013MM	Robotically-Enhanced Surface Touchdown (REST)	0	430	0	0	C(1)		N/A	
ETP (MREP2)	N/A	E913-014MM	Robotically-Enhanced Surface Touchdown - RAise In TRL (RESTRAINT)	0	0	0	800			N/A	
TRP	Y2013	T906-001ET	Next generation uplink coding techniques	450	0	0	0	С		N/A	
ETP (MREP2)	N/A	E906-006ET	Next generation uplink coding techniques - Validation, Implementation and System Roll-Out	0	0	800	0			N/A	
ETP (MREP2)	Y2013	E914-001QI	Sterilisation limits for sample return planetary protection measures	300	1000	0	0	C(1)		N/A	
ETP (MREP2)	N/A	E918-005MP	Characterisation of Phootprint landing site contamination from descent thrusters	0	0	500	0			N/A	
TRP	N/A	T924-004MT	Evaluation of heatshield CFRP and bonding materials to	0	0	400	0			N/A	

Drog	IPC	ESA Ref.	A stivity Title		Bu	dget		РР	Cltury	SW Clause	Remarks
Prog.	Appr.	ESA Kel.	Activity Title	2013	2014	2015	2016		C'try	applicab.	Kemarks
			increased temperature limits								
TRP	N/A	T921-004MT	Development of a rigid conformal ablator for extreme heat flux applications	0	400	0	0	DN/S	FR	N/A	
ETP (MREP2)	Y2013	E918-003MP	ERC dynamic stability via balloon drop tests	1000	0	0	0	С		N/A	
ETP (MREP2)	N/A	E906-011FP	ERC RF recovery beacon breadboard	0	0	400	0			N/A	
ETP (MREP2)	N/A	E920-004MS	Design, development and verification of a full scale Earth Return Capsule for Phootprint	0	0	1800	0			N/A	
GSTP	N/A	G921-008MT	Mini Heat Switch to TRL 4	0	0	400	0			N/A	
		1750	5230	5900	800						

Mars Precision Lander

Deres	IPC	ESA Ref.	A -41-14- Title		Bu	dget		РР	C'try	SW Clause	Remarks
Prog.	Appr.	ESA Kei.	Activity Title	2013	2014	2015	2016		Cury	applicab.	Kemarks
TRP	Y2011	T904-001EE	Extension and validation of Mars atmospheric and dust environment models	0	0	0	0	DN/C	FR	N/A	Approved 2011 for 150kEuros. Running activity with LMD (FR).
GSTP	N/A	G904-002EE	Maintenance of the European Mars Climate Database	0	300	0	0			N/A	Proposed to GSTP
ETP (MREP1)	Y2009	E905-006EC	End to end Optimisation and GNC design for High Precision Landing on Mars	0	0	0	0	С	FR	N/A	Approved 2009 for 500keuros. Running activity with Astrium (FR)
TRP	Y2011	T905-014EC	European IMU breadboard	800	0	0	0	С		N/A	Approved 2011 for 800kEuros. Contract intended with Astrium (FR).
ETP (MREP2)	N/A	E905-015EC	European IMU EM	0	0	2000	0			N/A	
ETP (MREP1)	Y2011	E905-016EC	Accelerometer component to TRL5	0	0	0	0	С	СН	N/A	Approved 2011 for 700kEuros. Running activity with Colibrys (CH).
ETP (MREP1)	Y2012	E905-017FT	Accelerometer to TRL5 - CCN	300	0	0	0	DN/C	СН	N/A	Contract intended with Colibrys (CH)
ETP (MREP2)	IPC	E905-021EC	Stand Alone 3 Axis European Accelerometer Unit	0	500	0	0	C(1)		N/A	

Drog	IPC	ESA Ref.	Activity Title		Bu	dget		РР	C'try	SW Clause	Remarks
Prog.	Appr.	ESA Kei.	Activity The	2013	2014	2015	2016		Ciry	applicab.	Kemarks
ETP (MREP1)	Y2009	E905-007EC	Camera-aided Mars Landing and Rendezvous navigation system	0	0	0	0	С	FR	N/A	Approved 2009 for 350kEuros. Running activity with Astrium SAS (FR)
ETP (MREP1)	Y2009	Е905-007ЕС-В	Camera-aided Mars Landing and Rendezvous navigation system	0	0	0	0	С	IT	N/A	Approved 2009 for 350kEuros.Running activity with TAS (IT)
TRP	Y2010	T905-008EC	Sensor Data Fusion for Hazard Mapping and Piloting	0	0	0	0	С	FR	N/A	Approved 2010 for 200kEuros. Running activity with Astrium (FR).
ETP (MREP1)	Y2010	E905-008EC	Sensor Data Fusion for Hazard Mapping and Piloting	200	0	0	0	С	РТ	N/A	Approved 2010 for 200kEuros. Running activity with Spinworks (PT).
GSTP	N/A	G905-022EC	Further development of Sensor Data Fusion for Hazard Avoidance	0	700	0	0			N/A	Proposed to GSTP
ETP (MREP2)	N/A	E916-003MM	MSR Precision landing navigation sensor adaptation - Engineering Model	0	0	1000	0			N/A	
ETP (MREP2)	N/A	E905-019EC	Laser Planetary Altimeter Engineering Model	0	0	1500	0			N/A	
TRP	N/A	T916-004MM	Compressive Sensing Technologies for compact LIDAR systems	0	475	0	0			N/A	
ETP (MREP2)	N/A	E905-009EC	Ground Testing of Precision Landing navigation system	0	0	500	0			N/A	
ETP (MREP2)	Y2011	E915-001MS	Lowering system Breadboard for Mars landers	0	0	500	0	С		N/A	Approved 2011 for 500kEuros. Postponed to 2015.
GSTP	N/A	G918-007MP	Supersonic parachute test on a MAXUS flight	0	500	0	0			N/A	Proposed to GSTP
TRP	N/A	T906-008ET	Entry, Descent and Landing Communications technology assessment	0	350	0	0			N/A	
ETP (MREP2)	N/A	E906-009ET	Compact Dual UHF/X-band Proximity-1 Communications Package EQM	0	0	0	2500			N/A	
ETP (MREP2)	N/A	E906-010GS	Breadboarding of EDL Ground Receiver	0	0	0	300			N/A	
ETP (MREP2)	IPC	E918-008MP	Preliminary design and performance verification of critical elements for guided entry thrusters	0	800	0	0	С		N/A	
ETP (MREP2)	N/A	E918-009MP	Mars guided entry thruster system to TRL5	0	0	0	1000			N/A	
TRP	Y2011	T919-001MP	Integrated throttleable valve and engine development for Mars landings	0	650	0	0	С		N/A	

Prog.	IPC Appr.	ESA Ref.	Activity Title	2013		lget 2015	2016	РР	C'try	SW Clause applicab.	Remarks
ETP (MREP2)	N/A	E919-003MP	Design, development and testing of a throttleable monopropellant engine for soft landing	0	0	0	4000			N/A	
			Total MPL	1300	4275	5500	7800				

SFR, Robotics and Mechanisms

Prog.	IPC Appr.	ESA Ref.	Activity Title	2013		lget 2015	2016	РР	C'try	SW Clause applicab.	Remarks
TRP	Y2007	T309-002HS	Innovative Rover Operations Concepts- Autonomous Planning (IRONCAP)	0	0	0	0	С	DE	Operational Software	Approved 2007 for 400kEuros. Running activity with Vega (DE).
ETP (MREP1)	Y2011	E913-005MM	Spartan EXTension Activity - Not Tendered (SEXTANT)	0	0	0	0	DN/C	ES	N/A	Approved 2011 for 180kEuros. Running activity with GMV (ES).
TRP	Y2013	T913-011MM	Code Optimisation and Modification for Partitioning of Algorithms developed in SPARTAN/SEXTANT (COMPASS)	200	0	0	0	DN/S	ES	N/A	
GSTP	N/A	G913-016MM	Planetary Explorer LOcalisation-navigation Ready for USe (PELORUS)	0	0	2000	0			N/A	Proposed to GSTP
TRP	Y2010	T913-003MM	DExtrous LIghtweight Arm for exploratioN (DELIAN)	0	0	0	0	С	СН	N/A	Approved 2010 for 800kEuros. Running activity with Selex-Galileo (IT).
TRP	Y2010	T913-004MM	Surface-Wheel Interaction modelling for Faster Traverse (SWIFT)	0	0	0	0	C(1)	СН	N/A	Approved in 2010 for 400kEuros. Running activity with RUAG (CH).
ETP (MREP1)	Y2011	E913-006MM	EXperimental Production of data/Evidence on Rover Tractive performance In Soils relevant for Exploration (EXPERTISE)	0	0	0	0	С	СН	N/A	Approved 2011 for 300kEuros. Running activity with RUAG (CH)
TRP	Y2011	T913-008MM	Dust Unseating from Solar-panels and Thermal-radiators by Exhaling Robot (DUSTER)	450	0	0	0	C(1)	UK	N/A	Approved 2011 for 450kEuros. Running with MagnaParva (UK).
TRP	Y2011	Т913-008ММ-В	Dust Unseating from Solar-panels and Thermal-radiators by Exhaling Robot (DUSTER)	450	0	0	0	C(1)	GR	N/A	Approved 2011 for 450kEuros. Running activity with HTR (GR).
ETP (MREP2)	N/A	E913-015MM	Solar-Panel Or Thermal-radiator cLEaning Sub System (SPOTLESS)	0	0	1400	0			N/A	
ETP (MREP1)	Y2010	E915-002MS	Mechanisms technologies that operate at very low temperatures	0	0	0	0	С	IT	N/A	Approved 2010 for 475kEuros. Running activity with Tecnomare (IT).

Prog.	IPC	ESA Ref.	Activity Title			dget	1.	PP	C'try	SW Clause	Remarks
0	Appr.			2013	2014	2015	2016		,	applicab.	
ETP (MREP2)	IPC	E915-004FP	Mechanisms Technologies that operate at very low temperatures (Extended test campaign) - CCN	0	350	0	0	DN/C	IT, AT		This activity will be implemented as a CCN to ESTEC contract # 4000105947/12/NL/HB, budget 475 k€
ETP (MREP2)	N/A	E921-006MT	Advanced Thermal Architecture for Mars Environment	0	0	1000	0			N/A	
TRP	Y2011	T924-002QT	High specific stiffness metallic materials	0	0	0	0	C(3)	AT		Approved 2011 for 500kEuros. Co- funded by STRIN (165k). Running activity with AAC (AT)
ETP (MREP2)	Y2013	E901-003ED	Miniaturized Integrated Avionics for planetary landers	500	1000	0	0	C(2)		N/A	
		Total SF	R Robotics and Mechanisms	1600	1350	4400	0				

INSPIRE

Drog	IPC	ESA Ref.	A ativity Titla		Buc	lget		РР	C'try	SW Clause	Remarks
Prog.	Appr.	LSA Kei.	Activity Title	2013	2014	2015	2016		Cury	applicab.	Kemarks
TRP	Y2010	T921-001QE	Adaptation of Aerogel Materials for thermal insulation	0	0	0	0	C(1)	РТ	N/A	Approved 2010 for 300k. Running activity with AST (PT).
ETP (MREP1)	Y2009	E901-001ED	Extremely low power timer board EM for landers	0	0	0	0	C(1)	AT	N/A	Approved 2009 for 300kEuros. Running activity with RUAG (AT). 235kEuros funded by STRIN.
ACP	Y2012	A923-001FI	Extremely low power timer board EM for landers - CCN	280	0	0	0	DN/C	AT	N/A	Approved 2012 for 280kEuros. Running activity with RUAG (AT).
ETP (MREP1)	Y2009	E901-002ED	Tailored On-Board Computer EM for planetary landers	0	0	0	0	С	SE	Operational Software	Approved 2009 for 700kEuros. Running activity with RUAG (SE).
TRP	Y2009	T918-001MP	Subsonic Parachute Trade-Off and Testing	0	0	0	0	C(2)	UK	N/A	Approved 2009 for 500kEuros. Running activity with Vorticity (UK).
ETP (MREP1 +MREP2)	Y2012	E918-001MP	Subsonic parachute trade-off and testing - CCN	350	0	0	0	DN/C	UK	N/A	Approved 2012 for 350kEuros. Phase 1 (130k) funded by MREP-1, Phase 2 to be funded by MREP-2. Running activity with Vorticity (UK).
ETP	Y2009	E905-002EC	EDLS GNC Optimisation and Technology Specification	0	0	0	0	C(1)	FR	N/A	Approved 2009 for 250 kEuros. Running

Prog.	IPC	ESA Ref.	Activity Title		Buc	lget		РР	C'try	SW Clause	Remarks
110g.	Appr.	ESA KI.	Advity flict	2013	2014	2015	2016		Cuy	applicab.	Keinar K5
(MREP1)			for small Mars landers								with Astrium SAS (FR).
TRP	Y2009	T905-003EC	Assessment and breadboarding of a planetary Altimeter	0	0	0	0	C(1)	РТ	N/A	Budget of 1471kEuros. Initial approval of 900 kEuro in 2011 + 571k CCN in 2012. Running activity with EFACEC (PT)
ETP (MREP2)	N/A	E905-005EC	Ground Testing of the EDLS Navigation Chain for small Mars landers	0	0	500	0			N/A	
ETP (MREP2)	N/A	E919-001MP	Retro Rockets for Mars landing	0	0	0	4000			N/A	
ETP (MREP1 +MREP2)	Y2010	E920-001MS	Airbags for small landers - Breadboard and Test	0	0	0	0	С	IT	N/A	Approved 2010 for 1500kEuros. Only Phase 1 (700k) contracted so far with Aerosekur (IT).
ETP (MREP2)	N/A	E920-003MS	Airbags for Small Landers: Extended testing of the landing system with a large variety of impact parameters	0	0	1500	0			N/A	
TRP	Y2013	T903-012EP	Solar Power Regulator Breadboard for Mars Surface Missions	300	0	0	0	С		N/A	
TRP	Y2011	T903-014EP	Characterisation of space and terrestrial cells for future Mars lander/rover missions	0	0	0	0	C(1)	DE	N/A	Approved 2011 for 200kEuros. Running activity with Azur Space (DE).
ETP (MREP1)	Y2009	E903-013EP	Development of a low temperature Lithium ion battery and survivability tests	0	0	0	0	C(1)	UK	N/A	Approved 2009 for 450kEuros. Running activity with ABSL (UK).
TRP	Y2010	T911-001GR	Simulation tool for breakup/burnup analysis of Mars orbiters	0	0	0	0	С	DE	Operational Software	Approved 2010 for 300kEuros. Running activity with HTG (DE).
ETP (MREP1)	N/A	E906-003FI	SPEX (Spectro-Polarimeter for Planetary Exploration) Characterization Program	220	0	0	0	DN/S	NL	N/A	Contracted as Special Measure to NL. Running activity with SRON (NL).
ETP (MREP2)	N/A	E907-007EE	UHF/X-band back-shell antenna system for Mars entry vehicles	0	0	0	800			N/A	
			Total INSPIRE	1150	0	2000	4800				

MSR

Prog. Appr. ESA Kei. Activity The 2013 2014 2015 2016	Prog.	PC ES	SA Ref.	Activity Title	Budget	2016	РР	C'try	SW Clause applicab.	Kemarks
---	-------	-------	---------	----------------	--------	------	----	-------	------------------------	---------

Duran	IPC	ESA Ref.	A -42-24- TEA-		Bu	dget		РР	C'try	SW Clause	Democrite
Prog.	Appr.	ESA Kei.	Activity Title	2013	2014	2015	2016	rr	Ciry	applicab.	Remarks
ETP (MREP1)	Y2009	E914-001MM	MSR biocontainment system sealing and monitoring technologies - development and validation	0	0	0	0	C(2)	IT	N/A	Approved 2009 for 1500kEuros. Completed activity with SelexGalileo (IT).
ETP (MREP2)	IPC	E914-004QI	Biosealing and Monitoring Technologies for a Sample Containment System - Sealing tests and EM design	0	1000	0	0	DN/C	IT	N/A	
ETP (MREP2)	N/A	E914-005QI	Biosealing and Monitoring Technologies for a Sample Containment System - EM development and testing	0	0	2000	0			N/A	
GSTP	N/A	G215-001FP	Shape Memory Alloy actuators for MSR biocontainer sealing - feasibility demonstration	0	200	0	0			N/A	Proposed to GSTP
TRP	Y2011	T914-005MM	MSR Double walled isolators - feasibility concept study	200	0	0	0	С	UK	N/A	Approved 2011 for 200kEuros. Running activity with SEA (UK).
ETP (MREP2)	N/A	E914-005MM	MSR Double walled isolators - breadboard	0	0	800	0			N/A	
ETP (MREP2)	Y2013	E913-010MM	Manipulation systems for sample handling in a Sample Receiving Facility	300	700	0	0	C(1)		N/A	
ETP (MREP1)	Y2009	E905-010EC	Integrated GNC solution for Autonomous Mars Rendezvous and Capture	0	0	0	0	С	ES	N/A	Approved 2010 for 750kEuros. Running activity with GMV (ES).
ACP	Y2007	CG80	RF Long Range Navigation Sensor Breadboard	0	0	0	0	С	ES	N/A	Approved 2007 for 300k. Running activity with TAS (ES).
ETP (MREP1)	Y2007	E906-004ET	RF Long Range Navigation Sensor Breadboard	300	0	0	0	С	ES	N/A	Approved 2007 for 300kEuros. Running activity with EMXYS (ES)
ETP (MREP2)	N/A	E906-005ET	RF Long-Range Navigation Sensor EM Development	0	0	1000	0			N/A	
ETP (MREP2)	N/A	E905-012EC	End to end ground testing of GNC solution for Autonomous Mars Rendezvous and Capture	0	0	800	0			N/A	
ACP	Y2007	CG50	Sample Canister Capture Mechanism Design and Breadboard	0	0	0	0	С	IT	N/A	Approved 2007 for 350kEuros. Running activity with Carlo Gavazzi Space (IT)
ETP (MREP1)	Y2011	E915-005MS	Sample canister capture mechanism parabolic flight test	0	0	0	0	DN/C	IT	N/A	Approved 2011 for 150kEuros. Running activity with CGS (IT).
TRP	Y2013	T912-001GS	Improvement of Delta DOR performances for 1 nrad accuracy for precise landing support	250	0	0	0	С		N/A	
TRP	Y2013	T916-003MM	Planetary communication system based on modulated retro-reflection	300	0	0	0	С		N/A	

D	IPC	EGA D.C			Bu	dget		РР	CIL	SW Clause	
Prog.	Appr.	ESA Ref.	Activity Title	2013	2014	2015	2016	PP	C'try	applicab.	Remarks
TRP	N/A	T904-003EE	Enhanced interplanetary meteoroid population model	0	0	300	0			N/A	
ETP (MREP2)	N/A	E904-004FP	Micro Meteorids and Orbital Debris (MMOD) impacts characterisation and protection for the MSR Earth Re- entry Capsule (ERC)	0	0	700	0			N/A	
ETP (MREP2)	Y2011	E905-001EC	Aerobraking Flight Representative Demonstrator	0	0	350	0	С		N/A	Postponed to 2015
TRP	Y2010	T319-036MC	Design of a crushable TPS for the ERC	370	0	0	0	С	FR	N/A	Approved 2010 for 370kEuros. Running activity with MECANO (FR).
TRP	Y2010	T920-002QT	Material development for a crushable TPS for the ERC	250	0	0	0	С	UK	N/A	Approved 2010 for 350kEuros. Running activity with Magna Parva (UK).
ETP (MREP1)	Y2010	E921-002PA	Delta-development of TPS for high heat loads	0	0	0	0	С	FR	N/A	Approved 2010 for 1000kEuros. Implemented at 700k with Astrium ST (FR)
ETP (MREP1)	Y2011	E921-003PA	Adaptation of TPS materials of High-density for High Heat load (AT3H) re-entry applications	300	0	0	0	С	FR	N/A	Approved 2011 for 300kEuros. Running activity with Safran (FR).
GSTP	N/A	G921-007MT	Ablative TPS Numerical Test Cases - Mathematical Code Assessment & Improvement	0	300	0	0			N/A	Proposed to GSTP
TRP	N/A	T921-005MT	Deployable & Inflatable Heatshield & Hypersonic Decelerator Concepts - Phase 1	0	400	0	0	С		N/A	
TRP	N/A	T918-006MP	Standard kinetic models for CO2 dissociating flows	0	0	500	0			N/A	
TRP	Y2013	T918-004MP	Catalytic properties of Ablators	500	0	0	0	С		N/A	
TRP	Y2013	T906-002ET	Software Defined Radio Proximity-1 Link Communications Package design Study	300	0	0	0	С		N/A	
ETP (MREP2)	N/A	E906-007ET	Software Defined Radio Proximity-1 Link Communications Package design EQM	0	0	0	2500			N/A	
TRP	IPC	T912-005GS	X-Band cryogenic feed prototyping	0	600	0	0	C(1)		N/A	
ETP (MREP2)	N/A	E904-005EE	Modelling of the Mars Environment for Future Missions	0	400	0	0	C(2)		N/A	
ETP (MREP2)	Y2013	E908-001FP	Harwell Robotics Autonomy Facility (HRAF) - Pilot project 1	1200	0	0	0	DN/C	UK	N/A	
			Total MSR	4270	3600	6450	2500				

Long term enabling technologies

D	IPC				Buc	lget		РР	CIL	SW Clause	Describe
Prog.	Appr.	ESA Ref.	Activity Title	2013	2014	2015	2016	PP	C'try	applicab.	Remarks
ETP (MREP2)	Y2013	E903-015EP	European Isotope Production Phase 2	2000	0	0	0	DN/C	UK	N/A	Contract intended with NNL (UK)
ETP (MREP1)	Y2010	E903-003EP	Nuclear Power Systems architecture study for safety management and fuel encapsulation prototype development.	0	0	0	0	C(2)	FR	N/A	Approved 2010 for 1000kEuros. Running activity with AREVA (F).
ETP (MREP2)	N/A	E903-004FP	Nuclear Power Systems architecture study for safety management and fuel encapsulation NPSAFE (phase 2)	0	0	1000	0			N/A	
ETP (MREP2)	N/A	E903-020FP	Radioisotope Heater Unit development (RHU-DEV1)	0	0	1000	0			N/A	
ETP (MREP2)	N/A	E903-005EP	Safety and aggression tests & demonstrations	0	0	0	2000			N/A	
TRP	Y2009	T903-006EP	Thermoelectric converter system for small-scale RTGs (to ~TRL3/4)	0	0	0	0	С	UK	N/A	Approved 2009 for 550kEuros. Running activity with Univ. Leicester (UK). Parallel contract to T903-006EP-B.
TRP	Y2009	Т903-006ЕР-В	Thermoelectric converter system for small-scale RTGs (to ~TRL3/4)	0	0	0	0	С	FR	N/A	Approved 2009 for 550kEuros. CCN of 110kEuros in 2012. Running activity with Areva (F).
ETP (MREP2)	N/A	E903-007FP	Small-scale RTG development to TRL 5	0	0	1000	0			N/A	
ETP (MREP2)	N/A	E903-008EP	Thermoelectric converter system for small-scale RTGs (to ~TRL6)	0	0	0	3000			N/A	
ETP (MREP1)	Y2009	E903-009EP	Stirling Converter Technology Development phase 1	0	0	0	0	С	UK	N/A	Approved 2009 for 2000kEuros. Running activity with SEA (UK).
ETP (MREP2)	N/A	E903-010EP	Stirling converter development phase 2 to TRL6	0	0	0	3300			N/A	
ETP (MREP1)	Y2009	E919-011EP	Combustion chamber and injection technology development	0	0	0	0	С	UK	N/A	Approved 2009 for 2000kEuros. Running activity with MOOG-ISP(UK). Under Strategic Initiative to Ireland and UK (ETP 640kEuros).
ETP (MREP2)	Y2013	E919-012MP	Design, development testing and generic qualification of a High Thrust Apogee Engine (HTAE)	2000	0	2300	0	DN/C		N/A	Phase 2a (2000kEuros) proposed for 2013, Phase 2b (2300kEuros) intended

D	IPC				Bu	dget	PP		CIL	SW Clause	D. I.
Prog.	Appr.	ESA Ref.	Activity Title	2013	2014	2015	2016	PP	C'try	applicab.	Remarks
										for 2015	
	Total Long Term			4000	0	5300	8300				

Phootprint

Breadboard of a sampling Programme: ETP Title: Breadb Total Budget: 750 Objectives Design Modeling, Breadboa asteroids' surfaces which are sample return) Description In future exploration mission but also cm-sized stones) an proposed, such as a rotating proposed in the new Marcof For the exploration mission R can be assumed as the req There is no single sampling proving the ability of the sar Phase 1 of this activity shall 1) refinement of the requirer 2) trade-off of possible samp 3) dynamic modelling of soi Phobos/Deimos) to perform 4) detailed design of the best 5) breadboarding of the best 5) breadboarding of the test simulants with various soil pundertaken in adequate envir Phase 2 of this activity shall 1) Parabolic flight testing 2) Additional modifications The proposed technology de - the amount of collected sar the type of sample that can - the resulting forces and tor - the most suitable interfaces The not tor foreseen to perform 1. It is not foreseen to perform 2. It is not foreseen to perform 3. Additional modifications	dboard of a samp parding and valie re targets of futu ons (e.g. of a Ma and return them to g corer (as basel oPolo-R science n candidate Phol quirements are a g technology for ampler to collec Il consist of: ement specificat npling concepts oil-sampler inter n sensitivity ana set performing sa st performing sa steroids is poorly properties (in to vironmental con Il consist of: as to the breadbo development sha ample as a funct	npling tool mechanis lidation of a sampling ture science and expl Mars moon or a near- n to Earth for further elined in the previou e mission proposal fo obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in E2 s and preliminary des eraction (considering nalyses to different sc sampler and definitic sampler and producti- tly known so a labora terms of compressive inditions.	Reference: sm for low-gravity bodi g tool in order to reduce loration mission candid ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) return, a sampler iden terms of mass and type s that has undergone a return, a sampler iden terms of mass and type s that has undergone a return, a sampler iden terms of the two best can g micro-g level and con pil physical characteris on of test campaign/equ on of test campaign/equ on of test equipment atory (ground) testing c e strength, density, gra	e the risk related to the lates (Phobos/Deimos s nned to collect tens of Several sampling tool nt study) or counter-ro tical to the one that wil of soil to be collected. rigorous engineering as is the purpose of the st hdidate sampling system posite soil expected for tics lipment	sample return, asteroid grams of regolith (dust ls (samplers) have been otating brushes (as ll be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
Title: Breadt Total Budget: 750 Objectives Design Modeling, Breadboa asteroids' surfaces which are sample return) Description In future exploration mission but also cm-sized stones) an proposed, such as a rotating proposed in the new Marcof For the exploration mission R can be assumed as the req There is no single sampling proving the ability of the sar Phase 1 of this activity shall 1) refinement of the requiret 2) trade-off of possible samp 3) dynamic modelling of soi Phobos/Deimos) to perform 4) detailed design of the best 5) breadboarding of the best 5) breadboarding of the testing 21 Additional modifications The nature of the soil on aste simulants with various soil pundertaken in adequate envi Phase 2 of this activity shall 1) Parabolic flight testing 2) Additional modifications The proposed technology de the amount of collected sar the type of sample that can the soil of cross-contami Note. 1. It is not foreseen to perfor Deliverables	parding and valid re targets of futu- ons (e.g. of a M- und return them to g corer (as basel)Polo-R science n candidate Pholo equirements are a g technology for ampler to collec 11 consist of: ement specificat npling concepts oil-sampler inter n sensitivity ana est performing sa st performing sa st performing sa steroids is poorly properties (in to vironmental con 11 consist of: as to the breadbo development sha ample as a funct	lidation of a sampling ture science and expl Mars moon or a near- n to Earth for further elined in the previou- e mission proposal fo obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in E2 s and preliminary des eraction (considering nalyses to different sc sampler and definition sampler and definition sampler and production rly known so a labora terms of compressive and if required nall allow assessing: ction of soil propertion lly collected,	g tool in order to reduc loration mission candid Earth asteroid) it is pla ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) return, a sampler iden terms of mass and type s that has undergone a r visaged situation. This SA CDF studies, sign of the two best can g micro-g level and con bil physical characteris on of test campaign/equ on of test equipment atory (ground) testing c	e the risk related to the lates (Phobos/Deimos s nned to collect tens of Several sampling tool nt study) or counter-ro tical to the one that wil of soil to be collected. rigorous engineering as is the purpose of the su ndidate sampling system posite soil expected for tics hipment	sample return, asteroid grams of regolith (dust ls (samplers) have been otating brushes (as ll be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
Total Budget: 750 Objectives	parding and valid re targets of futu- ons (e.g. of a M- und return them to g corer (as basel)Polo-R science n candidate Pholo equirements are a g technology for ampler to collec 11 consist of: ement specificat npling concepts oil-sampler inter n sensitivity ana est performing sa st performing sa st performing sa steroids is poorly properties (in to vironmental con 11 consist of: as to the breadbo development sha ample as a funct	lidation of a sampling ture science and expl Mars moon or a near- n to Earth for further elined in the previou- e mission proposal fo obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in E2 s and preliminary des eraction (considering nalyses to different sc sampler and definition sampler and definition sampler and production rly known so a labora terms of compressive and if required nall allow assessing: ction of soil propertion lly collected,	g tool in order to reduc loration mission candid Earth asteroid) it is pla ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) return, a sampler iden terms of mass and type s that has undergone a i visaged situation. This SA CDF studies, sign of the two best can g micro-g level and con bil physical characteris on of test campaign/equ on of test equipment atory (ground) testing c	e the risk related to the lates (Phobos/Deimos s nned to collect tens of Several sampling tool nt study) or counter-ro tical to the one that wil of soil to be collected. igorous engineering as is the purpose of the st hdidate sampling system posite soil expected for tics lipment	sample return, asteroid grams of regolith (dust ls (samplers) have been otating brushes (as ll be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
Dbjectives Design Modeling, Breadboa asteroids' surfaces which are sample return) Description n future exploration mission out also cm-sized stones) an proposed, such as a rotating proposed in the new MarcoF for the exploration mission R can be assumed as the req Fhere is no single sampling proving the ability of the sart Phase 1 of this activity shall (1) refinement of the requirer 2) trade-off of possible samp 3) dynamic modelling of soi Phobos/Deimos) to perform 4) detailed design of the best 5) breadboarding of the best 5) ground testing Fhe nature of the soil on astr simulants with various soil p indertaken in adequate envi Phase 2 of this activity shall (1) Parabolic flight testing 2) Additional modifications Fhe proposed technology de the amount of collected san the type of sample that can the resulting forces and tor the most suitable interface the extent of cross-contami Note. L. It is not foreseen to perfor constraints/interfaces associ- Deliverables	re targets of futu ons (e.g. of a Mi and return them to g corer (as basel oPolo-R science n candidate Phol quirements are a g technology for ampler to collec II consist of: ement specificat npling concepts oil-sampler inter n sensitivity ana est performing sa steroids is poorly properties (in to vironmental con II consist of: as to the breadbo development sha ample as a funct	Mars moon or a near- to Earth for further elined in the previous memory of the previous emission proposal for obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in E2 s and preliminary des eraction (considering nalyses to different sc sampler and definition sampler and production ty known so a labora terms of compressive inditions.	Earth asteroid) it is pla ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) e return, a sampler iden terms of mass and type s that has undergone a t visaged situation. This SA CDF studies, sign of the two best can g micro-g level and con oil physical characteris on of test campaign/equ on of test equipment atory (ground) testing c e strength, density, gra	lates (Phobos/Deimos s nned to collect tens of Several sampling tool nt study) or counter-ro tical to the one that wil of soil to be collected. igorous engineering as is the purpose of the su ndidate sampling system posite soil expected for tics hipment	sample return, asteroid grams of regolith (dust ls (samplers) have been otating brushes (as ll be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
asteroids' surfaces which are sample return) Description in future exploration mission out also cm-sized stones) an proposed, such as a rotating proposed in the new MarcoF For the exploration mission R can be assumed as the req There is no single sampling proving the ability of the sar Phase 1 of this activity shall () refinement of the requirer () trade-off of possible samp 3) dynamic modelling of soi Phobos/Deimos) to perform 4) detailed design of the best 5) breadboarding of the best 5) breadboarding of the best 5) ground testing The nature of the soil on aste simulants with various soil p undertaken in adequate envi Phase 2 of this activity shall () Parabolic flight testing 2) Additional modifications The proposed technology de the amount of collected san the type of sample that can the tresulting forces and tor the most suitable interface the extent of cross-contami Note. 1. It is not foreseen to perfor constraints/interfaces associa	re targets of futu ons (e.g. of a Mi and return them to g corer (as basel oPolo-R science n candidate Phol quirements are a g technology for ampler to collec II consist of: ement specificat npling concepts oil-sampler inter n sensitivity ana est performing sa steroids is poorly properties (in to vironmental con II consist of: as to the breadbo development sha ample as a funct	Mars moon or a near- to Earth for further elined in the previous memory of the previous emission proposal for obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in E2 s and preliminary des eraction (considering nalyses to different sc sampler and definition sampler and production ty known so a labora terms of compressive inditions.	Earth asteroid) it is pla ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) e return, a sampler iden terms of mass and type s that has undergone a t visaged situation. This SA CDF studies, sign of the two best can g micro-g level and con oil physical characteris on of test campaign/equ on of test equipment atory (ground) testing c e strength, density, gra	lates (Phobos/Deimos s nned to collect tens of Several sampling tool nt study) or counter-ro tical to the one that wil of soil to be collected. igorous engineering as is the purpose of the su ndidate sampling system posite soil expected for tics hipment	sample return, asteroid grams of regolith (dust ls (samplers) have been otating brushes (as ll be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
In future exploration mission but also cm-sized stones) an proposed, such as a rotating proposed in the new Marcof For the exploration mission R can be assumed as the req There is no single sampling proving the ability of the sar Phase 1 of this activity shall 1) refinement of the requirer 2) trade-off of possible samp 3) dynamic modelling of soi Phobos/Deimos) to perform 4) detailed design of the best 5) breadboarding of the best 5) breadboarding of the best 5) breadboarding of the soil on aste simulants with various soil p indertaken in adequate envi Phase 2 of this activity shall 1) Parabolic flight testing 2) Additional modifications The proposed technology de the amount of collected san the type of sample that can the type of sample that can the tore suitable interface the extent of cross-contami Note. 1. It is not foreseen to perfor constraints/interfaces associ Deliverables	and return them to g corer (as basel oPolo-R science in candidate Phol quirements are a g technology for ampler to collec II consist of: ement specificat npling concepts oil-sampler inter in sensitivity ana est performing sa steroids is poorly properties (in to vironmental con II consist of: as to the breadbo development sha ample as a funct	n to Earth for further elined in the previous re mission proposal for obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in Ex s and preliminary des eraction (considering nalyses to different sc sampler and definition sampler and definition sampler and production rly known so a labora terms of compressive anditions.	ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) return, a sampler iden terms of mass and type s that has undergone a r visaged situation. This SA CDF studies, sign of the two best can g micro-g level and con bil physical characteris on of test campaign/equ on of test equipment atory (ground) testing c	Several sampling tool nt study) or counter-ro tical to the one that will of soil to be collected. igorous engineering as is the purpose of the su addidate sampling system posite soil expected for tics hipment	is (samplers) have been otating brushes (as II be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
but also cm-sized stones) an proposed, such as a rotating proposed in the new MarcoF For the exploration mission of R can be assumed as the req Free is no single sampling proving the ability of the sar Phase 1 of this activity shall 1) refinement of the requirer 2) trade-off of possible samp 3) dynamic modelling of soi Phobos/Deimos) to perform 4) detailed design of the best 5) breadboarding of the best 5) breadboarding of the best 5) produce the soil on asta simulants with various soil p undertaken in adequate envi Phase 2 of this activity shall 1) Parabolic flight testing 2) Additional modifications The proposed technology de the amount of collected san the type of sample that can the type of sample that can the tresulting forces and tor the most suitable interface the axtent of cross-contami Note. 1. It is not foreseen to perfor constraints/interfaces associa	and return them to g corer (as basel oPolo-R science in candidate Phol quirements are a g technology for ampler to collec II consist of: ement specificat npling concepts oil-sampler inter in sensitivity ana est performing sa steroids is poorly properties (in to vironmental con II consist of: as to the breadbo development sha ample as a funct	n to Earth for further elined in the previous re mission proposal for obos/Deimos sample e almost identical in t or low-gravity bodies ext material in any en ations produced in Ex s and preliminary des eraction (considering nalyses to different sc sampler and definition sampler and definition sampler and production rly known so a labora terms of compressive anditions.	ground-based analysis. s Marco Polo assessme or Cosmic-Vision M3) return, a sampler iden terms of mass and type s that has undergone a r visaged situation. This SA CDF studies, sign of the two best can g micro-g level and con bil physical characteris on of test campaign/equ on of test equipment atory (ground) testing c	Several sampling tool nt study) or counter-ro tical to the one that will of soil to be collected. igorous engineering as is the purpose of the su addidate sampling system posite soil expected for tics hipment	is (samplers) have been otating brushes (as II be used in MarcoPole ssessment, aiming at ubject activity. ms or Asteroid/
constraints/interfaces associa Deliverables	orques induced of e with the transf nination in case	sfer system, e of multiple samplir	-	nd containment system.	. but the
		strongry be taken in	to account when produ	chig the design of the s	sampning toor itsen.
	cation file. tests	s results			
			4/5	Application	TDI 51 0014
Current TRL: 2		Target TRL:	4/5	Need/Date:	TRL 5 by 2014
Application Mission: Phootp	tprint		Contract Duratio	n: 21	
S/W Clause: N/A			Reference to ESTER		
Consistency with Harmoni					
	nisation Roadm	map and conclusion	1:		

Breadboard of a sam	mpling tool mechanism for low-gravity bo	dies						
Programme:	ETP	Reference:	E915-003MS-B					
Title:	Breadboard of a sampling tool mechanism for low-gravity bodies							

asteroids' surfaces whice sample return) Description In future exploration mi but also cm-sized stone proposed, such as a rota proposed in the new Ma For the exploration mis R can be assumed as the There is no single samp proving the ability of th Phase 1 of this activity 1) refinement of the req 2) trade-off of possible 3) dynamic modelling of Phobos/Deimos) to perf 4) detailed design of the 5) breadboarding of the 6) ground testing The nature of the soil or simulants with various sundertaken in adequate Phase 2 of this activity 1) Parabolic flight testin 2) Additional modificat	ch are targets of futur issions (e.g. of a Mar es) and return them to ating corer (as baselin arcoPolo-R science n ssion candidate Phobo the requirements are al pling technology for 1 the sampler to collect to shall consist of: quirement specification sampling concepts and of soil-sampler intera- form sensitivity analy- te best performing same to asteroids is poorly soil properties (in ter- te environmental condi- shall consist of: ng	re science and explo- rest science and explo- rest more a near-Ep D Earth for further g ned in the previous nission proposal for os/Deimos sample r lmost identical in te low-gravity bodies to material in any env ons produced in ES nd preliminary desi iction (considering i yses to different soi mpler and definition npler and productio known so a laborat rms of compressive itions.	return, a sampler identica rms of mass and type of that has undergone a rigo isaged situation. This is t A CDF studies, ign of the two best candid micro-g level and compo il physical characteristics n of test campaign/equipt	s (Phobos/Deimos d to collect tens of veral sampling too study) or counter-r- l to the one that wi soil to be collected rous engineering a he purpose of the s late sampling syste site soil expected f nent paign which cover	f grams of regolith (dust ols (samplers) have been otating brushes (as ill be used in MarcoPolo 1. assessment, aiming at subject activity. ems for Asteroid/				
asteroids' surfaces whice sample return) Description In future exploration mi- proposed, such as a rota proposed, such as a rota proposed in the new Ma For the exploration mis R can be assumed as the There is no single samp proving the ability of the Phase 1 of this activity 1) refinement of the req 2) trade-off of possible 3) dynamic modelling of Phobos/Deimos) to perf 4) detailed design of the 5) breadboarding of the 5) pround testing The nature of the soil or simulants with various and indertaken in adequate Phase 2 of this activity 1) Parabolic flight testin 2) Additional modificat	ch are targets of futur issions (e.g. of a Mar es) and return them to ating corer (as baselin arcoPolo-R science n ssion candidate Phobo the requirements are al pling technology for 1 the sampler to collect to shall consist of: quirement specification sampling concepts and of soil-sampler intera- form sensitivity analy- te best performing same to asteroids is poorly soil properties (in ter- te environmental condi- shall consist of: ng	re science and explo- rest science and explo- rest more a near-Ep D Earth for further g ned in the previous nission proposal for os/Deimos sample r lmost identical in te low-gravity bodies to material in any env ons produced in ES nd preliminary desi iction (considering i yses to different soi mpler and definition npler and productio known so a laborat rms of compressive itions.	Carth asteroid) it is planne Carth asteroid) it is planne round-based analysis. Se Marco Polo assessment s r Cosmic-Vision M3). return, a sampler identica erms of mass and type of that has undergone a rigo isaged situation. This is t A CDF studies, ign of the two best candid micro-g level and compo il physical characteristics n of test campaign/equipt n of test equipment	s (Phobos/Deimos d to collect tens of veral sampling too study) or counter-r- l to the one that wi soil to be collected rous engineering a he purpose of the s late sampling syste site soil expected f nent paign which cover	f grams of regolith (dust ols (samplers) have been otating brushes (as ill be used in MarcoPolo 1. assessment, aiming at subject activity. ems for Asteroid/				
In future exploration mi but also cm-sized stone proposed, such as a rota proposed in the new Ma For the exploration mis R can be assumed as the There is no single samp proving the ability of th Phase 1 of this activity 1) refinement of the req 2) trade-off of possible 3) dynamic modelling of Phobos/Deimos) to perf 4) detailed design of the 5) breadboarding of the 6) ground testing The nature of the soil or simulants with various undertaken in adequate Phase 2 of this activity 1) Parabolic flight testin 2) Additional modificat	es) and return them to ating corer (as baselin arcoPolo-R science n ssion candidate Phobe le requirements are al pling technology for 1 he sampler to collect shall consist of: quirement specification sampling concepts an of soil-sampler intera form sensitivity analy le best performing sam be asteroids is poorly soil properties (in ter e environmental condi- shall consist of: ng	Dearth for further g ned in the previous nission proposal for os/Deimos sample r Imost identical in te low-gravity bodies material in any env ons produced in ES nd preliminary desi totion (considering r yses to different soi mpler and definition npler and productio known so a laborat rms of compressive itions.	round-based analysis. Se Marco Polo assessment s r Cosmic-Vision M3). return, a sampler identica rms of mass and type of that has undergone a rigo isaged situation. This is t A CDF studies, ign of the two best candio micro-g level and compo il physical characteristics n of test campaign/equipt n of test equipment	veral sampling too study) or counter-r l to the one that wi soil to be collected rous engineering a he purpose of the s late sampling syste site soil expected f nent paign which cover	ols (samplers) have been otating brushes (as ill be used in MarcoPolo 1. assessment, aiming at subject activity. ems for Asteroid/				
but also cm-sized stone proposed, such as a rota proposed in the new Ma For the exploration mis R can be assumed as the There is no single samp proving the ability of the Phase 1 of this activity if 1) refinement of the req 2) trade-off of possible 3) dynamic modelling of Phobos/Deimos) to perf 4) detailed design of the 5) preadboarding of the 5) ground testing The nature of the soil of simulants with various and andertaken in adequate Phase 2 of this activity 1) Parabolic flight testin 2) Additional modificat	es) and return them to ating corer (as baselin arcoPolo-R science n ssion candidate Phobe le requirements are al pling technology for 1 he sampler to collect shall consist of: quirement specification sampling concepts an of soil-sampler intera form sensitivity analy le best performing sam be asteroids is poorly soil properties (in ter e environmental condi- shall consist of: ng	Dearth for further g ned in the previous nission proposal for os/Deimos sample r Imost identical in te low-gravity bodies material in any env ons produced in ES nd preliminary desi totion (considering r yses to different soi mpler and definition npler and productio known so a laborat rms of compressive itions.	round-based analysis. Se Marco Polo assessment s r Cosmic-Vision M3). return, a sampler identica rms of mass and type of that has undergone a rigo isaged situation. This is t A CDF studies, ign of the two best candio micro-g level and compo il physical characteristics n of test campaign/equipt n of test equipment	veral sampling too study) or counter-r l to the one that wi soil to be collected rous engineering a he purpose of the s late sampling syste site soil expected f nent paign which cover	ols (samplers) have been otating brushes (as ill be used in MarcoPolo 1. assessment, aiming at subject activity. ems for Asteroid/				
 refinement of the req trade-off of possible dynamic modelling of Phobos/Deimos) to perf detailed design of the breadboarding of the ground testing The nature of the soil or simulants with various and undertaken in adequate Phase 2 of this activity Parabolic flight testing Additional modificat 	quirement specification sampling concepts and of soil-sampler intera- form sensitivity analy- te best performing same best performing same on asteroids is poorly soil properties (in ter- te environmental condi- shall consist of: ng	nd preliminary desi action (considering i yses to different soi mpler and definition npler and productio known so a laborat rms of compressive itions.	ign of the two best candid micro-g level and compo il physical characteristics n of test campaign/equipt n of test equipment ory (ground) testing cam	site soil expected f nent paign which cover	for Asteroid/				
simulants with various s indertaken in adequate Phase 2 of this activity 1) Parabolic flight testin 2) Additional modificat	soil properties (in ter e environmental condi shall consist of: ng	rms of compressive itions.							
 Parabolic flight testin Additional modificat 	Phase 2 of this activity shall consist of: 1) Parabolic flight testing 2) Additional modifications to the breadboard if required								
Ph		iu ii requireu							
The proposed technolog - the amount of collecte - the type of sample tha - the resulting forces an - the most suitable inter - the extent of cross-cor	at can be realistically nd torques induced on rface with the transfer	on of soil properties collected, n the spacecraft, rr system,							
			ding of the transfer and o account when producin						
Deliverables			_						
Breadboard, Design jus	stification file, tests re	esults							
Current TRL: 2		Target TRL:	4/5	Application Need/Date:	TRL 5 by 2014				
Application Mission:	Moon of mars sample return Contract Duration		Contract Duration:	21					
S/W Clause: N	J/A		Reference to ESTER						
Consistency with Harr	monisation Roadma	ap and conclusion:	:						

 Sample Acquisition Means for the Phootprint Lander: Experiments and first Realisation (SAMPLER)

 Programme:
 ETP
 Reference:
 E913-012MM

 Title:
 Sample Acquisition Means for the Phootprint Lander: Experiments and first Realisation (SAMPLER)
 Total Budget:
 1500

 Objectives
 The activity addresses the robotic sampling operation of the PHOOTPRINT mission. The activity shall 1) experimentally assess the detailed requirements of the sampling operation 2) specify, 3) design, 4) develop and 5) test (in relevant environment) a breadboard of the operation.

Description

Background:

Sampling operations in low-gravity (as on Phobos) for extended time (as in the case of PHOOTPRINT) are poorly understood. The dynamic motion induced by the sampling operation (to be expected in a non-homogeneous material) couples with the dynamic properties of the lander, its legs and even thrust or anchoring mechanism. For the total system to remain stable and for the sampling tool to effectively sample the surface, the total dynamic motion must be damped significantly. Possible provisions for damping dynamics can be realised on the sampling-tool, on the arm and on the lander. However these provide different performance and imply different costs. Experiments on the whole sampling operation are needed to ascertain the need/extent/implementation of damping provisions in the sampling chain (arm and sampling tool).

Programme of work: The programme of work is divided in two phases that deliver products and results with incremental TRL. The first phase intends to increase the understanding of the dynamic behavior of the sampling chain by delivering a simulator, validated through tests.

In the second phase the focus shifts into the development of high fidelity breadboard of the complete sampling chain and its demonstration trough test.

- Phase 1

i. Requirements specification

ii. Design of a number of sampling-tools as well as sampling strategies. Realisation of breadboards of the chosen tools. iii. Design and development of a parametric test campaign (using an air bearing table) for testing the chosen sampling

tools/strategies with a range of representative soil analogues.

iv. Development of dynamic model and related simulator

v. Execution of the test campaign and correlation of the test data with the model produced at iv.

- Phase 2

i. Trade-off and design the complete sampling chain (supported by the validated simulator).

ii. Develop a real-scale breadboard of the sampling chain, a mockup of platform with representative dynamics and a test

environment to exercise them. The test environment shall allow testing of the breadboard against different soil types.

iii. Perform tests

iv. Evaluate results from the tests

IV. Evaluate lesuits I	Ioni ule tests						
Deliverables							
- Project documentat	tion						
- Mathematical mod	el/simulator						
- Breadboards							
- Software							
- Test rig							
- Data archive conta	ining both raw and proc	essed data from all te	ests				
Current TRL:	1	Target TRL:	5	Application Need/Date:	2017		
Application Mission:PhootprintContract Duration:24							
S/W Clause:	N/A	Reference to ESTER	T-9012				
Consistency with Harmonisation Roadmap and conclusion:							
The activity was not addressed by the 2012 harmonisation exercise on A&R, as the PHOOTPRINT mission had not yet been manifested							

Guidance, Naviga	ation, and Control (G	(C) for PHOOTPRINT descent and la	nding				
Programme:	ETP	Reference:	E905-017EC				
Title:	Guidance, Navigati	n, and Control (GNC) for PHOOTPRIN	T descent and landing				
Total Budget:	400						
Objectives							
The objective of the activity is to design and develop the GNC for PHOOTPRINT up to TRL 4. This shall include the mission vehicle management (MVM) and the FDIR for the PHOOTPRINT mission with Model In the Loop (MIL) full testing, and preliminary real time checks on a Processor in the Loop (PIL) environment.							
Description							
The adv of the activity is to design and develop the critical GNC algorithms needed for the PHOOTPRINT mission during proximity operations, descent, landing and departure. Moreover, in this activity it shall be defined the mission vehicle management (MVM) for this PHOOTPRINT mission taking into account the GNC system, the operating modes and the Failure Detection, Isolation and Recovery (FDIR) system.							

The MVM is responsible for selecting the GNC modes providing scheduling service and FDIR functionalities. The system shall be

robust to safely achi	robust to safely achieve the required performances in the presence of possibly large uncertainties.					
The following tasks shall be performed:						
- Consolidation of fu	- Consolidation of functional, operational, performance and environment requirements for the PHOOTPRINT mission taking into					
account the mission	account the mission objectives and constraints.					
- Definition of the G	NC architecture	e, including sensor suite tra	de-off.			
- Detailed analysis a	nd definition of	the GNC algorithms, inclu	ding MVM, FDIR.			
- Implementation of	a Model In the	Loop simulator with the co	mplete GNC system arch	itecture, FDIR and	1 MVM.	
- Validation of the s	imulator and pe	rformance tests for the PHC	OOTPRINT landing.			
		case of the PHOOTPRINT				
- Implementation of	the modificatio	n of the MIL to perform au	tocoding for the PIL			
- Implementation of	a Processor In t	he Loop in a RASTA-like	environment: test bench o	consisting on the a	ssembly of the modified	
MIL and a flight rep	resentative mot	herboard.				
- GNC verification a	und validation w	ith the PIL.				
Deliverables						
- Technical notes						
- Model in the loop	simulator, inclu	ding the GNC, MVM, and	FDIR			
- Processor in the lo	op test bench so	ftware				
G (775)				Application	2015	
Current TRL:	2	Target TRL:	4	Need/Date:	2015	
Application Mission:						
S/W Clause: N/A Reference to ESTER						
Consistency with H	Consistency with Harmonisation Roadmap and conclusion:					

Guidance, navigation and control (GNC) maturation for PHOOTPRINT and hardware in the loop (HIL) testing				
Programme:	ETP	Reference:	E905-018EC	
Title:	Guidance, navigation and control (GNC) maturation for PHOOTPRINT and hardware in the loop (HIL) testing			
Total Budget:	600			

Objectives

The objective of this activity is to maturate the GNC for PHOOTPRINT (coming from a previous activity) and test it in a close loop control in hardware in the loop (HIL) environment. In particular, this test-bed shall use of a robotic test bench to fully test the PHOOTPRINT proximity operations, including descent, landing in closed loop control.

Description

For the real-time validation and verification of a GNC system it is required to test the GNC design in a closed loop real-time simulation with sensor hardware in the loop and a representative test bed environment with robot arms and translation devices. This tests will allow to understand the interaction of sensors in the complete GNC subsystem, measure the processing times to gather data from sensors and understand the overall GNC response to failures including sensors in the loop.

This activity shall, first of all, consolidate and mature the GNC design for PHOOTPRINT Entry, Descent, Landing and Departure (coming from a preceding activity) including the Mission Vehicle management (MVM) and the Failure Detection, Isolation and Recovery (FDIR). Moreover this activity shall test the GNC for PHOOTPRINT in a real-time environment aiming to fully validate and verify the Entry, Descent and Landing mission arcs in European facilities. This end-to-end GNC test benching shall include all navigation sensors (including hardware), the guidance algorithms, and the control loops.

The test bench shall consist of the assembly of a processor in the loop (PIL) and the flight representative set of sensors to form a closed loop controlled system. The ability to simulate failure injection and contingency operations shall be covered in the scope of this test environment. The PIL to be assembled in the HIL shall be taken from previous development activities (MREP2 "GNC for PHOOTPRINT descent and landing").

In the frame of this activity the following tasks shall be performed:

- Consolidation and maturation of the GNC design including the MVM and the FDIR for PHOOTPRINT Entry, Descent, Landing and Departure.

- In-depth analysis and selection of the most suitable European facility and detailed evaluation of its suitability for the planned mission, including the feasibility of both real-size and scaled-down simulations.

- If needed, the selected facility shall be upgraded and validated.

- Definition and development of a real-time test bench (HIL) to be used for GNC verification and validation.

- On the base of previous development activities, the test bench shall allow for testing the GNC, the Mission Vehicle Manager (MVM), and the FDIR in the end-to-end test-bed.

- Functional and performance validation of the GNC, MVM, and FDIR in the real-time facility.

Deliverables

GNC maturation

GNC, MVM, and FDIR End-to-End testing. Full technical documentation shall be delivered, covering software specifications, architecture, design and justification, testing, verification, and validation

Current TRL:	4	Target TRL:		Application Need/Date:	2017
Application Mission:	PHOOTPRINT		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

Vision-based navig	ation camera EM for l	PHOOTPRINT inclu	iding image processin	g	
Programme:	ETP		Reference:	E905-020EC	
Title:	Vision-based navigation	on camera EM for PH	OOTPRINT including	image processing	
Total Budget:	1000				
Objectives					
	activity is to develop a e image processing algo		(EM) of a vision-based	camera for PHOOTP	RINT. This activity
Description					
the activity is to adap of descent and landin go trajectory toward landing applications, autonomous vision-t implemented into a 1 shall assess the envin variations, radiation, EM of the camera. The activity shall be The first part shall pe - the incorporation o - the incorporations - the detailed design. The second part shall	f the requirements creat of the experience and de , including miniaturisati l consist of building an	ameras (NPAL, VisN ds an accurate navigat ras are being develop the specific case of F eature landmark reco erform vision-based n to which the camera v , contamination) and o evelopment performed ion, of the EM engineering model of	AV, etc) to meet the net tion to correctly guide to ed for vision-based nave PHOOTPRINT. The ca- gnition. Image-process avigation around and to will be subjected for the captured in a technical to of the GNC for PHOO' d for the NPAL camera ? the camera.	eds of the PHOOTPR he spacecraft in its de vigation in planetary e mera shall then be abl ing algorithms shall b owards Phobos. Furthe e PHOOTPRINT miss note in the form of rec	EINT mission in its arc escent and touch-and- ntry, descent and le to perform e developed and ermore the activity sion (temperature quirements to create an
	activity shall concentra	te on testing the came	era to verify its perform	ance in a representativ	ve environment.
Deliverables	CDD 1 /				
	mentation (CDR datapa verification, and valida		erea, covering software	specifications, archit	ecture, design and
Current TRL:	3	Target TRL:	4	Application Need/Date:	2017
Application Mission:	PHOOTPRINT		Contract Duration:	18	
S/W Clause:	N/A Reference to ESTER T-8071				
Consistency with H	armonisation Roadma	ap and conclusion:			

Phootprint Landing Gear System to TRL5 (PLanGS)

Programme:	ETP		Reference:	E920-005MS	
Title:	Phootprint Landing C	Gear System to TRL	5 (PLanGS)		
Total Budget:	1500				
Objectives	-				
			apable of providing safe lity to allow surface oper		
Description					
In the context of the Phootprint mission, the landing phase of its lander of 1000 to 1500kg (with CoG at 1m above the base of the S/C) will end with a free fall without using the braking thrusters, from 15m (TBC) above the surface and with a landing velocities range of <0.6 m/s vertical and < 0.15m/s horizontal. Therefore the landing gear design, including the foot-pad and possibly anchoring system (TBC) and breadboard, needs to be fully representative of the flight system with respect to its dynamic behaviour in the landing gear system considering the use of CFRP components for the main structural elements (i.e. main and secondary struts) or other lightweight technological solutions. The need of damping of the shock transferred to the spacecraft at touchdown has to be considered in frame of the activity and simple solutions (possibly passive systems such as crushable materials, foams) shall be implemented and validated by test. Moreover, the possibility of implementing load limiting capabilities (i.e. collapsible load limiters) at the interfaces of the landing gear with the spacecraft need to be considered. In the frame of this activity, the functionality of the landing gear system shall also include provisions for deployment, latching and touchdown sensors.					
Phase 1 (400 kEuro - Review of the stat - Analysis of missic - Perform character - Establish the desig systems) solutions a - Establish a dynam analysis the worst c - Define the require - Define the demons approaches. Phase 2 (1100 kEur - Design the landing - Breadboard manuf - Design, manufactur - Manufacturing of	isation tests on possible on concept of the compl and including provision ic model for landing sin ases among the landing ments for the manufact strator verification appr os, 15 months) with the	billowing main tasks titions, design solution and definition of the crushable materials ete landing gear systs is for sampling hand nulations, using pre- scenarios; uring and validation oach considering al efollowing main task the basis of the require n plan. Establish the he landing test setup tents and assembly;	ons and materials; e requirements for the lan s and landing pads (the lat item including all active (i ling and operations in mid vious characterisation tes of a landing gear demon- l the environmental condi ks to be implemented tirements and verification e test procedures;	tter for friction coe e.g. actuators) and cro-gravity conditi ts results for corre strator; tions and the relev	efficient characterisation) passive (e.g. damping ons; lation, and identify by ant operational
- Execution of the la Deliverables	anding tests on the dem	onstrator			
	ynamic model, and Tec	hnical Notes includ	ing test Reports		
				Application	
Current TRL:	3	Target TRL:	5	Need/Date:	2016
Application Mission:	Phootprint		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER		
Consistency with I	Iarmonisation Roadm	ap and conclusion	:		
Robotically-Enhan	ced Surface Touchdo	wn (REST)			
Programme:	ETP		Reference:	E913-013MM	
Title:	Robotically-Enhance	d Surface Touchdov	vn (REST)		
Total Budget:	430				
Objectives					
Develop a prototype	e of an actively complia	ant landing gear for	low-G environment using	robotics derived t	echnology
Description					
Background:					

Background:

Landing in low-g environments provides for some difficult issues for conventional landing gears but also for opportunity to implement smarter and more flexible landing gears. Essentially the issues are related to the possibility of rebounding due to the

residual elasticity of the landing gear (which is impossible to eliminate completely), and the difficulty of leveling the platform once lading is achieved. The opportunities come from the fact that impact/settling forces and velocities during landing are minimal and hence compatible with the capabilities of electromagnetic actuators. Therefore it is possible to conceive an active landing gear that uses linear (or rotational) DC brushless motors to implement 1) deployment of the landing legs, 2) impedence-controlled absortion of the impact/settling forces and compensation of residual elasticity, 3) re-levelling of the lander platform, 4) rejection of vibration induced by sampling devices. To note, the use of impedence-control schemes for brushless DC motors is common in robotics in order to allow robotic joints to simulate virtual mechanical properties (i.e mass, damping and elasticity). The use of motor-driven absortion of forces at landing is not new: the PHILAE lander in the ROSETTA mission uses a capstan actuator

Programme of work:

1) requirement definition

2) design of prototype

3) manufacturing and assembly 4) test on air bearing table

5) closure

Deliverables

- standard project documentation

- technical notes,

prototype hardware
videos

videos

Current TRL:	1	Target TRL:	3/4	Application Need/Date:	2015
Application Mission:	PHOOTPRINT,		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8937	
Consistancy with Harmonication Readman and conclusion:					

Consistency with Harmonisation Roadmap and conclusion:

The activity was not addressed by the 2012 harmonisation exercise on A&R. To be noted the PHOOTPRINT mission at that time was not manifested yet.

Robotically-Enhand	Robotically-Enhanced Surface Touchdown - RAise In TRL (RESTRAINT)					
Programme:	ETP		Reference:	E913-014MM		
Title:	Robotically-Enhanced	Robotically-Enhanced Surface Touchdown - RAise In TRL (RESTRAINT)				
Total Budget:	800					
Objectives						
Increase the readines	s level (up to TRL5) of	an actively complian	t landing gear for low-	G environment		
Description						
of a smart actuator sy forces and compensa devices. The REST a functions and other of The RESTRAINT ac breadboard will be v Programme of work: 1) requirement defin 2) design of prototyp 3) manufacturing and 4) test in relevant en 5) closure	Background The Robotically-Enhanced Surface Touchdown (REST) activity, aims at the implementation of an active landing gear that by means of a smart actuator system can perform 1) deployment of the landing legs, 2) impedence-controlled absortion of the impact/settling forces and compensation of residual elasticity, 3) re-levelling of the lander platform, 4) rejection of vibration induced by sampling devices. The REST activity will produce a prototype of such landing gear, just implementing (and testing experimentally) critical functions and other characteristics for an initial proof-of-concept (TRL3) The RESTRAINT activity shall continue the development of the active landing gear so that at the end of it a landing gear breadboard will be validated in a relevant environment (TRL 5). Programme of work: 1) requirement definition 2) design of prototype 3) manufacturing and assembly 4) test in relevant environment					
Deliverables						
- standard project documentation - technical notes, - prototype hardware - videos						
Current TRL:	3	Target TRL:	5	Application Need/Date:	2015	
Application Mission:	PHOOTPRINT		Contract Duration:	18		

S/W Clause:	N/A	Reference to ESTER	T-8937		
Consistency with Harmonisation Roadmap and conclusion:					
The activity was not addressed by the 2012 harmonisation exercise on A&R. To be noted the PHOOTPRINT mission at that time was not manifested yet.					

Next generation uplink coding techniques					
Programme:	TRP	Reference:	T906-001ET		
Title:	Next generation uplink coding techniques				
Total Budget:	450				
Objectives					
directly from Earth frame of CCSDS N	For exploration missions, powerful coding techniques need to be studied in order to enable high rate communication uplinks directly from Earth as well as to extend the supported maximum distance, despite the constraint of limited received power. In the frame of CCSDS NASA has already proposed some techniques to this purpose. Current constraints seen by exploration missions, such as the need to ensure commanding at distances up to 2.7 AU, make the introduction of new uplink coding techniques a must.				
Description					
A system study is required to assess the impact of different coding techniques for the TC uplink of exploration missions, in order to enable the use of high rate uplink directly from Earth as well as to extend the supported maximum distance, particularly for emergency situations.					

As seen in current Mars Robotic Exploration missions under study or preparation, spacecraft commanding through the LGA (Low Gain Antenna) can be rather challenging, once distances of up to 2.7 AU are considered and reliance of the NASA 70m ground station antenna cannot be assumed any longer. The use of uplink coding, possibly in combination with low data rates (7.8 bps or lower), will provide the additional margin needed to ensure commanding for these challenging scenarios.

At the same time, new coding techniques are expected to mitigate to a great extent the problems due to the introduction of higher uplink data rates, dictated by payload calibration as well as operational needs, i.e. use of CFDP with high rate telemetry downlink, which poses serious constraints to the designers. This is even more critical once fail safe RFDU architectures are employed where switches in the receiver chain are replaced by 3-dB hybrids.

The study should first consider coding techniques already proposed in the frame of CCSDS, i.e. LDPC codes, and to investigate other alternative coding schemes, including non-binary codes. Besides other figure of merits, the undetected error performance will be prominent in the assessment and decoding algorithms suitable to maintain low undetected errors will be implemented. The study shall assess the impact of the new coding techniques towards higher layer protocols, i.e. TC or AOS, as well as towards the physical layer, i.e. the impact on the demodulator due to the lower SNR allowed by the coding gain. Finally, the study shall address the impact on the architecture of the overall O/B receiver, considering in particular the complexity, power consumption and flexibility required. Suitable decoding algorithms will be studied, proposing the relevant trade-offs between performance and O/B resource utilization. A bread-board shall complete the activity, in order to minimize the risk for future missions adopting the new coding techniques in the proper standardization bodies, e.g. CCSDS and ECSS.

This activity is highly relevant to the associated ETP activity entitled "Compact Dual UHF/X-band Proximity-1 Communication EQM".

Deliverables						
End to end system study on next generation uplink coding for Mars exploration missions and a hardware proof of concept (breadboard).						
Current TRL: 2 Target TRL: 3 Application Need/Date: 2022-2024						
Application Mission:	MSR, INSPIRE, PHOOTPRINT		Contract Duration:	14		
S/W Clause: N/A Reference to ESTER N/A						
Consistency with Harmonisation Roadmap and conclusion:						
Harmonization Dossi	Harmonization Dossier "TT&C Transponders and Payload Data Transmitters," 2012					

Next generation uplink coding techniques - Validation, Implementation and System Roll-Out					
Programme:	ETP	Reference:	E906-006ET		
Title:	Next generation uplink coding techniques - Validation, Implementation and System Roll-Out				
Total Budget:	800				
Objectives	Objectives				

For exploration missions, powerful coding techniques are needed in order to enable high rate communication uplinks directly from Earth as well as to extend the supported maximum distance. Current constraints seen by Mars missions, such as the need to ensure commanding at very high distances (up to 2.7 AU) and for emergency communications make the introduction of new uplink coding techniques and the corrensponding adaptation of the spacecraft receiver a mission driver. An End-to-End validation in a realistic operational environment shall be conducted as part of this activty.

Description

A previous TRP activity will have completed the associated system study in order to assess the impact of different coding techniques for the uplink of exploration missions in order to enable the use of high rate uplink directly from Earth as well as to extend the supported maximum distance. As seen in current Mars Robotic Exploration missions under study or preparation, spacecraft commanding through the LGA (Low Gain Antenna) can be rather challenging, particularly at the max Earth-Mars distance 2.7 AU are considered. The use of uplink coding, possibly in combination with low data rates (7.8 bps or lower) will provide the additional margin needed to ensure spacecraft commanding for these challenging scenarios which have a very low signal to noise ratio.

This ETP activity will take the results from the previous TRP activity and define the operational implementation and System Rollout aspects in a consolidated way. The previous TRP study will have selected and validated the most appropriate TC uplink codes for operational usage. This ETP activity will then optimise the algorithms, trade-off architectural implementations to be used for both the ground segment and the space segment and build and validate the end to end system demonstrator based on representative ground station assets (e.g. Mission Control System) and flight representative TT&C receivers and TC uplink decoding units. The TC uplink decoding blocks could reside within either the TT&C unit/receiver itself or in the O/B data handling unit, depending upon the mission scenario. The selected detailed implementation shall address the impact on the architecture of the overall O/B receiver by considering in particular the complexity, power consumption, reliability and flexibility. The activity shall also define a roadmap and phased schedule for implementing the TC uplink codes in the ESOC ground stations and any associated delta developments required for the on-board TT&C/ data handling subsystems.

An End-to-end validation of TC upling encoding and decoding in a realistic environment shall be conducted by making use of representative ground segment and TT&C flight representative assets.

Deliverables

Technical Notes, End to end system validation of TC uplink coding for high data rate uplinks, Roadmap for operational implementation.

Current TRL:	3	Target TRL:	5	Application Need/Date:	2018
Application Mission:	INSPIRE, PHOOTPRINT, MSR		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	T-7725	
Consistency with Harmonisation Roadmap and conclusion:					

Sterilisation limits for sample return planetary protection measures						
Programme:	ETP	Reference:	E914-001QI			
Title:	Sterilisation limits for sample return planeta	Sterilisation limits for sample return planetary protection measures				
Total Budget:	1300					
Objectives						

The objective of this activity is to produce test data in order to derive sterilisation limits (i.e. heat, radiation, pressure) for backward planetary protection measures essential to support MSR mission studies (e.g., MSR-O and ERC) and related technology developments (e.g., containment system) and to confirm the Phootprint planetary protection category in light of recent studies indicating substantial material transfer from Mars to Phobos.

Description

Backward planetary protection (i.e. protection of the Earth's biosphere from potentially harmful extraterrestrial material) is a key issue for any sample return missions and in particular MSR. In order to identify the limits of heat, radiation and pressure whereby sterilisation is expected to occur (which impacts, for example, the design of the MSR biosealing system, the earth return capsule etc), this activity is proposed with the following tasks:

Phase 1:

1. Identification and description of representative biological samples based on latest ESF report, identification and characterisation of representative sample preparation and conditioning, including matrix material, for the heat/radiation inactivation tests, identification of material (non-vesicular picritic basalt for most tests, martian meteorites for confirmation tests) and characterisation (chemistry and pore space using tomography) of projectile and targets for the hypervelocity impact tests, identification of the criteria for biological inactivation, identification of the test and measurement approach to evaluate the heat and radiation inactivation covering a dynamic range with each method up to and including a SAL-6, identification of the test and measurement approach (produce a test plan), including high speed cameras, flash X-rays, in-situ tracers and chemical analysis of the pressure and

heat affecting the projectile for the hypervelocity impact tests,

This task will conclude the Phase 1 of this activity, at which point COSPAR will be consulted in order to agree the way forward with respect to the testing to be done in the Phase 2.

Phase2

1. perform inactivation tests using separately heat and gamma radiation in ambient and vacuum environment,

2. perform hypervelocity impact tests in the velocity range of 0.5- 4.5 km/sec with particles in the micron to millimetre range and a target with a bulk density of 1 g/ccm and a size distribution in the 50-100 micron range, statistical approach for all tests to achieve a confidence interval in the 95-99% range, develop hydrodynamic simulations and material models to extrapolate the hypervelocity impact test results.

Experimental work requires a dedicated heat-kill set-up, a cobalt 60 radiation source with about 2 Gy/sec, a two-stage light gas gun facility and capabilities for handling and preparing biological samples (microbes, viruses and phages) and geological samples.

Deliverables

Description of preparation and characterisation of the samples, projectiles and target materials, description of criteria for biological inactivation, description of experimental set-up for heat/radiation inactivation tests and impact tests, TRRs, test reports for the different tests, hydrodynamic simulations and material models for impact tests, recommendations for inactivation levels.

Current TRL:	N/A	Target TRL:		Application Need/Date:	Q3 2014
Application Mission:	MSR, Phootprint		Contract Duration:	16	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Ha	armonisation Roadma	ap and conclusion:	•	•	

Characterisation of Phootprint landing site contamination from descent thrusters						
Programme:	TP Reference: E918-005MP					
Title:	Characterisation of Phootprint landing site of	Characterisation of Phootprint landing site contamination from descent thrusters				
Total Budget:	500					
Objectives						

The objective of this activity is to characterise the contamination of the Phootprint landing site by the lander thrusters used during the descent.

Description

The PHOOTPRINT mission will likely have a deceleration phase which ends significantly above Phobos followed be a hard landing. It is therefore assumed that there will be no strong plume surface interaction and therefore no significant site alteration from the thrusters plumes is expected (i.e. no soil blown from the plumes). However, some particles rejected from the thrusters before free-fall are expected to contaminate the landing site. This has science implications as chemical contamination of the sample is not wanted. The current science requirement with that respect is:

"The number of contaminating molecules deposited on the asteroid surface by the propulsion system shall be lower than 10+14 / cm2 (goal 10+13 / cm2)".

The current descent strategy foresees a forced motion phase followed by a free fall down to touch-down, from about 15m. Thrusters are shut off at the start of this free fall phase. In order to consolidate the system trade between altitude of free fall (the higher the more demanding for GNC and landing gear) and sample contamination by thrusters (the higher the free fall the better), characterisation in vacuum of surface contamination from thrusters (22N bi-propellant MON-MMH currently baselined) at several heights is needed, as well as correlation with models, in order to allow making reliable predictions of soil contamination from several thrusters configurations & free-fall heights.

The project will therefore include experimental tests at a suitable vacuum facility where the bi-propellant thrusters will be directed toward a surface at specified distances which are such that the ground to flight scenario is comparable in terms of forces and species interaction with the surface. the outcome will be the appropriate sticking factors (of all species of mass fraction greater than 5%), forces on the surface and contamination distribution on the surface

The test will be further supplemented with numerical tests using DSMC codes to recover the forces and contamination found during experiments. the sticking factors measured during experiments will be input to the DSMC code.

The outcome of this task will be:

a) further understanding of the contamination process and predictions of likely contaminations;b) validation of DSMC codes for use when the exact mission as described.

Deliverables

Reports including test plan, test data, numerical reconstruction and assessment of the results. Experimental data in electronic format

(Data Base) and numerical data also in electronic format to allow future comparisons and/or benchmark tests						
Current TRL:	2	Target TRL:	4	Application Need/Date:	2016	
Application Mission:	PHOOTPRINT		Contract Duration:	24		
S/W Clause:	N/A		Reference to ESTER	T-8091, T-8940, T-7906		
Consistency with Harmonisation Roadmap and conclusion:						
ATD Harmonisation 2012						

Evaluation of heats	hield CFRP and bond	ling materials to inc	reased temperature lir	nits	
Programme:	TRP		Reference:	T924-004MT	
Title:	Evaluation of heatshie	eld CFRP and bondin	g materials to increased	temperature limits	
Total Budget:	400				
Objectives					
	evelop CFRP substrate ative TPS for an increas		honeycomb structures) of 250degC.	as well as a bonding r	naterial for the
Description					
of the bonding mater limiting factor is typ temperature limits. S TPS. The objective of the * Perform a market is suited for increased * Perform a trade-of * Develop a selected 250degC	rial used to attach the T ically the resin. New re Such increased limits we activity shall be achiev research of advanced C temperatures f (including relevant sc	PS. This temperature sin materials have co ould allow to reduce ed through the follow FRP resin materials a reening tests)	is the temperature limit limit is typically in the mmercially become avai the required TPS thickn ving steps: is well as bonding mater aterial to achieve an op	range of 150-180deg ailable in recent years ess and therefore to re rials for the attachmen	C. For the CFRP the which indicate higher educe the mass of the at of the TPS
Deliverables					
Study report and ma	terial samples			l.	1
Current TRL:	3	Target TRL:	5	Application Need/Date:	2017
Application Mission:	Sample return missior	18.	Contract Duration:	15	

Study report and mat	ertai sampies				
Current TRL:	3	Target TRL:		Application Need/Date:	2017
Application Mission:	Sample return missions.		Contract Duration:	15	
S/W Clause:	N/A		Reference to ESTER	T-8142	
Consistency with Ha	armonisation Roadma	ap and conclusion:			

Development of a	Development of a rigid conformal ablator for extreme heat flux applications						
Programme:	TRP		Reference:	T921-004MT			
Title:	Development of a r	igid conformal ablator f	for extreme heat f	lux applications			
Total Budget:	400	400					
Objectives							
characterised for a	pplication on the Earth		ple return missio	atshield material shall be developed and ons (e.g. Mars, comets, asteroids). A material			
Description							
pre-qualification (under MREP-DEAM2 sions. The material is a). This development is s	pecifically tailore	strium R&D and TRP-DEAM) and is currently in ed for application on the Earth return capsule of d is produced by impregnating a low density rigid			

Recent developments by NASA have demonstrated that by replacing the rigid graphite felt in the manufacturing process by a

flexible felt can lead to a significant improvement of the material performance: Internal thermo-mechanical stresses are reduced making the material more robust to loads and deflections; thermal performance is improved leading to lower required thickness and therefore lower mass; manufacturable unit sizes are increased which might more easily allow to produce the ERC heatshield as one single piece avoiding interface issues.

Deliverables					
Study reports Material samples and demonstrator					
Current TRL:	2	Target TRL:	5	Application Need/Date:	2016
Application Mission:	Sample return missions		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8947, T-8142	
Consistency with Harmonisation Roadmap and conclusion:					
Consistent with D/TI	EC technology roadmap	2			

ERC dynamic stabi	lity via balloon drop t	ests			
Programme:	ETP		Reference:	E918-003MP	
Title:	ERC dynamic stability	y via balloon drop test	ts.		
Total Budget:	1000				
Objectives					
To provide a full end	-to-end dynamic stabili	ity tests to validate an	Earth re-entry capsules	s	
Description					
velocity (typically ra the dynamic stability An assessment is pre concerning accommo characterize the dyna configurations. In this proposed activ balloon drop tests at obtained via these fre needed for attitude an	nging from 11 to 14 kn of the ERC during the sently running to inves odation capability, stabi unic stability stability i vity, a full end-to-end d high altitude. A detaile	n/s) without the usage entry phases is essent tigate and trade-off di ility, CoG positioning n the transition phase lynamic stability asses d aerodynamic charac ne activity, the contrac- ition (and storage).	ifferent re-entry capsule , thermal exposition, ar from supersonic to sub ssment to validate the E cterization of a number ctor shall also design ar	ute as an aerodynamic e shapes (identifying p nd landing conditions) sonic velocity of a fev CRC shape shall be can of selected ERC confi	c decelerator; as such, mos and cons and preliminary w selected rried out by means of igurations shall be
Deliverables					
Reports, results of te	sts (and calculations), c	latabases, instrumente	ed models, synthesis, re	commendations on m	ethodologies
Current TRL:	3	Target TRL:	6	Application Need/Date:	2023
Application Mission:	MSR, Phootprint and Marco Polo-R Contract Duration: 24				
S/W Clause:	Clause: N/A Reference to ESTER T-8101, T-7904				
Consistency with H	armonisation Roadma	ap and conclusion:			
ATD Harmonisation	2012				

ERC RF recovery beacon breadboard					
Programme:	ETP	Reference:	E906-011FP		
Title:	ERC RF recovery beacon breadboard				
Total Budget:	400				
Objectives					
The objective of this activity is to develop and test a breadboard of a small size RF beacon aimed at easing the ERC recovery operations after landing.					

	•		
SCI			

The ERC is a critical element of the Phootprint mission as being the one bringing back the samples for laboratories investigations. In order to secure its recovery after landing, it is currently foreseen to implement an RF beacon from which the signal can be easily recovered by ground facilities to guide them to the landing site.

The main requirements of this beacon are:

- light mass, low power consumption, powered by a small battery hosted in the ERC (the battery is considered part of the beacon) - must operate during at least 4 hours after landing

- must endure high g-loads at ERC impact, in the order of 2000g

This activity shall design and build a beacon breadboard meeting the above requirements. The breadboard will then go through a test and validation campaign.

Deliverables						
RF beacon breadboard, tests numerical data, technical reports						
Current TRL:	2	Target TRL:	4	Application Need/Date:	2017	
Application Mission:	Phootprint		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

Design, development and verification of a full scale Earth Return Capsule for Phootprint						
Programme:	ETP		Reference:	E920-004MS		
Title:	Design, development a	Design, development and verification of a full scale Earth Return Capsule for Phootprint				
Total Budget:	1800					
Objectives	•					
	study is to undertake th back safely till high velo					
Description						
returned samples, str System) to minimise material to limit the requirements, the arc activities are foresee - Review of Phootpri - Investigate the moss performed using a cc matrix of crushable r container, shall be es crushable TPS for th potential inputs to th - Design, analysis an maximum protection be performed to supp - Manufacturing of f	int requirements for ER at optimal design solution ombination of TPS mate naterials of different de camined. In addition, th e ERC" and T920-0020	chanical requirements gh surface heat fluxes g max at sample level as critical as what the C on based on the mission erial, crushable materi- nsity and mechanical e outcomes from two QT "Material develops board tests of one or r oads such as the retur	are set. The ERC is using at the early Earth entry in the hard landing experiments are performance of the properties on requirements. To aclust and other structural behaviour, leading to going ESA studies rement for a crushable The nultiple ERC concepts. The sample bio-contain	ually protected by TP, y phase and by high er g phase on Earth. To a otection materials car nieve that, trade-off st materials. The possib gradual reduction of in namely : T319-036MC 2S for the ERC", shall The proposed design ner, beacon, batteries,	S (Thermal Protection nergy absorbent core accomplish such a offer. The following udies shall be bility of having a mpact load at the bio- C "Design of a l be considered as shall be able to offer etc. Sample tests shall	
Deliverables						
	al Report, Summary Re rd and full scale models		Package including phot	ograpic ducmentation	l)	
Current TRL:	4	Target TRL:	5	Application Need/Date:	2017	
Application Mission:	Phootprint		Contract Duration:	18		

Reference to

ESTER

Consistency with Harmonisation Roadmap and conclusion:

N/A

Mission:

S/W Clause:

Mini Heat Switch to TRL 4							
Programme:	GSTP		Reference:	G921-008MT			
Title:	Mini Heat Switch to T	TRL 4					
Total Budget:	400						
Objectives							
The objective is to develop and qualify a miniaturized heat switch capable of conducting 0.5 to 10W of waste heat to a radiator. The heat switch shall be a passive device, which at a specified temperature, makes a thermal link with a cold sink and reject the excess heat.							
Description							
frame of a TRP. The 50W of waste heat. If switch may be oversi- have a mass lower th device is targeted to based on results from environmental testing	technology is currently However, when managi ized and too complex for an 60g and would be in be between 0.5W to 10 n previous development g as well as extend life	y baselined for the Ez ng small power dissi or the application. A hstalled in series betw W. The proposed act ts activities. A qualif testing. In addition,	a based on the Loop Heat comars Rover. The heat pation coming from RH miniaturized heat switce veen the radiator and the ivity, plans to further en- ication model shall be n the testing of the mini h n a appropriate configure	switch LHP was des (Us or payloads, a de h TRP activity was in e dissipative unit. Th hhance the design of nanufactured in order eat switch shall inclu	signed to transport 10 to edicated LHP Heat nitiated with a goal to he heat transport of the the mini heat switch r to perform		
Deliverables							
Qualification Model	and a full set of design	and test documentat	ion		-		
Current TRL:	4	Target TRL:	6	Application Need/Date:	2016		
Application Mission:	Robotic Exploration N	Aissions	Contract Duration:	18			
S/W Clause:	N/A		Reference to ESTER	T-8839			
Consistency with H	armonisation Roadma	ap and conclusion:					
Consistent with D/TI	EC technology roadmap	р					

Mars Precision Lander

Extension and validation of Mars atmospheric and dust environment models						
Programme:	TRP		Reference:	T904-001EE		
Title:	Extension and validat	ion of Mars atmos	pheric and dust environme	nt models		
Total Budget:	150					
Objectives						
To maintain and im	prove the capacity to pro-	edict the Martian a	atmospheric environment			
Description						
Extended validation of densities at lower thermospheric altitudes for aerobraking Extended validation of mesoscale modelling and nesting and GCM subgrid-scale parametrisation schemes for precision landing. State of the art dust lifting and transport scheme for the mesoscale and large scale circulation models.						
Deliverables						
Validation reports						
Current TRL:	3	Target TRL:	4	Application Need/Date:	continuing	
Application Mission:	all Mars missions		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER			
Consistency with	Harmonisation Roadm	ap and conclusior	1:	-		

Maintenance of the European Mars Climate Database						
Programme:	GSTP		Reference:	G904-002EE		
Title:	Maintenance of the E	uropean Mars Clima	te Database			
Total Budget:	300					
Objectives						
To maintain and ke	eep up-to-date Martian c	limate models which	have been developed ur	ider TRP		
Description						
data base of atmospheric data, used in EDL. This database is supplemented with additional models at progessively smaller scales to cover all aspects of mission design, including near ground environment (z <20 m). The boundary conditions for these models need to be continually upgraded as data from current Mars missions become available. New data is also used for upgrade and validation of physical parameterizations used in these models. It is anticipated that some of the effort will be devoted to the improved modelling of dust lifting and transport mechanisms, hence giving access to realistic dust spatial variability. The activity will be in two phases, with phase two activities being more tightly defined in the light of progress in phase developments, and new problems and requirements arising in scenario analyses.						
Deliverables						
documentation.	0		n. Upgraded Martian me			
Current TRL:	4	Target TRL:	7	Application Need/Date:	2017	
Application Mission:	All Mars missions	All Mars missions		36		
S/W Clause:	N/A Reference to ESTER					
Consistency with Harmonisation Roadmap and conclusion:						

End to end Optimisation and GNC design for High Precision Landing on Mars					
Programme:	ETP	Reference:	E905-006EC		

Title:	End to end Optimisation	on and GNC design for	or High Precision Land	ing on Mars	
Total Budget:	500				
Objectives					
The objective of this Mars.	activity is to optimise a	and design complete ((entry to touchdown) G	NC solutions for Higl	h Precision Landing on
Description					
accuracy with a poss to 3 km. Significant and decrease, below	on Mars entry, descent a sibility that improved na additional efforts are ho that level, the size of th nission characteristics, t	avigation at Entry and owever required, on en- be final landing ellipse	a smart parachute depl ach of the EDL phases, e of MSR-like landers.	oyment strategy migh to further improve th	tt reduce this accuracy e GNC performance
descent phases (para design of the selecte study shall more par techniques during th optimised powered 1 solutions throughout within a robust, mult the terrain relative so performance assesson	alysis of affordable strat chute and powered), as d GNC solutions for all ticularly address the op e hypersonic entry, sma anding with some diver the EDL sequence shal ti-variable control settin ensors shall be establish nent of the GNC solution plementability of the s	well as the definition the phases of a fully timisation of the appr rt parachute deploym t and hazard avoidand ll also be investigated ag. The limits of perfor ed and high fidelity s ms will be conducted	of an innovative end-tu controlled Martian EDD oach and insertion strat ent, efficient drift comp ce capabilities Benefits , as well as control dur ormance of the GNC de imulation models will lo on an end-to-end high	o-end navigation arch L sequence will then l egies, the use of adva pensation systems dur of on-line identificati ing the descent phase sign shall be establish be developed. The rob fidelity simulation em	itecture. A detailed be performed. The nced guidance ring Descent, and on and reconfiguration that will be dealt ted. Requirements for pustness and
Deliverables					
	delivered with a set of C nulation will identify ar				
Current TRL:	2	Target TRL:	3	Application Need/Date:	2012
Application Mission:	Precision lander, MSR Co		Contract Duration:	18	
S/W Clause:			Reference to ESTER		
Consistency with H	armonisation Roadma	ap and conclusion:			

European IMU breadboard					
Programme:	TRP	Reference:	T905-014EC		
Title:	European IMU breadboard				
Total Budget:	800				
Objectives					
Breadboard and demonstrate the performance of an IMU for Mars exploration					
Description					

There is a clear need of a European IMU for the Robotic exploration programme. This is considered a critical technology to enable the future exploration missions during cruise, Aerobraking, Entry, Descent and Landing and in-orbit Rendezvous. The available European gyro products are not optimised for the exploration requirements. Current low mass products have low performance while available high performance products have a hig mass. Furthermore, there is no European space qualified accelerometer (US space qualified off the shelf products are available) however a TRP-funded European accelerometer feasibility demonstrator has just been launched in 2010, and may form a basis for the European IMU development pending confirmation of its performance vs. MREP requirements.

This activity intends to invite industry to propose an optimised IMU concept, based on an existing design, with gyro and accelerometer functions compliant with the MREP programme exploration needs. PDR stage shall be reached at the end of this activity with bread boarding to demonstrate the critical functions and performances.

The activity would include:

- analysis of the driving requirements and major constraints based on IMU specifications provided from the MREP High-precision landing GNC optimisation TDA (E905-006EC) and MREP Precision Lander system study.

- main design modification trade-offs

- detailed interfaces with the accelerometer and gyro preparatory work based on reuse of existing gyros building blocks and necessary delta-developments

- early prototyping and testing of critical functions to demonstrate feasibility of meeting the key MREP performance requirements
 - development plan till EQM qualification and estimation of the recurring cost of the IMU

Deliverables

Technical Data pack - Test reports of IMU breadboard - Development plan of IMU to EQM

H/W: Breadboard of IMU

IT w. Bleadboard of five						
Current TRL:	2	Target TRL:		Application Need/Date:	TRL5 by 2015	
Application Mission:	Precision lander, MSR		Contract Duration:	18		
S/W Clause:	IN/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						
AOCS sensors and actuators Gyros and IMUs. AIM E1						

European IMU EN	1				
Programme:	ETP		Reference:	E905-015EC	
Title:	European IMU EM				
Total Budget:	2000				
Objectives					
To develop and test	to TRL5, an European	IMU for the Explorat	ion.		
Description					
accelerometer devel	evelop an EM of an Euro opment activity. The IN ment. An EM shall be n	IU design shall be ba	ised on the gyro prototy	pe architecture and the	e accelerometer
2 cm · cr ubics	meeting MREP program	nma parformanca spa	aifications		
Current TRL:	4	Target TRL:	5	Application Need/Date:	2016
Application Mission:	All Mars missions		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER		
Consistency with H	Iarmonisation Roadma	ap and conclusion:			
AOCS Sensors and	Actuators harmonisation	n 2009 - Gyros and I	MUs Aim E1 & E2		

Accelerometer component to TRL5					
Programme:	ETP	Reference:	E905-016EC		
Title:	Accelerometer component to TRL5				
Total Budget:	700				
Objectives					

1) To develop and demonstrate by test, a European accelerometer component with integrated readout electronics and performances compatible with future ESA exploration missions

Description

This activity shall be based on the TRP accelerometer feasibility demonstrator protoyping (T705-032EC). That activity has already shown the feasibility of the detector element via manufacture and test and performed the feasibility assessment of the enhanced, radiation hard analogue ASIC required to drive and condition the detectors. No radiation testing has been performed.

This activity shall develop, manufacture and test to TRL5, an European accelerometer as a component suitable for integration into a gyro and compatible with being used as a stand alone accelerometer.

The accelerometer component shall consist of co-packaged 1g and 20g detectors with a fully radiation hardened analogue readout

and control ASIC allowing enhanced performances. This activity shall result in a prototype fully representative of the envisaged end product in terms of performance, packaging and radiation hardness.

The prototype accelerometer shall be subjected to full performance and radiation testing. The remaining work to reach a to fully qualified EEE component is expected to consist of implementation of any design corrections arising from testing, full batch procurement and detailed evaluation and qualification testing. This would be handled under separate contractual cover.

Denverables							
Final report Prototype accelerom	eter components *10						
Current TRL:	4	Target TRL:	5	Application Need/Date:	TRL5 by 2013		
Application Mission:	All future exploration missions		Contract Duration:	21			
S/W Clause:	IN/A		Reference to ESTER	T-7818			
Consistency with Harmonisation Roadmap and conclusion:							
AOCS Sensors and A	Actuators Harmonisatio	n 2009 - Accelerome	ters, AIM A2 and A3				

Accelerometer to TRL5 - CCN						
Programme:	ETP		Reference:	E905-017FT		
Title:	Accelerometer to TRL	.5 - CCN				
Total Budget:	300					
Objectives						
Additional testing of	accelerometer compon	ent to achieve TRL 5	/6.			
Description						
accelerometer compo	d to cover additional te onent that is being deve lude: nent for space and Mars	eloped in an MREP ac		modifications if requir	ed) of an	
3) Life testing (therm4) Constructional an	onment of launch, trans nal cycling + high temp alyses ivity, a pre-qualificatio	erature accelerated lif	fe)	ıld be achieved.		
Deliverables	· · ·		-			
Tested acceleromete	r components, documer	ntation				
Current TRL:	5	Target TRL:	5/6	Application Need/Date:	2015	
Application Mission:	All exploration missions Contract Duration: 9					
S/W Clause:	W Clause: N/A Reference to ESTER					
Consistency with H	armonisation Roadma	ap and conclusion:				
N/A	N/A					

Stand Alone 3 Axis European Accelometer Unit				
Programme:	ETP	Reference:	E905-021EC	
Title:	Stand Alone 3 Axis European Accelerometer Unit			
Total Budget:	500			
Objectives				
To develop and test an Engineering Model (EM) of a miniaturised 3 Axis European Accelerometer unit based on a European accelerometer detector already being developed and suitable for use on Rovers and EDL missions. The target for the unit would be for PHOOTPRINT, Mars Precision Lander and other future Mars lander missions.				
Description				

European acceleron	European accelerometer components are currently in development (Colibrys (CH) and ESS (GR)); this activity will result in the					
	iaturised stand alone 3 a	axis unit based on th	ese components. The ge	neral characteristics o	f the unit are expected	
to be:						
< 350g						
< 60*60* 60mm						
< 2.5 W						
28 Volt primary pov	11 /					
with both $+/-1g$ and	+/-20g measurement ra	nges per axis.				
	The activity will include the preliminary design, breadboarding, detailed design and EM manufacture and test. The tests will include performance and environmental testing (thermal and mechanical).					
Deliverables						
Unit EM, data packa	age					
Current TRL:	3	Target TRL:	5	Application Need/Date:	2017	
Application Mission:	All Mars missions		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER			
Consistency with H	Iarmonisation Roadma	ap and conclusion:				
•						

Camera-aided Mars Landing and Rendezvous navigation system					
Programme:	ETP	Reference:	E905-007EC		
Title:	Camera-aided Mars Land	ling and Rendezvous navigation systemeters	em		
Total Budget:	350				
Objectives					
To assess the impact of the specific Martian and landing vehicle environment (dust, atmosphere, thrusters plume, etc.) on a camera- aided navigation system and to define the functional, performance and operational specifications of a camera navigation system for Mars landing or rendezvous, consolidating the GNC and image processing approach and algorithms and to evaluate in a high- fidelity simulation environment the closed-loop performance robustness of the candidate camera-aided GNC system					
Description					
Future candidate missions of the MREP programme require the delivery of valuable payload on the Martian surface or in the case of the Mars Sample Return (MSR) mission, the capture of a sample container in Mars orbit. Previous MSR system definition studies have identified that a vision-based navigation system is an attractive solution for fulfilling the mission performance requirements. Previous generic activities have demonstrated the suitability of camera-aided measurements to assist the GNC system. This needs to be specifically addressed in the context of a Mars mission and its environment.					
Building on previous activities, specific camera requirements (e.g. optical, sensor, image processing, mass, power, autonomy) for the above scenarios shall be refined taking into account Mars specific operational conditions with respect to (for example but not only): * The dynamics during Mars entry, descent and landing (e.g. use of camera system during the parachute descent, transition to powered descent)					
* The specific atmospheric and dust environment as well as thrusters plume impingement (subsequent decrease of the SNR and					

* The specific atmospheric and dust environment as well as thrusters plume impingement (subsequent decrease of the SNR and distortion effects will be assessed)

* The particular surface conditions taking into account the latest findings from ongoing Mars missions (e.g. MEX, MRO)

* The requirements associated with a surface landmark database (built up by previous missions) for very high precision landing and its implications on the GNC during the camera-aided descent

* Illumination and viewing conditions

* Orbital conditions (e.g. canister Sun illumination for rendezvous)

Critical analysis of the accommodation of the system (e.g. presence of airbags, aeroshell, etc.) for the two reference applications will be done together with analysis of all external error sources having an impact on the system performances.

Subsequently, candidate image processing (IP) and navigation algorithms will be identified, analysed and traded-off. Investigations in the possibility to perform hazard detection (slope, rocks, craters, etc.) with a camera system during the descent, might also be addressed. For an agreed reference application (i.e. Mars landing or rendezvous and capture), a baseline navigation chain solution, including IMU and complementary navigation sensors such as laser altimeter for landing applications, will be selected in agreement with the Agency.

The adapted GNC components and algorithms will be validated in open loop for the agreed reference case.

Upon successful completion of this activity, closed-loop performance robustness of the candidate camera-aided GNC will be evaluated against requirements in a high fidelity simulation environment.

Deliverables

Full technical documentation, covering as a minimum, requirements specifications, architecture, IP and navigation algorithms, performance and physical-based simulation model, and simulation test campaign results

All software developed during the activity (source and binary code) Library of validated autonomous GNC components tailored to a Mars reference mission scenario (e.g. landing or rendezvous)

Current TRL:	3	Target TRL:		Application Need/Date:	2011
Application Mission:	Precision lander, MSR		Contract Duration:	10	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

Camera-aided N	Iars Landing and Rend	lezvous navigation sy	stem			
Programme:	ETP		Reference:	Е905-007ЕС-В		
Title:	Camera-aided Mars	Landing and Rendezy	ous navigation sys	stem		
Total Budget:	350					
Objectives						
aided navigation Mars landing or r	system and to define the endezvous, consolidating	functional, performan g the GNC and image	ce and operational processing approa	t, atmosphere, thrusters plume, etc.) on a camera- specifications of a camera navigation system for ch and algorithms and to evaluate in a high- ididate camera-aided GNC system		
Description						
the Mars Sample have identified th Previous generic be specifically ad Building on previ the above scenari only):	Return (MSR) mission, t at a vision-based navigat activities have demonstra dressed in the context of ous activities, specific ca os shall be refined taking luring Mars entry, descer	the capture of a sampl tion system is an attrac ated the suitability of a Mars mission and in amera requirements (e g into account Mars sp	e container in Mar ctive solution for f camera-aided mea- ts environment. .g. optical, sensor, pecific operational	le payload on the Martian surface or in the case of s orbit. Previous MSR system definition studies ulfilling the mission performance requirements. surements to assist the GNC system. This needs to image processing, mass, power, autonomy) for conditions with respect to (for example but not n during the parachute descent, transition to		
* The specific and distortion effects * The particular s * The requirement its implications of * Illumination and	nospheric and dust enviro will be assessed) urface conditions taking	into account the lates ace landmark database mera-aided descent	t findings from on e (built up by previ	gement (subsequent decrease of the SNR and going Mars missions (e.g. MEX, MRO) lous missions) for very high precision landing and		
				roshell, etc.) for the two reference applications on the system performances.		
Subsequently, candidate image processing (IP) and navigation algorithms will be identified, analysed and traded-off. Investigations in the possibility to perform hazard detection (slope, rocks, craters, etc.) with a camera system during the descent, might also be addressed. For an agreed reference application (i.e. Mars landing or rendezvous and capture), a baseline navigation chain solution, including IMU and complementary navigation sensors such as laser altimeter for landing applications, will be selected in agreement with the Agency.						
The adapted GNC	The adapted GNC components and algorithms will be validated in open loop for the agreed reference case.					
	Upon successful completion of this activity, closed-loop performance robustness of the candidate camera-aided GNC will be evaluated against requirements in a high fidelity simulation environment.					
Deliverables						
performance and	cumentation, covering as physical-based simulatio cloped during the activity	on model, and simulati	ion test campaign i	s, architecture, IP and navigation algorithms, esults		

Library of validated autonomous GNC components tailored to a Mars reference mission scenario (e.g. landing or rendezvous)					
Current TRL:	3	Target TRL:	4	Application Need/Date:	2011
Application Mission:	Precision lander, MSR		Contract Duration:	10	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

Sensor Data Fusion for Hazard Mapping and Piloting				
Programme:	TRP	Reference:	T905-008EC	
Title:	Sensor Data Fusion for Hazard Mapping and Piloting			
Total Budget:	200			
Objectives				

An hazard detection and avoidance system contains a hazard mapping function that identifies the terrain characteristics and a piloting function that fuse the maps information and select the landing site. The main objective of the activity is to mature the data fusion techniques required when both active and passive optical sensors to perform the hazard mapping and piloting tasks inside the hazard detection and avoidance function that will fly on future Mars landing missions.

Description

Redundancy and the proper addressing of the illumination conditions for hazard detection and hazard avoidance in planetary landing applications using the current optical sensors technology often require the simultaneous use of both a passive sensor and of an active LIDAR. The various Agency-led activities on hazard avoidance considered either the fusion of camera-based (plus some altimetric data) images or LIDAR images with inertial measurements. It never considered the synergetic use of both LIDAR and camera or more generally of tiered fusion involving several heterogenous imaging sensors (optical, radar) where a sensor limitation can be compensated by the characteristics of another and while this can increase both robustness and the features set of the terrain sensing.

The activity will :

trade-off the possible terrain sensors fusion solutions for hazard detection & avoidance for planetary D & L applications
 develop the hazard mapping data fusion and their integration into some existing simulation environment (including the piloting function)

- perform the benchmarking of the proposed solutions based on their complexity, performance and robustness.
 - assess the applicability of the methods to terrain relative navigation.

Deliverables

The Agency will be provided with a technical dossier containing the performance test results, the hazard mapping functions implemented inside a complete hazard detection and avoidance function, the TNs describing all the development.

Current TRL:	2	Target TRL:		Application Need/Date:	2012
Application Mission:	MSR		Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER	TBD	
Consistency with Harmonisation Roadmap and conclusion:					

Sensor Data Fusion for Hazard Mapping and Piloting				
Programme:	ETP	Reference:	E905-008EC	
Title:	Sensor Data Fusion for Hazard Mapping and	d Piloting		
Total Budget:	200			
Objectives				
A hazard detection and avoidance system contains a hazard mapping function that identifies the terrain characteristics and a piloting function that fuse the maps information and select the landing site. The main objective of the activity is to mature the data fusion techniques required when both active and passive optical sensors to perform the hazard mapping and piloting tasks inside the hazard detection and avoidance function that will fly on future Mars landing missions.				
Description				

Redundancy and the proper addressing of the illumination conditions for hazard detection and hazard avoidance in planetary landing applications using the current optical sensors technology often require the simultaneous use of both a passive sensor and of an active LIDAR. The various Agency-led activities on hazard avoidance considered either the fusion of camera-based (plus some altimetric data) images or LIDAR images with inertial measurements. It never considered the synergetic use of both LIDAR and camera or more generally of tiered fusion involving several heterogenous imaging sensors (optical, radar) where a sensor limitation can be compensated by the characteristics of another and while this can increase both robustness and the features set of the terrain sensing.

The activity will :

trade-off the possible terrain sensors fusion solutions for hazard detection & avoidance for planetary D & L applications
 develop the hazard mapping data fusion and their integration into some existing simulation environment (including the piloting function)

- perform the benchmarking of the proposed solutions based on their complexity, performance and robustness.
 - assess the applicability of the methods to terrrain relative navigation.

Deliverables

The Agency will be provided with a technical dossier containing the performance test results, the hazard mapping functions implementated inside a complete hazard detection and avoidance function, the TNs describing all the development.

Current TRL:	2	Target TRL:		Application Need/Date:	2012
Application Mission:	MSR		Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER	TBD	
Consistency with Harmonisation Roadmap and conclusion:					

Further development of Sensor Data Fusion for Hazard Avoidance					
Programme:	GSTP Reference: G905-022EC				
Title:	Further development of Sensor Data Fusion for Hazard Avoidance				
Total Budget:	700				
Objectives					

Objectives

The goal of this activity is to further develop the fusion of sensor data for hazard avoidance and piloting initiated under two parallel studies (Astrium SAS and Spin.Works / T905-008EC). The activity bring the sensor data fusion techniques for hazard avoidance and piloting from a TRL 3 to TRL 5 through the implementation of the algorithms on a dedicated processor, along with an associated relative navigation scheme; the algorithm will then be test on a real-time PIL, which will include high-fidelity models of passive and active sensors.

Description

Future solar system landing missions will be targeting region of high scientific interest but with significant risk (e.g. craters, boulders, shadowed areas, slopes.) The availability of both cameras and active optical sensors (scanning Lidars, flash Lidar/3-D cameras) with their different characteristics in term of measurement type, rate and field-of-view led to the investigation of hazard detection algorithms that would fuse the data from these two sensor types (and additionally from inertial and altimetric sensors when available) to provide accurate hazard maps to the flight control software. Several sets of sensors pairs, fusion algorithm (fusing sensor data at low- or high level) and scenarios (Mars and asteroid) are being defined, implemented, simulated on SIL platform and benchmarked within the frame of activity T905-008EC run by two parallel teams, one lead by Astrium SAS (TRP activity) and the other by SpinWorks (ETP and TRP).

The logical next step is to further test the winning combination(s) performance in a PIL simulation test-bed with a dedicated processor for the HDA and relative navigation software. The main tasks of this follow-up activity shall be :

- to review the results of the two previous activities, including their conclusion on the relevance of the HDA algorithm to relative navigation and to select for both Mars and asteroid missions at most 2 sets of sensors/algorithms (specifically, the reliability of the method(s) in estimating local slope values and identifying dangerous areas with steep slopes shall be the primary selection criterion.)

- to assess whether it is required, for performance reasons, to implement the HDA and/or relative terrain navigation algorithm(s) on a dedicated processor, and in that case, to implement HDA and relative navigation algorithm on the dedicated processor (e.g. FPGA, DSP, LEON-FT);

- making use of ESTEC laboratory dSpace-based test bench, to integrate this processor into a PIL simulation, where the flight control software will be implemented on a LEON2 processor, and high-fidelity models of both optical sensors shall be used. In order to run real-time simulation, it might be necessary to restrict the tests to open-loop simulations only in order to feed high-realism virtual images to the sensor model;

- based on the simulation results, to assess the sensor/algorithm simulations in term of accuracy of hazard detection, accuracy of relative navigation and overall CPU performance.					
Deliverables					
 Sensor data fusion algorithms and associated real-time software Sensor data fusion processor Technical documents, including test documentation 					
Current TRL:	3	Target TRL:	5	Application Need/Date:	2017
Application Mission:	Mars/asteroid landing missions		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

MSR Precision landing navigation sensor adaptation - Engineering Model						
Programme:	ETP		Reference:	E916-003MM		
Title:	MSR Precision landin	g navigation sensor a	daptation - Engineering	g Model		
Total Budget:	1000					
Objectives						
EDLS sensors for Ma elegant prototype sha	Based on the results and requirements of the End-to-End optimisation and GNC design study, this activity will further develop the EDLS sensors for MSR High Precision Landing, building on the pre-developments performed under the Aurora program. An elegant prototype shall be manufactured to demonstrate the successful incorporation of HW and SW modifications and to be used in the MSR precision landing field testing which is a next step.					
Description						
navigation manoeuvi avoid hazards. This t breadboards have bee for a vision-based na Other studies are pla of data fusion between be performed safely These studies are exp rate, range, power, m fed into the developm The activity shall be In Phase 1 the specif During Phase 2 an el	res to be performed dur ask can be performed to en developed for demo- wigation demonstration nned to further define a different sensors to ass and with a high reliabil pected to have impacts hass and hardware to so nent of the sensor desig executed in two phases ications for an elegant	ing the precise landir by vision-based came instration purpose unc in and an imaging LIE and refine the EDLS (ist the Hazard mappin ity. on the sensing hardw ftware (GNC s/w to s gn, and the hardware s: prototype shall be con navigation sensor wil	GNC for high-precision ng and subsequent avoid are by refining the requ Sensor hardware/s/w) ir and software of the sense nsolidated and the detai 1 be manufactured and	in order to allow high s. Both systems have t , in particular the NP/ landing on Mars and dance piloting that ens irrements on accuracy atterfaces. This updated sors will be upgraded led desing of the sens	precision landing and been explored and AL/VisNav breadboard the optimum methods sure such landings can , resolution, update d information will be to meet them. or shall be established.	
Deliverables	0	0	1			
MSR Precision landi	ng EDL Sensor elegant	t prototype				
Current TRL:	4	Target TRL:	5	Application Need/Date:	2016	
Application Mission:	MSR		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER	T-7860		
Consistency with H	armonisation Roadma	ap and conclusion:				
Consistent						

Laser Planetary Altimeter Engineering Model

Programme:	ETP		Reference:	E905-019EC		
Title:	Laser Planetary Altime	eter Engineering Mod	lel			
Total Budget:	1500					
Objectives						
sequences of Mars an	The goal of this activity is to develop an Engineering Model of a compact laser altimeter to be used during the final stage of landing sequences of Mars and asteroid missions, and at low altitude (typically less than 7 Km). The engineering model shall be developed from the breadboards produced by the Assessment and Breadboarding of a Planetary Altimeter TRP (T905-003EC).					
Description						
The need for small, low-power and yet accurate altimeter for surface proximity operation of planetary lander can be identified for missions such as Mars lander (landing mechanism activation a few meters from the surface) and asteroid lander (landing, hovering and hazard detection). Following up on the Assessment and Breadboarding of a Planetary Altimeter TRP (T905-003EC), which will produce by 2014 a field-tested breadboard of a radar and a laser altimeter (for each, mass is less than 1Kg, power less than 5W), this activity shall develop the laser ABPA breadboard into an Engineering Model to be tested in a relevant environment. Main tasks shall include: - incorporation of the conclusions of the ABPA study, including the breadboard itself - update of mission requirements taking into account those of Mars and asteroid mission in development or proposed at the start of this activity, with a focus on accurate range measurement at low altitude (typically below 7 Km) design of the Engineering Model - development, procurement of parts and integration - testing, verification and validation, including the use of space environment simulator, and outdoor test campaigns, including dynamic testing to be performed with a suitable flying platform (e.g. drone, helicopter) reproducing the kinematics conditions of Mars/asteroid descent trajectories. At least in the case of Mars (a) terrestrial analogue terrain(s) shall be selected for its (their) optical properties.						
Deliverables						
Engineering Model						
Current TRL:	4	Target TRL:	6	Application Need/Date:	2018	
Application Mission:	Mars/Asteroid landing missions		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER			
Consistency with H	armonisation Roadma	ap and conclusion:				

Compressive Sensing Technologies for compact LIDAR systems				
Programme:	TRP	Reference:	T916-004MM	
Title:	Compressive Sensing	Compressive Sensing Technologies for compact LIDAR systems		
Total Budget:	475	475		
Objectives				
The objective of this activity is to assess and develop to TRL4, novel technologies for future compact imaging LIDARs based on compressive sensing techniques.				

Description

Imaging LIDAR sensors are currently foreseen to be used in various space applications like during the descent and landing of planetary spacecraft or supporting the rendezvous operation between two spacecraft (with or without cooperative targets).

Nowadays the major drawback of using traditional Imaging LIDAR sensors is still their high mass (>12Kg for the overall unit) and high power consumption (>80Watts). In addition these sensors, typically single element detectors using large mirror scanners, have limited performances for some of the space applications. For example for the planetary lander application the desired high number of image elements that the system has to scan, on a fixed field of view, to image the target full frame has a strong time constraint due to the dynamics of the landing. Several novel detector array technologies have emerged in Europe in the last years that can lead to the development of more compact Imaging LIDARs systems. However the current state of the art of these detector arrays in Europe is still far away (limited number of detector elements and fill factor) from the development of a fully flash type Imaging LIDAR system (no scanning).

Recently a novel imaging technique, designated as compressive sensing, has been identified as a possible technique also for ranging applications. Since only a single element detector is required for the measurements (ranging and imaging) based on compressive sensing the current lack of high pixel resolution arrays in Europe could be overcome. In addition the system can be used, in the same application, or as a single element ranging system (like an altimeter) or as 3D imager, depending only on the illumination/imaging modulation technology used and on the implemented operational mode. Imaging LIDARs based on compressive sensing offer more compact systems, as they do not need mechanical scanners, and in addition the signal to noise ratio

available for each measurement is much higher than when directly compared with flash type systems, thereby offering longer range/lower power operation than other techniques.

Within this activity technologies for a Imaging LIDAR system based on compressive sensing shall be investigated, assessed, breadboarded and tested. A technology development plan for the performance optimization of the selected technologies shall be elaborated and executed. The technologies shall be integrated into a Imaging LIDAR technology demonstration breadboard and tested in laboratory conditions. As a result of this activity the feasibility of Imaging LIDAR systems based on compressive sensing shall be verified and assessed for different space applications.

Deliverables						
Novel Imaging LIDAR technologies, Imaging LIDAR breadboard, data package						
Current TRL:	2	Target TRL:		Application Need/Date:	2017	
Application Mission:	MPL, MSR		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER	T-7860		
Consistency with Harmonisation Roadmap and conclusion:						

Ground Testing of Precision Landing navigation system					
Programme:	ETP		Reference:	E905-009EC	
Title:	Ground Testing of Pre	cision Landing navig	ation system	•	
Total Budget:	500				
Objectives					
	of the activity are to pe d for the Hazard avoida				
Description					
Equipment (EGSE) the terrain relative n EAGLE Avionics Te	field experiments using will be performed. The avigation and hazard av est Bench). The experim mance achieved under	tests will demonstrate voidance functions pre nent results will be pr	e via closed-loop experi eviously developed on a ovided in a format allo	iments the performance a flight-representative wing post-processing	ee and robustness of breadboard (e.g. and an evaluation of
Deliverables					
	delivered with validated and robustness of the M				s allowing verification
Current TRL:	4	Target TRL:	5	Application Need/Date:	TRL5 by 2017
Application Mission:	IM		Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER	TBD	
Consistency with Harmonisation Roadmap and conclusion:					

AOCS Sensor and Actuator Harmonisation Roadmap Issue 3, 3D Cameras, Aim D, System Study

Lowering system Breadboard for Mars landers				
Programme:	ETP	Reference:	E915-001MS	
Title:	Lowering system Breadboard for Mars landers			
Total Budget:	500			
Objectives				
To design and breadboard a lowering system for the EDL final phase of the Network science mission				
Description				
The Network Science Probes likely will require a lowering system that lowers the lander from the back cover before using its solid				

The Network Science Probes likely will require a lowering system that lowers the lander from the back cover before using its solid retro-rocket system for braking. A trade-off will be performed between different lowering systems such as the US bridle and descent rate limiter or an integrated system as proposed for the Netlander mission. Based on the requirements derived in the systems study

and the small lander EDLS GNC study, a breadboard will be built of the lowering system and its performance tested.						
Deliverables	Deliverables					
Documentation Lowering system breadboard and test results						
Current TRL:	3	Target TRL:	4	Application Need/Date:	TRL by 2013	
Application Mission:	Inspire, MPL	Inspire, MPL		12		
S/W Clause:	N/A		Reference to ESTER	None		
Consistency with Harmonisation Roadmap and conclusion:						
N/A						

Supersonic parachu	Supersonic parachute test on a MAXUS flight					
Programme:	GSTP		Reference:	G918-007MP		
Title:	Supersonic parachute	test on a MAXUS flig	ght			
Total Budget:	500					
Objectives						
	activity is to demonstrand reduce the reliance o					
Description						
As already proved feasible by the flight of the CIRA Sounding Hypersonic Atmospheric Re-entering Kapsule (SHARK) on the MAXUS-8 sounding rocket, the present activity shall make use of the spare payload volume, otherwise used for ballast, to perform a low cost flight test of a supersonic parachute on the MAXUS mission in 2015. Also, an initial internal feasibility study showed that there is possible to test a suitable sized parachute (1m diameter) in the available mass and volume constraints given by MAXUS, therefore there is a very good opportunity to develop state-of-the-art technologies for testing supersonic parachutes in Europe. The proposed activity includes: - the detailed design of the capsule, parachute and deployment system including instrumentation and avionics - the procurement (COTS)/development/manufacture of all items above - installation the payload on MAXUS - (launch) - post flight analysis The following minimum instrumentation is foreseen to obtain flight data for design: - Timer to measure events from MAXUS separation (initiation) to touchdown - Video of the deployment and steady state descent, - Accelerations and Angular rates of the capsule, - Axial force during deployment, and - Pressure sensor(s) Further, since the capsule will be analysed by CFD to assess the wake, heating and the stability for the reference mission, there is also an opportunity to test future mission capsule shape dynamics in relevant conditions						
Deliverables						
Reports of detail designs, flight data and post flight analysis. Also flight hardware (all items procured/developed/manufactured under the present activity).						
Current TRL:	5	Target TRL:	7	Application Need/Date:	2018	
Application Mission:	MREP		Contract Duration:	36		
S/W Clause:	N/A Reference to ESTER T-8101, T-8873, T-8940, T-7906			940, T-7906		
Consistency with H	armonisation Roadma	ap and conclusion:				
ATD Harmonisation	2012					

Entry, Descent and Landing Communications technology assessment				
Programme:	RP Reference: T906-008ET			
Title:	Entry, Descent and Landing Communications technology assessment			
Total Budget:	350			

Objectives

- To investigate and prepare for communication direct to Earth (DTE) allowing limited information (minimum redundant) about Lander health, position and its tracking during Entry Descent and Landing and - if necessary after landing - during robotic operations.

- To carry out investigations for optimum output possible with given radio signals transmitted during EDL, exploiting large antennas

on-ground if needed larger than 35 m.

- To identify critical technologies for on-board and on ground hardware.

Description

After the Beagle failure it has been recommended that ESA missions implement a means of providing information of the events occurred during the critical entry, descent and landing (EDL) phase so it is possible to perform an investigation in case of failure. It is therefore required that future missions implement a communications system capable of transmitting information during the EDL phase. Moreover, since the existence or the visibility of an orbiter cannot be guaranteed, it is mandatory to investigate a solution compatible with the transmission of information directly to Earth during this phase.

Increasing on-ground available aperture and combining different antennas in an interferometer (Very Long Baseline Interferometry) has proved to be extremely useful for detection and determination of the trajectory of Huygens when landing on Titan. The activity will be applicable to the entry, descent and landing phase on any planet or moon. Initially the Contractor shall analyse the corresponding mission scenarios and system requirements; considering among others the following systems aspects e.g. plasma environment, black-out effect, signal dynamics, etc.

A Multiple Frequency Shift Keying (MFSK) X-band system has been implemented by NASA but its detection is a very demanding task for a receiver. Current investigations indicate that with a 35m G/S and the state of the art on board technology, the required C/No to receive specific MFSK tones is not fulfilled in all circumstances at the ground station receiver.

The Contractor shall investigate the following concepts: -Define precise communication scenarios RF requirements for on-board hardware, noting EDL power limits.

-Study different types of on-board antennas compatible with different EDL module configurations and analyse antenna patterns to provide a required Earth coverage at all times

-Evaluate time accuracies needed and oscillator performances

-Investigate other approaches for the transmission of data (e.g. coherent/non-coherent tones, modulation schemes, etc.)

The Contractor shall investigate for such scenarios the possible ground system solutions:

-Addition of apertures and VLBI/interferometer capabilities, cooperating with radio astronomy community

-Demonstrate how to arrive at accuracies like 100m rms, assisted by experiments,

-Exploit latest capabilities of the radio-astronomy community and the ground segment community, including E-VLBI

-Cooperate with European VLBI Network as external service.

-High bit-rate interconnect to central correlator will need to be adapted for SC tracking.

-Exploitation of software code developed for Huygens trajectory determination as applicable.

The contractor shall investigate the signal reception by a G/S receiver:

-Consolidate the receiver requirements;

-Study ways to improve the receiver architectures capable to detect the EDL signal under extreme conditions defined in the course of the activity with ESA 35m antennas.

Deliverables

-Propose different communication architectures and select the most promising one for an EDL receiver architectural concept identifying the critical technologies with subsequent breadboarding (proof-of-concept) required for high-risk developments;

TN's, reports, Final Report

Current TRL:	2	Target TRL:	1	Application Need/Date:	2018
Application Mission:	INSPIRE, PHOOTPRINT, MPL		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8738	
Consistency with Harmonisation Roadmap and conclusion:					
Harmonization Dossier "TT&C Transponders and Payload Data Transmitters" 2012.					

Compact Dual UHF/X-band Proximity-1 Communications Package EQM				
Programme:	ETP	Reference:	E906-009ET	
Title:	Compact Dual UHF/X-band Proximity-1 Communications Package EQM			
Total Budget:	2500			
Objectives				
The aim of this activity is to develop and test an Engineering and Qualification Model of a compact dual frequency (UHF/X-band) communication package for Mars lander/rover missions				

Description

The activity is a follow on of the completed TRP activity: Dual UHF/X-band communications package study

This activity targets the design, development and testing of an engineering and qualification model of a communications package for planetary probes/landers/rovers which is able to communicate both with an Orbiter (for data relay) and directly to the Earth from the surface of Mars. The design is flexible to cope with the different mission requirements, e.g. implementation of the UHF only capabilities, X-band functions o both while keeping compact unit dimensions and low mass.

Mars missions typically implement a UHF proximity-link with a data-relay Orbiter as their primary link for returning science data. The use of relay links is attractive for reasons of power efficiency and higher possible data-rates compared to direct-to-Earth links. Nevertheless, in order to support communications during Entry Descent and Landing (EDL), for contingency cases or missions in which an orbiter cannot be guaranteed, the inclusion of a direct link to/from Earth in the X-band is required.

The direct to Earth link will be implemented in the X-band Deep Space band frequency allocation.

The direct link with Earth offers some advantages; it is not subject to the usual delay in operations due to the visibility of the orbiter from the Earth, allowing the possibility to upload operational commands in real time. This equipment could also be used besides the nominal surface operations, during the cruise phase, in emergency situations and for contingency operations, as well as during the entry, descent an landing (EDL) phase either by transmitting health status beacon tones or modulated telemetry.

Instead of fitting two separate transponders into the constrained lander/rover, a single unit serving both UHF and X-band links would bring important savings in mass and volume without sacrificing functionality or mission safety.

Deliverables						
Technical Notes, EQM, EIDPs						
Current TRL:	3	Target TRL:	6	Application Need/Date:	2026	
Application Mission:	INSPIRE, MSR		Contract Duration:	29		
S/W Clause:	IN/A		Reference to ESTER	T-8738		
Consistency with Harmonisation Roadmap and conclusion:						
Harmonization Dossier "TT&C Transponders and Payload Data Transmitters," 2012						

Breadboarding of 1	EDL Ground Receiver		
Programme:	ETP	Reference:	E906-010GS
Title:	Breadboarding of EDL Ground Receiver		·
Total Budget:	300		
Objectives			
the landers during E identify the critical t	ts of a previous activity on EDL Comms that intry, Descent and Landing (EDL) phases, this technologies for the ground receiver and Brea of the critical technologies.	is activity will produce	the architectural design of the EDL receiver,
Description			
A preceding activity a communications s cannot be guarantee A Multiple Frequen- task for a receiver. C C/No to receive spec The architecture of a order to allow the co The receiver archite	lure it has been recommended that ESA miss tical EDL phase, to allow an investigation in on EDL communications technology assess ystem capable of transmitting information du d, the solution shall allow transmission of ini- cy Shift Keying (MFSK) X-band system has Current investigations indicate that with a 35n cific MFSK tones is not fulfilled in all circun a receiver able to deal with the signal receive communication system assessment. cture will be finalised and a breadboard prod	case of failure. ment under TRP will have the EDL phase. M formation directly to Ea been implemented by 1 m antenna and the state nstances at the ground s d during EDL phase, w fuced and validated und	ave assessed and defined the architecture of loreover, since communications by an orbiter arth during EDL phases. NASA but its detection is a very demanding of the art on board technology, the required station receiver. rill be drafted in the previous activity, in
 Consolidate the recidentified, with ESA Produce the architt Identify the critica breadboard (proof- Design and develo 	of the previous EDL Comms activity the Co quirements of the ground receiver capable to A ESTRACK 35m antennas; ectural design of the EDL receiver, l technologies. -of-concept) required for the high-risk develop p the breadboard of the complete EDL Groun lation of the breadboard receiver development	detect the EDL signal to opments; nd receiver (BB EDL R	x)

Propose different communication architectures and select the most promising one for an EDL receiver architectural concept identifying the critical technologies with subsequent breadboarding (proof-of-concept) required for high-risk developments;

TN's, reports, Final Report						
Current TRL:	2	Target TRL:	4	Application Need/Date:	2018	
Application Mission:	INSPIRE, PHOOTPRINT, MPL		Contract Duration:	18		
S/W Clause:			Reference to ESTER	T-8738		
Consistency with H	armonisation Roadma	ap and conclusion:				
Harmonization Doss	ier "TT&C Transponde	rs and Payload Data	Fransmitters" 2012.			

Preliminary design **Programme:** ETP **Reference:** E918-008MP Title: Preliminary design and performance verification of critical elements for guided entry thrusters **Total Budget:** 800 Objectives Preliminary design and performance verification of critical elements for thrusters guided entry on Mars Description For a precision landing (on Mars) it is strictly required to guide and control the capsule in the first part of the entry. Indeed the most importance source of dispersion is the hypersonic flight. The NASA Phoenix capsule was designed aiming at a controlled and guided entry but a more detailed analysis of the interaction of the jets of the Reaction Control System (RCS) and the flow at hypersonic and supersonic conditions suggest a significant interference capable to reduce the efficiency of the thrusters or even produce control reversal. The hypersonic guidance was finally

removed from the Phoenix EDL architecture in 2005.

The activity shall focus on 3 sequential aspects:

- the preliminary design of a RCS capable to control and guide a reference entry probe of the ESA's Mars Precision Lander mission. To this end the contribution of the RCS to forces and moments in low density flow have to be estimated taking into account the heat fluxes on the capsule surfaces due to the impingement of the hot gases. DSMC-CFD calculations (and ad-hoc preliminary tests if necessary) shall be foreseen. The jet flow interaction shall be assessed in view of system (propulsion, accommodation, performance, flight mechanics) implications/aspects.

- derive the requirements for a test campaign (in an aerodynamics rarefied facility) to verify the performance of the designed system. Particular importance shall be given to appropriate duplication of flight conditions and accurate measurement techniques. - Prepare (and eventually modify/upgrade) the selected facility and measurement techniques where to performed the test campaign

note: This activity prepares the actual test campaign of Mars guided entry thrusters system to TRL 5 in a following activity.

Del	liveı	abl	les

Reports and databases. Computational (and experimental) data. Test campaign requirements. Preparation (modification/upgrade) of the selected facility

Current TRL:	2	Target TRL:		Application Need/Date:	2019
Application Mission:	MPL		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	T-8101, T-8940, T-8	093
Consistency with Harmonisation Roadmap and conclusion:					
ATD Harmonisation 2012					

Mars guided entry thruster system to TRL5					
Programme:	ETP	Reference:	E918-009MP		
Title:	Mars guided entry thruster system to TRL5				
Total Budget:	1000	1000			
Objectives					
Raise the Technology Readiness Level of a Mars guided entry thruster Control System (RCS) to 5. Measurement of aerodynamic					

forces and moments, entry	forces and moments, heat fluxes and chemical contaminations produced by the RCS during the first stage of planetary atmosphere entry				
Description					
MREP-2 TDA "Preli	iminary design and perf	formance verification	ign requirements and th of critical elements for of a Mars guided entry	guided entry thruster	
- precise estimate of	ent of the contribution heat fluxes and contam	ination on the capsul	ol System (RCS) to for e surfaces due to the im flight conditions and a	pingement of the hot	gases of the RCS.
Deliverables	· · · · ·		-		
Reports and database	es. Experimental data ir	n electronic format (n	umerical data if availab	le)	
Current TRL:	3	Target TRL:	5	Application Need/Date:	2023
Application Mission:	MPL (controlled entri	es)	Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8101, T-8940, T-8	3093
Consistency with H	armonisation Roadma	ap and conclusion:			
ATD Harmonisation	2012				
Integrated throttlea	ble valve and engine	development for Ma	rs landings		
Programme:	TRP		Reference:	T919-001MP	
Title:	Integrated throttleable	valve and engine dev	elopment for Mars land	lings	
Total Budget:	650				
Objectives					
			alve for use as part of a ght like configuration v		
Description					
this landing is also o becomes desirable. E exploration robotic r clear case for Europe	f increasing importance Both these requirements nissions requiring a sof ean independence.	as site selection become are best met with a p t landing such as MSI	ace with a large payloa omes a driver for scienc ropulsion system with R and its precursors wil	e. Automatic hazard a capacity for thrust r l require dedicated er	avoidance also nodulation. Any ngines that represent a
			e to landing site contan efficient propulsion sul		ns. Further, the relative
under the TRP progr repeatability on a dev	am is to be limited to fl velopment model. Only	ow path development simulants are to be u	se that this capability c t of the valve and obtain sed and the valve will n traints in the developm	ning metrics for flow not be coupled with a	quality and
The activity proposed herein is to take the previous work at valve level and examine the issues of coupling the valve to a flight engine. The activity scope is to include:					
 Further development of the development model (DM) valve to include a flight like interface Design development and manufacture of throttle valve elegant breadboard DM Design and manufacture of valve driver electronics elegant breadboard DM - Demonstration of combined valve and controller in conjunction with battleship/existing chamber and catalyst bed. Valve development and verification based on existing mono-propellant hardware Verification of engine thermo-mechanical behaviour and catalyst performance in throttled conditions Preliminary requirements definition on a throttleable engine of 2.5-3.0kN rated thrust with a deep throttling capability Preliminary design definition and justification of a mission specific chamber and catalyst bed 					
be front loaded to co	A European product development in this area can be based on initial know-how built in the past by European industry and needs to be front loaded to cover throttle valve development which is an essential component of the overall engine design. Engine chamber technology already exists at a stand alone TRL of 5, however, the combined TRL is at best 3.				
Deliverables					
DM engine, valve an	d drive electronics mod	lels			

Valve PDR data pack (based on a generic URD) Engine PRR datapack						
Current TRL:	3	Target TRL:	4	Application Need/Date:	TRL 5 by 2016	
Application Mission:	Mars Precision Land	Mars Precision Lander, MSR Con		24		
S/W Clause:	N/A	N/A				
Consistency with Harmonisation Roadmap and conclusion:						
C3: 1-3 KN Throtta	able Engine(s) The dece	nt engine is likely to 1	equire mono-propellant	for Mars applications	(though bi-propellant	

C3: 1-3 KN Throttable Engine(s) The decent engine is likely to require mono-propellant for Mars applications (though bi-propellant remains an option for lunar landing)

	TOTAL STATE		D 0	E040.000 (D			
Programme:	ETP		Reference:	E919-003MP			
Title:	Design, development	Design, development and testing of a throttleable monopropellant engine for soft landing					
Total Budget:	4000						
Objectives							
	Phase 2 development to CDR of an all European 2.5-3.5 kN throttleable monopropellant engine for use as part of an all European Martian Entry Descent and Landing System (EDLS)						
Description							
The MSR mission (and any proposed landing on the Martian surface with a large payload) requires a soft landing. The precision of this landing is also of increasing importance as site selection becomes a driver for science Automatic hazard avoidance also becomes desirable. Both these requirements are best met with a propulsion system with a capacity for thrust modulation. Any exploration robotic missions requiring a soft landing such as MSR and its precursors e.g. Mars Precision Lander will require dedicated engines that represent a clear case for European independence. The activity described herein is intended as a follow on from a TRP activity (T919-001MP).							
exploration robotic dedicated engines	. Both these requirements c missions requiring a sof that represent a clear case	s are best met with ft landing such as N	a propulsion system with ASR and its precursors e.g	a capacity for thrust r . Mars Precision Lan	modulation. Any der will require		
exploration robotic dedicated engines	. Both these requirements c missions requiring a sof that represent a clear case	s are best met with ft landing such as N	a propulsion system with ASR and its precursors e.g	a capacity for thrust r . Mars Precision Lan	modulation. Any der will require		
exploration robotic dedicated engines from a TRP activit	. Both these requirements c missions requiring a sof that represent a clear case	s are best met with ft landing such as N	a propulsion system with ASR and its precursors e.g	a capacity for thrust r . Mars Precision Lan	modulation. Any der will require		
exploration robotic dedicated engines from a TRP activit Deliverables	. Both these requirements c missions requiring a sof that represent a clear case	s are best met with ft landing such as N	a propulsion system with ASR and its precursors e.g	a capacity for thrust r . Mars Precision Lan	modulation. Any der will require		
exploration robotic dedicated engines from a TRP activit Deliverables TBD	. Both these requirements c missions requiring a soft that represent a clear case ty (T919-001MP).	s are best met with ft landing such as N e for European inde	a propulsion system with ASR and its precursors e.g ependence. The activity de	a capacity for thrust r mars Precision Land escribed herein is inte Application	modulation. Any der will require ended as a follow on		
exploration robotic dedicated engines from a TRP activit Deliverables TBD Current TRL: Application	. Both these requirements c missions requiring a soft that represent a clear case ty (T919-001MP).	s are best met with ft landing such as N e for European inde	a propulsion system with ASR and its precursors e.g ppendence. The activity de 6	a capacity for thrust r Mars Precision Land escribed herein is inte Application Need/Date:	modulation. Any der will require ended as a follow on		
exploration robotic dedicated engines from a TRP activit Deliverables TBD Current TRL: Application Mission: S/W Clause:	. Both these requirements c missions requiring a soft that represent a clear case ty (T919-001MP).	s are best met with ft landing such as N e for European inde Target TRL:	a propulsion system with ASR and its precursors e.g pependence. The activity de 6 Contract Duration: Reference to ESTER	a capacity for thrust r mars Precision Landescribed herein is inter Application Need/Date: 24	modulation. Any der will require ended as a follow on		

SFR Robotics and Mechanisms

Innovative Rover	Operations Concepts-	Autonomous Plan	ning (IRONCAP)				
Programme:	TRP		Reference:	T309-002HS			
Title:	Innovative Rover Ope	Innovative Rover Operations Concepts- Autonomous Planning (IRONCAP)					
Total Budget:	400						
Objectives							
Preparing for futur and technologies.	e robotic missions in the	long-term. Investig	gation and prototyping of	autonomy concepts	and operations concepts		
Description							
how existing mode	ls can be re-engineered	to use the standard to how the enhanced	an Exploration Family of interfaces. This study will ground models can increa ays and complexity.	incorporate some e	xisting simulator models		
Current TRL:	1	Target TRL:	3/4	Application Need/Date:	2012		
Application Mission:	Exomars follow-on	Exomars follow-on		12			
S/W Clause:	Operational Software		Reference to ESTER	T-8430, T-8431			
	и						
Consistency with	Harmonisation Roadm	ap and conclusion	1:				

Spartan EXTension Activity - Not Tendered (SEXTANT)				
Programme:	ETP	Reference:	E913-005MM	
Title:	Spartan EXTension Activity - Not Tendered	Spartan EXTension Activity - Not Tendered (SEXTANT)		
Total Budget:	180			
Objectives				

Extension of the SPARTAN deliverables to include:

1) Implementation of the algorithms that scored 2nd and 3rd in the algorithmic trade-off, cross comparison in terms of performance with respect to different terrain typologies

2) assessment of feasibility and prototyping of use of a-priori available top-down maps in the SLAM algorithm

Description

The SPAring Robotics Technologies for Autonomous Navigation (SPARTAN) activity targets the development in hardware logic (on FPGA) of computer vision algorithms used by Martian rovers in visual navigation and localisation. The activity has completed the first part, which consisted in selecting algorithms that have performance fullfilling the application requirements and that also have potential for an efficient implementation. As the trade-off was based for some criteria on estimates (factual data can only be derived by implementing the algorithm), it is possible that the algorithms ranked 2nd and 3rd may have performance similar or better than the selected ones. Therefore the activity in subject shall address the implementation of these runner-up algorithms and perform a comparison between them and the originally selected ones.

In the SPARTAN architecture, a Simultaneous Localisation and Mapping (SLAM) algorithm is implemented. Such algorithm participates to the localisation function. SLAM operates on visual features seen through rover cameras. However SLAM algorithms can also work on maps where other unique features (e.g. boulders scattered on a plain) are evident. Considering the flexibility of the algorithm and the fact that high-resolution orbital maps of the Martian surface are likely to be available long before a rover will be there, there is potential to improve the absolute localisation accuracy of a rover by merging the SLAM processing of rover images with orbital maps.

Therefore the activity in subject shall also investigate the possibility to integrate orbital maps into the SLAM part of SPARTAN.

Deliverables

Additional hardware logic implemented in the standard SPARTAN deliverables Additional documentation covering these development activities.

Current TRL:	2	Target TRL:		Application Need/Date:	TRL5 by 2015	
Application Mission:	SFR, MSR		Contract Duration:	12		
S/W Clause:	N/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

Code Optimisatio	n and Modification for	Partitioning of Al	lgorithms developed in S	PARTAN/SEXT	ANT (COMPASS)		
Programme:	TRP		Reference:	T913-011MM			
Title:	Code Optimisation an (COMPASS)	Code Optimisation and Modification for Partitioning of Algorithms developed in SPARTAN/SEXTANT (COMPASS)					
Total Budget:	200						
Objectives							
Enhance TRL of S	PARTAN/SEXTANT co	mputer vision core	es, for navigation, towards	flight			
Description							
have been turned in are not currently qu activity proposes to FPGA into network - Programme of wo 2. detailed design	nto vectorial and pipeline ualified for space use and o re-engineer the SPART	ed cores so that the l even when they w AN/SEXTANT co ces thus allowing t n of system and val	he possibility of using Eu	st FPGA devices. ject to US export 1 rtitioned and porte	However, these devices restrictions. The subject d from the present single-		
	1						
 standard project of technical notes, FPGA cores demonstrators 	locumentation						
Current TRL:	3	Target TRL:	4	Application Need/Date:	2015		
Application Mission:	MSR, PHOOTPRINT	, future rovers	Contract Duration:	18			
S/W Clause:	N/A	N/A Reference to ESTER T-8937					
Consistency with	Harmonisation Roadma	ap and conclusion	:				
The activity was no	ot addressed by the 2012	harmonisation exe	rcise on A&R, although it	ts precursor activit	ies were presented.		

Planetary Explorer LOcalisation-navigation Ready for USe (PELORUS)					
Programme:	GSTP	Reference:	G913-016MM		
Title:	Planetary Explorer LOcalisation-navigation Ready for USe (PELORUS)				
Total Budget:	2000				
Objectives					
This activity shall achieve Technology Readiness Level (TRL) 5 for the hardware logic cores of computer vision algorithms (for use by Martian rovers in visual navigation and localisation) that have been developed in the previous SPARTAN/SEXTANT and COMPASS activities.					
Description	Description				
Background:					

The "SPAring Robotics Technologies for Autonomous Navigation (SPARTAN)" activity has implemented in logic cores a series of computer vision algorithms necessary to implement navigation systems for planetary probes. Starting from their mainly sequential description, the algorithms have been turned into vectorial and highly-pipelined cores so that they can con work in the latest FPGA

devices. The "Spartan EXTension Activity - Not Tendered (SEXTANT)", in the final stage of development at the time of writing, has been extending the number of algorithms used (to allow robustness) and also it has been implementing a landmark-based global localisation scheme. The activity "Code Optimisation and Modification for Partitioning of Algorithms developed in SPARTAN/SEXTANT (COMPASS)", in initiation at the time of writing, will partition the cores and port it from the present single-FPGA implementation (only possible with non qualified US FPGAs) into networks of smaller FPGA devices thus allowing the possibility of using Europeansourced FPGAs. The timing of conclusion of the sequence of the three activities coincides with the first availability of high-density all-European FPGA (end of 2014). At the end of the three activities the logic cores will be mature for a transition into a hardware/software architecture representative of a real space mission. The PELORUS activity will take advantage of this fortunate conjunction to develop a hardware implementation of the cores based on the new FPGA. Programme of work: 1. Definition of requirements 2. Co-design of the hardware and software 3. Manufacturing Coding and Assembly of the co-design 4. Testing in relevant environment 5. Closure of activity Deliverables 1. Normal project documentation 2. logic cores and supporting software 3. hardware implementation 4. test environment Application **Current TRL:** 3 **Target TRL:** 5 2017 Need/Date: Application MSR **Contract Duration:** 24 Mission: Reference to T-8937 S/W Clause: N/A ESTER Consistency with Harmonisation Roadmap and conclusion:

DExtrous LIghtweight Arm for exploratioN (DELIAN)							
Programme:	TRP	Reference:	T913-003MM				
Title:	DExtrous LIghtweight Arm	DExtrous LIghtweight Arm for exploratioN (DELIAN)					
Total Budget:	800						
Objectives							
operation/applicat	ion of scientific instruments/too		e) capable of implementing 1) deployment and ion/trenching/scooping of granular soil 3)				
Description							
The activity is a follow-on from a previous system study on a Sample Fetching Rover for MSR. The activity shall: 1) further detail the system requirements related to the robotic arm produced by the SFR system activity, include additional requirements that will be provided by the SOW, define verification requirements 2) re-visit the conceptual design on the basis of the updated requirements 3) design and validate by simulation the design 4) Manufacture, assemble and integrate the arm 5) test and demonstrate the breadboard 6) provide recommendations on technology development							
integrated testing	The breadboard is needed: 1) to verify attainable performance and identify technological issues, 2) to provide a platform for integrated testing of sampling tools, sampling procedures, and the overall system.						
Deliverables							
	ystem Requirement Document, documenting the tests	Detailed Design Document, User	Manual, test report, video describing the				

2013

Hardware: breadboard of robot arm Software: executable code to enable use and testing					
Current TRL:	2	Target TRL:	3	Application Need/Date:	2013
Application Mission:	IM		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	T-2, T-7717	
Consistency with Harmonisation Roadmap and conclusion:					

Programme:	TRP		Reference:	T913-004MM	
Title:	Surface-Wheel Intera	action modelling for Fa	ster Traverse (SV	VIFT)	
Total Budget:	400		× *	·	
Objectives					
physical propertie		interaction with planeta		merical modelling techniques of the relevant port of the design of energy efficient	
Description					
wheels of MREP immobilisation. In	programme's future Sam	ple Fetching Rover (SF	R) to optimize er	soil, is required for design of suspension and nergy consumption as well as reduce risk of (important for the SFR) is also an area that can be	
This activity will: - Develop a beta version (working implementation) of a S/W modelling tool for use in predicting rover/lander vehicle-soil performances and to aid in the design of better wheels. A future extension for sample handling/processing tools can be envisaged; - Use modern FEM methods to create models of Martian soil mechanics properties based on extracted in-situ data of the Martian soil from previous Mars orbital and surface missions complemented by terrestrial experimental data on representative simulants; - Validate the simulation tool through tests under controlled conditions on existing testbeds, and through utilisation of the extensive test results from the ExoMars wheel and loco system tests to be undertaken from starting Oct 2010; - Produce a parametric tool useable by non-experts at ESA and in aerospace industry based on outcomes of a large number of simulation runs.					
	ity would be desirable to ., MEX, MRO, MSL) and			through additional testing using new data (from	
Phase 1: Review of state-of-the-art and identification of centres of expertise, existing numerical simulation tools and test equipment of the useable parts of soil mechanics and terramechanics for numerical modelling of terrain-vehicle interaction. This includes analysis of effects of gravity and Mars surface environment conditions such as atmospheric composition and temperature. Relevant literature, sources of experimental data and relevant facilities shall be identified and a validation plan shall be set up in order to correlate the simulation results with experimental data.					
Phase 2: Development, Validation and Application of Numerical Simulation Tools. Work shall be organized as a S/W project with involvement of selected experts, shall include requirements elicitation for simulation tools and test equipment, procurement and implementation of simulation tools, their validation by means of existing testbeds. Based on the outcome of the literature survey and analysis, if required, dedicated equipment shall be used to assess possible effects of Martian atmospheric and temperature conditions on soil behaviour and these effects shall be included in the s/w model if they are shown to impact the soil behaviour significantly. Definition of conditions for terrestrial tests, e.g. relative density for the simulants and the means to realize these conditions in practice , is part of the work.					
Note: This activity	y could also benefit ESA	's lunar lander/ rover m	nission.		
Deliverables					
 Experimentally State-of-the art 	mechanics models of man determined soil paramet numerical techniques for	ers of martian soil sime modelling vehicle-ter	rain interaction	on subsystem design purposes by non-expert	

4. An easy-to-use, validated parametric model for system engineering of locomotion subsystem design purposes by non-expert users, at ESA and in industry.

 Current TRL:
 1
 Target TRL:
 4
 Application Need/Date:

Application Mission:	SFR, MSR	Contract Duration:	24	
S/W Clause:	N/A	Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:				
Consistent with harmonisation on Automation and Robotics exercise 2001.				

Title:	EXperimental Product (EXPERTISE) 300	ion of data/Eviden	ce on Rover Tractive perf	ormance In Soils r	elevant for Exploration			
Ű	300							
Objectives			300					
Characterization of m simulants.	artian soil simulants a	nd production of d	ata on tractive performance	es of existing rove	er wheel models on these			
Description								
programmatic reasons types of data will allo SWIFT (Surface-Whe Thorough expertise in	s. Moreover no data on w complementary vali cel Interaction modellin	the characterization dation of the mode ng for Faster Trave	ndustrial activities were s on of the simulants has be elling based on Finite Eler erse). equipment is required for	en provided. In the nent techniques fo	e first instance these two reseen in the TRP activity			
Deliverables								
1	hanics characterization ion test report and data		based mainly on triaxial to	ests.				
Current TRL:	2	Target TRL:	3	Application Need/Date:	TRL5 by 2015			
	SFR			12				
Application Mission:	SFR		Contract Duration:	12				

Dust Unseating from Solar-panels and Thermal-radiators by Exhaling Robot (DUSTER)				
Programme:	TRP	Reference:	T913-008MM	
Title:	Dust Unseating from Solar-panels and Thermal-radiators by Exhaling Robot (DUSTER)			
Total Budget:	450			
Objectives				

Breadboarding and validation of a robotic system for cleaning solar arrays and thermal radiators, using the only proven-to-work-on-Mars dust removal principle.

Description

MER operations showed that wind, in the form of dust-devils, was a very efficient way to clean the rover solar panels. The proposed R&D activity aims at implementing the "air-cleaning" principle with simple robotic means that can blow dust off of critical surfaces. The manipulator, placed in a suitable location on the rover can puff air from its tip. The manipulator moves its tip on a pattern designed to progressively blow off the dust from the inner surfaces to the edges.

The main advantages of this solution are:

1) that it uses the only cleaning principle known to certainly work on Mars,

2) that it can be independent of the geometry and configuration of solar array and thermal radiators,3) it does not impose extra hardware on these already densely populated surfaces, and,

4) it could potentially clean other surfaces (e.g optics of instruments).

The activity shall:

1. address the design, development of the three main elements of air-puffing system being 1) an ultra-lightweight stick manipulator including the bellow-duct technology to route the air in the joints, 2) a Martian-air compressor, 3) a puffing nozzle 2. define the optimal configuration for their placement on the deck of a planetary rover (SFR could be considered a study case) and

the optimal operational use

3. Validate the system through testing of a breadboard in representative Martian environment

The stick manipulator shall (and can) be extremely light as being just made of air ducts and simple joints having no demanding positioning/orientation accuracy. The compressor is assumed to be best placed at the manipulator base. Potentially also all actuators can be placed at the base of the manipulator. In the case that another arm is present on the rover (e.g. DELIAN) the control electronics can be shared between the two systems.

Overall the activity shall aim at implementing the design of the DUSTER within very constrained mass envelope (few hundred grams) and with minimalist stowage and packing. A functional system demonstrator shall be produced. The activity finally shall also produce breadboard(s) to validate the DUSTER system and characterise its performance by tests in a simulated Martian environment.

Deliverables

1. DUSTER system functional demonstrator

2. DUSTER breadboard(s)

3. Test results.

Current TRL:	1	Target TRL:		Application Need/Date:	TRL5 by 2017
Application Mission:	INSPIRE, SFR		Contract Duration:	18	
S/W Clause:	IN/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

Dust Unseating from Solar-panels and Thermal-radiators by Exhaling Robot (DUSTER)					
Programme:	TRP	Reference:	Т913-008ММ-В		
Title:	Dust Unseating from Solar-panels and Thermal-radiators by Exhaling Robot (DUSTER)				
Total Budget:	450				

Objectives

Breadboarding and validation of a robotic system for cleaning solar arrays and thermal radiators, using the only proven-to-work-on-Mars dust removal principle.

Description

MER operations showed that wind, in the form of dust-devils, was a very efficient way to clean the rover solar panels. The proposed R&D activity aims at implementing the "air-cleaning" principle with simple robotic means that can blow dust off of critical surfaces. The manipulator, placed in a suitable location on the rover can puff air from its tip. The manipulator moves its tip on a pattern designed to progressively blow off the dust from the inner surfaces to the edges.

The main advantages of this solution are:

- 1) that it uses the only cleaning principle known to certainly work on Mars,
- 2) that it can be independent of the geometry and configuration of solar array and thermal radiators,
- 3) it does not impose extra hardware on these already densely populated surfaces, and,
- 4) it could potentially clean other surfaces (e.g optics of instruments).

The activity shall:

1. address the design, development of the three main elements of air-puffing system being 1) an ultra-lightweight stick manipulator including the bellow-duct technology to route the air in the joints, 2) a Martian-air compressor, 3) a puffing nozzle

2. define the optimal configuration for their placement on the deck of a planetary rover (SFR could be considered a study case) and the optimal operational use

3. Validate the system through testing of a breadboard in representative Martian environment

The stick manipulator shall (and can) be extremely light as being just made of air ducts and simple joints having no demanding positioning/orientation accuracy. The compressor is assumed to be best placed at the manipulator base. Potentially also all actuators can be placed at the base of the manipulator. In the case that another arm is present on the rover (e.g. DELIAN) the control electronics can be shared between the two systems.

Overall the activity shall aim at implementing the design of the DUSTER within very constrained mass envelope (few hundred grams) and with minimalist stowage and packing. A functional system demonstrator shall be produced. The activity finally shall

also produce bread environment.	lboard(s) to validate the I	OUSTER system and	d characterise its perform	hance by tests in a sin	nulated Martian
Deliverables					
 DUSTER system DUSTER bread Test results. 	n functional demonstrato board(s)	r			
Current TRL:	1	Target TRL:	3	Application Need/Date:	TRL5 by 2017
Application Mission:	INSPIRE, SFR	INSPIRE, SFR		18	
S/W Clause:	N/A	N/A			
Consistency with	Harmonisation Roadm	ap and conclusion:			
Solar-Panel Or T	hermal-radiator cLEan	ing Sub System (Sl	POTLESS)		
Programme	ETP		Reference:	E913-015MM	

Programme:	ETP		Reference:	E913-015MM	
Title:	Solar-Panel Or Therm	al-radiator cLEaning	Sub System (SPOTLE	SS)	
Total Budget:	1400				
Objectives					
	rther develop the most p es and test in relevant e				arly technology
Description					
008MM DUSTER o TRL and develop a f The activity will loo interfaces and lander lander/rover design i specification of dust be tested in a Martia resources, cleaning e Programme of work: 1. requirement speci 2. preliminary design 3. detailed design 4 Manufacturing, ass 5. Testing 6. Closeout		IM study concepts). T removal system, tailor nder/rover subsystem issues will be thorou, d-to-end control of th renarios targeted to th ator both for validatio l scenarios, etc.) lation setup	The system design shall red to the candidate MF (using INSPIRE or Sm ghly investigated and in the dust cleaning system e INSPIRE/SFR missic	be revisited with the REP2 mission needs. hall Rover as reference incorporated in the des will be designed as wo ons will be outlined. F	scope to increase the e cases), where sign, as much as the vell as the detailed Finally the system will
Deliverables					
 project documentat technical notes, SPOTLESS hardway test data 					-
Current TRL:	3	Target TRL:	6	Application Need/Date:	2015
Application Mission:	INSPIRE, MSR		Contract Duration:	20	
S/W Clause:	N/A Reference to ESTER T-1, T-9012				
Consistency with H	armonisation Roadma	ap and conclusion:			
The activity was not	addressed by the 2012	harmonisation exerci	se on A&R, although it	ts precursor activity w	vas presented

Mechanisms technologies that operate at very low temperatures					
Programme:	ETP	Reference:	E915-002MS		

Title:	Mechanisms technologies that operate at very low temperatures
Total Budget:	475
Objectives	

Objective

Development of mechanisms technologies (e.g. solid lubrication, surface treatments, bearings etc) that allow mechanisms to have safe operating temperatures below -40C, and as low as -100C (with flight allowable temperatures even lower than that) to allow the operation of rover locomotion systems, robotic arms, and other such deployable systems without significant pre-heating.

Description

The current pre-heating requirements of deployable mechanisms on Mars landers and rovers can require a considerable power budget if operation is needed from the early morning on a Martian sol, even at equatorial latitudes. The MERs were rated to safely operate at -55C while the Beagle 2 arm was rated to -40C.

On small rovers and landers, the constraints on battery and solar array size limits the power available for mechanism preheating as the available power has to be shared with locomotion and robot arm operations. Mechanisms (including actuators with motors and gearboxes, etc) that have safe operating temperatures below -40C, and as low as -100C (with flight allowable temperatures even lower than that) are in need of development to allow the operation of rover locomotion systems, robotic arms, and other such deployable systems without significant pre-heating.

This activity proposes the development of technologies (using inputs from an earlier system study that would identify required technology developments in this area) that would enable mechanisms to operate at very low temperature.

Deliverables							
Qualified technologi	es that allow mechanis	ms used in landers/rov	vers to operate at very l	ow temperatures.			
Current TRL:	3	Target TRL:	5	Application Need/Date:	2013		
Application Mission:	SFR		Contract Duration:	24			
S/W Clause:	N/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							

Mechanisms Technologies that operate at very low temperatures (Extended test campaign) - CCN						
Programme:	ETP	Reference:	E915-004FP			
Title:	Mechanisms Technologies that operate at very low temperatures (Extended test campaign) - CCN					
Total Budget:	350					
Objectives						

The objective is to undertake a more comprehensive testing campaign within the ongoing MREP "Cold mechanisms" activity (E915-002MS) in order to achieve a higher TRL and reliability.

Description

In the activity, MREP Mechanisms Technologies that operate at very low temperature, the rover locomotion subsystem was identified as one of the main critical mechanism onboard a Mars surface element (Rovers/Lander) that would impose the most challenging requirements in terms of low temperature (benefits from early start-up operations at -80C) and total lifetime (Sample Fetching Rover (SFR) application 21km ground track). Among other parts of the locomotion subsystem, this imposes that the drive mechanism is expected to achieve more than 100 million cycles on the motor, more than 6 million cycles on the planetary gearbox and around 63,000 cycles on the harmonic drive (all intended at output shaft).

These two requirements are far from been achievable with the current mechanisms technologies used for Mars exploration; on one hand, the liquid lubricants (i.e. Braycote) due to the low extreme temperature, and on the other hand, the solid lubricants (i.e. sputtered MoS2) due to the long lifetime.

In the course of the activity, during the trade-offs and preliminary testing (i.e. Pin-On-Disc and fretting tests) of the most promising non-space and space mechanisms technologies, several solutions have shown interesting results:

- 4 solid lubricants based on MoSx/WC and MoS2+Sb2O3 have preliminary demonstrated an increase in the lifetime by a factor of a 100 versus sputtered MoS2.

- 2 liquid lubricants with specific additives have shown similar friction coefficients to Braycote601EF at -80C however they remain more promising since their viscosity at -80C is significantly lower.

On top of this, it has been estimated that different Harmonic Drive configuration designs could be promising e.g. the type specifically designed for dry lubrication (by maximising synergies with the harmLES project (EU)) with the option of reducing the preload on the teeth (TBC). Also new materials, such as ceramics for the planetary gears or a breakthrough concept based on contactless magnetic transmission were found promising.

Considering all these promising findings and the limited resources of the initial activity in regards to the testing campaign (i. e. only first ranked solutions, only two components selected from the full drive chain, HD and PG, will be tested) it is believed that there is a need for extending the test campaign. This way will substantiate the final outcome by increasing the reliability of the results and/or by increasing the range potential solutions, including hybrid (according to a consolidated "best practice" approach) and/or even extend to other components of the kinematic chain of a drive mechanisms by covering also, the bearings, hall sensors and motors.

Collateral effect of an adequate implementation of this extended test campaign will be the minimisation of the cost and design efforts.

Coordination and synergies with other European projects (i.e. harmLES) and ESA activities (Dry lubricated Gearbox) will also be maximised.

Deliverables

Technical notes, breadboards, qualified technologies that allow mechanisms used in Lander and Rovers to operate at very low temperatures,

Current TRL:	3	Target TRL:		Application Need/Date:	2015
· ·	Sample Fetching Rover, Phootprint and Inspire		Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

Programme: ETP Reference: E921-006MT Title: Advanced Thermal Architecture for Mars Environment Total Budget: 1000 Objectives	Advanced Thermal	Advanced Thermal Architecture for Mars Environment							
Total Budget: 1000 Objectives Item objective is to develop an advanced thermal architecture for a warm compartment used for Mars surface operation. Several key thermal components, as stand-offs, insulation, convection baffles and harness feedthroughs, need to be enhanced in order to minimize the heat loss to the environment. Description Item objective is not compartment of a Rover or Lander on the surface of Mars will lose its internal heat though the insulation. Nevertheless, mechanical stand-offs as well as harnesses will also contribute to between 1/3 to 1/2 of these heat losses. There are some development activities covering a full scale warm compartment. Even though several technologies for stand-offs harnesses and electrical or sensor wires shall be developed and tested. In addition, low-conductive feed-throughs for harnesses and electrical or sensor wires shall be developed and tested, in order to reduce the parasitic heat losses. Finally, as the or suppress natural convection. After the development and test (at sample/subsystem level) of these three technologies, a representative warm compartment may have several large volumes that could trigger natural convection is and the insulation technology currently being developed. Deliverables Iterate TRL: 3-4 Target TRL: 6 Application Need/Date: 2015 Application Mission: INSPIRE Contract Duration: 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24<	Programme:	ETP		Reference:	E921-006MT				
Objectives Objectives Objective is to develop an advanced thermal architecture for a warm compartment used for Mars surface operation. Several key thermal components, as stand-offs, insulation, convection baffles and harness feedthroughs, need to be enhanced in order to minimize the heat loss to the environment. Description Typically, a warm compartment of a Rover or Lander on the surface of Mars will lose its internal heat though the insulation. Nevertheless, mechanical stand-offs as well as harnesses will also contribute to between 1/3 to 1/2 of these heat losses. There are some development activities currently on-going concerning the Aerogel insulation. This proposed activity would be a follow-on to these Aerogel development activities, covering a full scale warm compartment. Even though several technologies for stand-offs harnesses feedthroughs are currently available, they are mostly not optimised for low thermal conductivity. Therefore, within this activity, a standardized and thermally optimised stand-off shall be developed and tested. In order to reduce the parasitic heat losses. Finally, as the warm compartment may have several large volumes that could trigger natural convection, the uses of baffles can be of advantage to suppress natural convection. After the development and test (at sample/subsystem level) of these three technologies, a representative warm compartment the adveloped. Current TRL: 3-4 Target TRL: 6 Application Need/Date: 2015 Application Nispinge Mission: N/A Target TRL: 6	Title:	Advanced Thermal An	Advanced Thermal Architecture for Mars Environment						
The objective is to develop an advanced thermal architecture for a warm compartment used for Mars surface operation. Several key thermal components, as stand-offs, insulation, convection baffles and harness feedthroughs, need to be enhanced in order to minimize the heat loss to the environment. Description Typically, a warm compartment of a Rover or Lander on the surface of Mars will lose its internal heat though the insulation. Nevertheless, mechanical stand-offs as well as harnesses will also contribute to between 1/3 to 1/2 of these heat losses. There are some development activities currently on-going concerning the Aerogel insulation. This proposed activity would be a follow-on to these Aerogel development activities, covering a full scale warm compartment. Even though several technologies for stand-offs harnesses feedthroughs are currently available, they are mostly not optimised for low thermal conductivity. Therefore, within this activity, a standardized and thermally optimised stand-off shall be developed and tested. In addition, low-conductive feed-throughs for harnesses and electrical or sensor wires shall be developed and tested, in order to reduce the parasitic heat losses. Finally, as the warm compartment shall be designed, manufactured and tested, implementing these three technologies, a representative warm compartment shall be designed, manufactured and tested, implementing these three technologies, a representative warm compartment shall be designed, manufactured and tested, implementing these three technologies, a representative warm compartment shall be designed, manufactured and tested, implementing these three technologies, a representative warm compartment shall be designed, manufactured and tested, implementing these technologies and the insulation technology currently being developed. <t< td=""><td>Total Budget:</td><td>1000</td><td></td><td></td><td></td><td></td></t<>	Total Budget:	1000							
thermal components, as stand-offs, insulation, convection baffles and harness feedthroughs, need to be enhanced in order to minimize the heat loss to the environment. Description Typically, a warm compartment of a Rover or Lander on the surface of Mars will lose its internal heat though the insulation. Nevertheless, mechanical stand-offs as well as harnesses will also contribute to between 1/3 to 1/2 of these heat losses. There are some development activities currently on-going concerning the Aerogel insulation. This proposed activity would be a follow-on to these Aerogel development activities, covering a full scale warm compartment. Even though several technologies for stand-offs harnesse feedthroughs are currently available, they are mostly not optimised for low thermal conductivity. Therefore, within this activity, a standardized and thermally optimised stand-off shall be developed and tested. In addition, low-conductive feed-throughs for harnesses and electrical or sensor wires shall be developed and tested, in order to reduce the parasitic heat losses. Finally, as the warm compartment may have several large volumes that could trigger natural convection, the uses of baffles can be of advantage to suppress natural convection. After the development and test (at sample/subsystem level) of these three technologies, a representative warm compartment breadboard tested, implementing these technologies and the insulation technology currently being developed. Deliverables Image: Transet	Objectives								
Typically, a warm compartment of a Rover or Lander on the surface of Mars will lose its internal heat though the insulation. Nevertheless, mechanical stand-offs as well as harnesses will also contribute to between 1/3 to 1/2 of these heat losses. There are some development activities currently on-going concerning the Aerogel insulation. This proposed activity would be a follow-on to these Aerogel development activities, covering a full scale warm compartment. Even though several technologies for stand-offs harness feedthroughs are currently available, they are mostly not optimised for low thermal conductivity. Therefore, within this activity, a standardized and thermally optimised stand-off shall be developed and tested. In addition, low-conductive feed-throughs for harnesses and electrical or sensor wires shall be developed and tested, in order to reduce the parasitic heat losses. Finally, as the warm compartment may have several large volumes that could trigger natural convection, the uses of baffles can be of advantage to suppress natural convection. After the development and test (at sample/subsystem level) of these three technologies, a representative warm compartment shall be designed, manufactured and tested, implementing these technologies and the insulation technology currently being developed. Deliverables Evertables Full scale warm compartment breadboard Target TRL: 6 Application Need/Date: 2015 Application Mission: INSPIRE Contract Duration: 24	thermal components,	, as stand-offs, insulation							
Nevertheless, mechanical stand-offs as well as harnesses will also contribute to between 1/3 to 1/2 of these heat losses. There are some development activities currently on-going concerning the Aerogel insulation. This proposed activity would be a follow-on to these Aerogel development activities, covering a full scale warm compartment. Even though several technologies for stand-offs harness feedthroughs are currently available, they are mostly not optimised for low thermal conductivity. Therefore, within this activity, a standardized and thermally optimised stand-off shall be developed and tested. In addition, low-conductive feed-throughs for harnesses and electrical or sensor wires shall be developed and tested, in order to reduce the parasitic heat losses. Finally, as the warm compartment may have several large volumes that could trigger natural convection, the uses of baffles can be of advantage to suppress natural convection. After the development and test (at sample/subsystem level) of these three technologies, a representative warm compartment shall be designed, manufactured and tested, implementing these technologies and the insulation technology currently being developed. Deliverables E Full scale warm compartment breadboard Trade-off, Design, Analysis & Test Documentation 6 Application Need/Date: 2015 Application Mission: INSPIRE Contract Duration: 24 S/W Clause: N/A Reference to ESTER T-8839	Description								
Full scale warm compartment breadboard Full scale warm compartment breadboard Target TRL: Application Application 2015 Current TRL: 3-4 Target TRL: 6 Application 2015 Application INSPIRE Contract Duration: 24 S/W Clause: N/A Reference to ESTER T-8839	Nevertheless, mecha some development a these Aerogel develo harness feedthroughs activity, a standardiz for harnesses and ele warm compartment r suppress natural com warm compartment s	nical stand-offs as well ctivities currently on-g opment activities, cover s are currently available ed and thermally optim ectrical or sensor wires may have several large vection. After the devel shall be designed, manu	I as harnesses will also oing concerning the A ring a full scale warm e, they are mostly not hised stand-off shall b shall be developed an volumes that could tr lopment and test (at sa	o contribute to between kerogel insulation. This compartment. Even the optimised for low thern e developed and tested. d tested, in order to red igger natural convectio ample/subsystem level)	1/3 to 1/2 of these h proposed activity we bugh several technolo nal conductivity. The In addition, low-con- luce the parasitic heat n, the uses of baffles of these three technol	eat losses. There are build be a follow-on to ogies for stand-offs erefore, within this iductive feed-throughs t losses. Finally, as the can be of advantage to ologies, a representative			
Trade-off, Design, Analysis & Test Documentation Current TRL: 3-4 Target TRL: 6 Application Need/Date: 2015 Application Mission: INSPIRE Contract Duration: 24 S/W Clause: N/A Reference to ESTER T-8839	Deliverables								
Application Mission: INSPIRE Contract Duration: 24 S/W Clause: N/A Reference to ESTER T-8839			entation						
Mission: INSPIRE Contract Duration: 24 S/W Clause: N/A Reference to ESTER T-8839	Current TRL:	3-4	Target TRL:	6		2015			
S/W Clause: N/A ESTER 1-8839		INSPIRE Contract Duration: 24							
Consistency with Harmonisation Roadman and conclusion:	S/W Clause:	N/A							
consistency with that monifold with Avacumap and conclusion.	Consistency with H	armonisation Roadma	ap and conclusion:						

High specific stiffness metallic materials

Programme:	TRP		Reference:	T924-002QT			
Title:	High specific stiffnes	High specific stiffness metallic materials					
Total Budget:	500						
Objectives							
To select and chara rover structural ma		naterials having spe	cific stiffness above curre	ently used metals in	n view of reducing lander/		
Description							
	ss of all metals widely us s limited when dealing		cation is about 24 GPa cm n applications.	13/g. Hence, the be	nefit of using one metal		
increasing steadily Dispertion Strength and Titanium will I	specific stiffness for me ening (ODS) in Alumin	tallic materials. Th ium alloys and the st promising mater	reviewed for aluminium e in-situ formation of TiH concept of Metal Matrix ials will be selected for fu ion conditions.	B reinforcement in Composites (MMC	titanium alloy, the Oxide Cs) for both Aluminium		
70% (probably quit of the high specific	e optimisic) - With the	hypothesis that curr nt saving could be 5	50% (less optimistic). Wi	ified to accommod	ate processing limitations		
Upon adequate cha	racterisation of material	s and associated pr	ocesses, design could be	refined to allow ad	ditional weight saving.		
			ecific stifffness increased With ODS aluminium, in				
	nologies are required to manding application rec		get value of landers / rove nass.	er. Such high perfo	rmances alloys could be		
NB: This TDA is n are not the primaril		ctivities on magnes	ium alloys currently led b	oy David Jarvis, wł	here the structural aspects		
Deliverables							
Technical notes, te	st-plan, test report, test-s	samples					
Current TRL:	3	Target TRL:	5/6	Application Need/Date:	2014		
Application Mission:	SFR		Contract Duration:	18			
S/W Clause:	N/A	N/A Reference to ESTER T8393					
Consistency with	Harmonisation Roadm	ap and conclusion	1:				

Miniaturized Integrated Avionics for planetary landers						
Programme:	ETP	Reference:	E901-003ED			
Title:	Miniaturized Integrated Avionics for planet	ary landers				
Total Budget:	1500					
Objectives						
Design and Develope	ment of a miniaturized OBC-PCDU for plane	etary landers				
Description						
Planetary landers and rovers, require avionics that are low mass, low power and miniaturised as much as possible. Based on the outcomes of the activity Tailored On-Board Computer EM for Planetary Landers, the proposed activity aims to design and develop an integrated and miniaturized all-in-one avionics solution that will provide the functionalities of data handling, command and control, data storage, landing phase control and power management, conversion and distribution for planetary landers. The inclusion of parts of the communication system shall also be addressed.						

Several precursors or parallel relevant activities include:

The Tailored On-Board Computer EM for planetary Landers (ITT AO/1-6718/11/NL/EK) activity, which develops a single lane planetary landing data processing unit composed by a Processing module and a Power module; these items represent two of the elementary building blocks that will compose the future miniaturised avionics system.
 The Solar Power Regulator Breadboard for Mars Surface Missions (E903-012EP) activity, which will develop the most suitable

solar array power regulator for the planetary lander purposes. - Aurora Avionics Architecture System Definition that was completed in 2005.

The proposed activity is split in two phases:

Phase 1 - Requirements Definition, Architectural Trade-off (which subsystems to be included), Architectural Design Phase and Interface Definition (500 kEuros)

Phase 2 - Detailed Design and Development of an elegant breadboard of the avionics (1000 kEuros)

Requirements for the integrated avionics for Planetary landers in particular for Digital and Power functions and interfaces (type and number) shall be defined. The requirement definition activity shall be concluded with a System Requirement Review and followed by an architectural design activity. Also the mechanical interfaces of such an integrated unit shall be analyzed in order to later have the possibility to procure such boards from different subcontracting companies (according to their best competence, for example OBDH, solar array power conversion, power management and distribution, etc).

A redundancy concept for the integrated avionics unit tailored for planetary landers shall be proposed and analyzed.

The avionics shall be based on a modular design that will allow adaptability and easy upgradeability of functions and performances. The Phase 1 will be concluded with a Architectural Design Review.

The Phase 2 will be started after a positive conclusion of Phase 1 and shall involve company(ies) with proven experience in D&D of OBC/CDMU/PCDU products. An elegant BB shall be designed, developed and tested accordingly to a set of agreed test plan and procedures.

Deliverables								
Elegant Breadboard	Elegant Breadboard of a miniaturized avionics system, datapackage.							
Current TRL:	2	Target TRL:	4	Application Need/Date:	2015			
Application Mission:	MSR, INSPIRE, future lander/rovers.		Contract Duration:	30				
S/W Clause:	IN/A		Reference to ESTER	T-7795, T-7799, T-7753, T-8614				
Consistency with Harmonisation Roadmap and conclusion:								
A miniaturized OBC-PCDU is consistent with the trends identified in the technical dossier on Data Systems and On-Board Computers (issue 3, 2012) and on Power Management and Distribution (2008).								

INSPIRE

Adaptation of Aerogel Materials for thermal insulation								
Programme:	TRP		Reference:	T921-001QE				
Title:	Adaptation of Ae	erogel Materials for ther	mal insulation					
Total Budget:	300	300						
Objectives								
Develop and test of	of multifunctional ae	rogel for Mars explorati	ion (landers and rovers) to	reduce mass of th	e thermal insulators.			
Description								
objective of the study is to tune the properties of a suitable Aerogel such that also other desireable properties (flexibility, damping,) can be achieved. By controlling the pore size and distribution such materials will outperform both MLI as well as classical foams in a low pressure environment. This can be achieved by adapting the materials processing window and by incorporating for instance hybrid compounds into an inorganic Aerogel network. After that key functional properties shall be evaluated and performance improvement shall be quantified. Deliverables								
Trade-off and sele and technical note		rties, material processin	ng, tuneable property asses	ssment, test plans,	test reports, test samples			
Current TRL:	2/3	Target TRL:	3/4	Application Need/Date:	2013			
Application Mission:	INSPIRE, SFR	INSPIRE, SFR Contract Duration: 24						
S/W Clause:	N/A	N/A Reference to ESTER None						
Consistency with	Harmonisation Ro	admap and conclusion	:					
N/A								

Extremely low power timer board EM for landers						
Programme:	ETP]	Reference:	E901-001ED		
Title:	Extremely low power the	mer board EM for lar	iders			
Total Budget:	300	300				
Objectives						
The objective of this activity is to develop an engineering model of an extremely low power configurable timer board designed to wake-up the onboard computer of a lander before atmospheric entry.						
Description						
Driven by the robotic exploration programme, there is a requirement to provide a timer system to wake up a lander's electronics before atmospheric entry. During an approach cruise phase that may last up to 23 days, the autonomous lander has to rely solely on batteries which consequently implies a very constraining power budget. For this reason, most systems are powered, OEE until entry.						

before atmospheric entry. During an approach cruise phase that may last up to 23 days, the autonomous lander has to rely solely on batteries which consequently implies a very constraining power budget. For this reason, most systems are powered-OFF until entry becomes imminent; the timer board is required to switch the systems ON after a pre-configured elapsed period and is therefore a mission critical component. The timer board shall be highly reliable and consume less than 10mW.

Three timer devices are to be implemented in hot redundancy and their output shall be fed into a simple but reliable majority voting device. The timers shall be independent to each other and provide separate communication links and connectors to the spacecraft onboard computers. Before the spacecraft-lander separation phase, the spacecraft shall communicate with each timer device with the goal of programming the accurate length of the timer period. The spacecraft shall also have the means to verify the stored period length for each timer. The majority voting device on the timer board triggers an external relay that will power ON the lander's main systems. It shall also take signals from external g-switches as inputs that will serve as backup. In regard to dimensions and mass constraints, a single board/module hosting the redundant components is foreseen to be the baseline design. The Timer board/module has to be developed in order to be an independent box.

The timer board shall convert the voltage it receives from the lander's battery to a more suitable and power-saving voltage. A tradeoff shall also be made regarding the board's DC-DC converters redundancy scheme in order to investigate if cold redundancy could be used between the converters to further reduce current consumption.

Deliverables						
An Engineering Mod	An Engineering Model (EM) of the highly reliable and low-power timer board.					
Current TRL:	2	Target TRL:	6	Application	2012	

				Need/Date:		
Application Mission:	INSPIRE		Contract Duration:	12		
S/W Clause:	N/A		Reference to ESTER	None		
Consistency with Harmonisation Roadmap and conclusion:						
N/A						

Extremely low power timer board EM for landers - CCN							
Programme:	ACP		Reference:	A923-001FI			
Title:	Extremely low power timer board EM for landers - CCN						
Total Budget:	280						
Objectives							
ASIC development and manufacturing of an extremely low power timer EM for MREP landers							
Description							
In an on-going activity with RUAG Austria an extremely low power timer EM for MREP landers, realised as a discrete solution, is under development (E901-001ED). This discrete concept is expected as a reliable and conservative solution. The aim of the proposed CCN is to develop in parallel an ASIC solution for the extremely low power timer. If it would be possible to have the same function and reliability with an ASIC instead of a discrete solution this would give a large reduction of size and mass. For higher TRL levels an ASIC gives also the option to include the timer function on the onboard computer board instead of on an own board which would result in an additional reduction of mass and size. This activity will consist of: - Design Trade Offs and Preliminary Design with respect to (non-exhaustive): power consumption, reliability, radiation hardness, level of integration (e.g. internal or external switcher transistor), form of redundancy - Detailed Design - Test Plan - ASIC Manufacturing - Breadboard Manufacturing							
- Test Set-Up, Test and Reporting - Activy Synthesis							
Deliverables							
Breadboard, a few ASICs, Documentation							
Current TRL:	2	Target TRL:	4	Application Need/Date:	2015		
Application Mission:	INSPIRE		Contract Duration:	15			
S/W Clause:	N/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							
N/A							

Tailored On-Board Computer EM for planetary landers					
Programme:	ETP	Reference:	E901-002ED		
Title:	Tailored On-Board Computer EM for planetary landers				
Total Budget:	700				
Objectives					
The main objective of this activity is to develop an engineering model of a tailored, highly integrated, low mass and low power On Board Computer core to be used in planetary landers.					
Description					
The Robotic exploration programme requires the use of on board computers in planetary landers where mass, power and sizes are critical constraints. In particular the Network Science mission concept asks for a drastic mass miniaturization of the lander (approx. 150kg entry mass with P/L). Existing on board computers cannot satisfy these requirements and there is the need to rationalise the computer architecture with the prospect of a significant mass, power and dimensions reduction.					

This activity will study and develop the concept of an architecture based on SCOC3 ASIC (SoC) and to be used as part of the On Board Computer of a lander in robotic exploration programs. One of main objectives of the activity shall be to optimise as much as possible the mass/volume/power of the Controller and the needed surrounding electronics (memories, power supplies regulators, etc.) whilst keeping an acceptable level of performances. The Controller shall include the TM/TC, the reconfiguration and the main computer functions and shall provide standardised hardware and software interfaces (SpW, 1553, CAN, but also future evolution like SpaceFibre) with the other Space Segment S/s. The On Board Computer shall implement a modular architecture that allows to include additional modules (like Mass Memory , HK modules, Motion Control module) controlled by the On board Controller. Also power distribution modules can be added to the OBC (e.g. to supply the GNC units). The modular architecture could be physically interfaces (e.g. SpW) shall be used also as internal I/Fs. The use of miniaturized connectors, highly-integrated interfaces and wireless technologies (for debugging purposes at least on ground) shall be exploited.

Hardware and software power saving techniques (such as processor-frequency scaling and software driven off-idle-operative states individually selectable for the various implemented functions) shall be investigated in order to optimise the power consumption and leave the Controller in the lowest power state that satisfy the functional requirements during each phase of the mission. Depending on the mission scenarios the Controller shall be able to be configured as a reliable computing system or as high available system. In the first case the Controller must be operational for a long period of time and in case of failure a reconfiguration outage is acceptable. In the second case the availability of the Controller during critical phases like entry, descent and landing shall be guaranteed also in case of failure. Configurability according to the availability requirements shall be a driver for the design of the Controller and different redundancies schemes shall be properly addressed at hardware and software level.

The activity shall start with the definition of the requirements for a Tailored OBC for Small Landers.

Deliverables

1) Requirements Specification and Design & Analysis docs

2) AIT procedures and reports

3) An Engineering Model (EM) of a miniaturised on Board Controller unit.

5) The Engineering Model (EM) of a miniaturised on Board Controller unit.					
Current TRL:	3	Target TRL:	רו	Application Need/Date:	2017
Application Mission:	INSPIRE		Contract Duration:	18	
S/W Clause:	Operational Software		Reference to ESTER	Т-8382 ,Т-7803,	
Consistency with Harmonisation Roadmap and conclusion:					
A highly integrated core built up into few large ASICSs is mentioned in the Data Systems and OBCs harmonization dossier.					

Subsonic Parachute	Subsonic Parachute Trade-Off and Testing						
Programme:	TRP		Reference:	T918-001MP			
Title:	Subsonic Parachute Tr	rade-Off and Testing					
Total Budget:	630						
Objectives							
To provide information for the selection of subsonic parachutes for Mars entry to deed in the overall trade-off for the EDL system. To develop methodologies for the understanding of inflation methods and development of aerodynamic databases including static and dynamic coefficients.							
Description							
 CFD (Computation Wind tunnel or free These databases shal CFD validation for 	r static and dynamic aer al Fluid Dynamics) est e flight tests shall be pe Il also provide informat a limited number of co pment plans and costs s	imates of aerodynami rformed for the furthe ion for the validation nditions shall be unde	c coefficients shall be p or development of datab of CFD.	performed.			
Deliverables							
Test models, databas	ses, software and techni	cal notes.					
Current TRL:	2	Target TRL:	3	Application Need/Date:	2017		
Application Mission:	INSPIRE		Contract Duration:	18			
S/W Clause:	N/A Reference to ESTER None						

Consistency with Harmonisation Roadmap and conclusion:

N/A

Subsonic parachute trade-off and testing - CCN						
Programme:	ETP		Reference:	E918-001MP		
Title:	Subsonic parachute tra	ade-off and testing -	CCN			
Total Budget:	350					
Objectives						
	article imaging velocim parachute designs for N		enhanced subsonic wind	d tunnel testing and te	esting campaign with	
Description						
This CCN to the running TRP activity (T918-001MP) is intended to develop a system for Particle Imaging Velocimetry at the Canadian National Research Council (CNRC) subsonic wind tunnel, in order to enhance the quality of the test data that could be achieved for the development of subsonic parachutes for Mars EDL. The activity is divided into two phases: Phase one: Co-development (with CNRC) of the PIV for the subsonic wind tunnel. Phase two: Production of a few parachute(s) with existing designs but using a material which changes color with strain to visualize the stress distribution, and test in CNRC (where the PIV will be available). Further tests (including design and manufacture) with different parachute type(s) than the one presently foreseen in the subsonic test campaign shall also be included.						
Deliverables						
Fully functional PIV	system, scale-model p	arachutes, test data a	nd documentation			
Current TRL:	2	Target TRL:	4	Application Need/Date:	2015	
Application Mission:	Mars surface missions		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						
N/A						

EDLS GNC Optim	isation and Technology Specification for s	mall Mars lande	ers	
Programme:	ETP	Reference:	E905-002EC	
Title:	EDLS GNC Optimisation and Technology	Specification for	small Mars landers	
Total Budget:	250			
Objectives	•			
The successful landing of planetary probes on Mars is a capability yet to be demonstrated by Europe. Time- and cost-optimal delivery of multiple probes, within the 150kg class and widely spatially separated requires that dedicated optimisation tasks and trade-offs be conducted to rigorously define an optimised design of the EDLS. The main objective of the proposed activity is thus to define the complete EDL chain, benchmarking of the available technological solutions and specification of required technology developments in order to baseline a robust, optimised (in terms of cost, mass and reliability) EDLS design of the Mars Science Network mission				
Description				
Building up on recent industry and CDF studies (Mars NEXT, MarsGEN), the proposed activity will perform a detailed review and a quantitative benchmarking of existing and affordable EDLS strategies for a Mars Science Network mission. The selected architecture will be the result of an end-to-end optimisation of the entire multi-probe EDL sequence. At system level, special attention shall be given to: the logic of the triggering events since separation, the nature of the deceleration systems (1-stage vs. 2-stage parachute systems, presence of retro-rockets, nature of the airbags), the terrain relative navigation specifications (including an assessment on the need of lateral velocities control and of the benefits of using some descent imagery), the detailed specification of the selected altimetric sensor and to the overall robustness of the EDLS and of its components w.r.t. the environment conditions and the missions requirements. For the preferred solution, a technology development plan will be derived together with the specification of the EDLS components (D&L components, GNC equipment and data handling). The selection of the proposed architecture, as well as the justification of the redundancy strategy, will rely on the use of a set of dedicated analysis tools allowing end-to-end parametric trades within an appropriate envelope of the landers and trajectories characteristics.				

Deliverables

The Agency will be delivered with a detailed and comprehensive EDLS analyses including the lessons learned from previous

missions and activities. A consolidated EDLS architecture and technology specification for 150kg-class Mars landers will be provided with its justification, as well as a detailed development and testing plan for European technology of the EDLS and of its components.

Current TRL:	2	Target TRL:		Application Need/Date:	2013
Application Mission:	INSPIRE		Contract Duration:	9	
S/W Clause:	IN/A		Reference to ESTER	None	
Consistency with Harmonisation Roadmap and conclusion:					
N/A					

Assessment and bre	adboarding of a plane	etary Altimeter			
Programme:	TRP		Reference:	T905-003EC	
Title:	Assessment and bread	boarding of a planeta	ry Altimeter		
Total Budget:	1471				
Objectives					
	activity will study the c craft descent and landin				
Description					
A direct and reliable measurement of the ground distance by an altimeter is a key asset for any planetary Descent and Landing system that allows the trigerring of key events of the Entry, Descent and Landing sequence. The first phase (6 months, 100K) shall compare and benchmark the two natural candidate technologies (radar and laser) that could produce such as an altimetric sensor. A detailed analysis of the equipment performance and robustness under engineering constraints (mass, power, cost), mission requirements (accuracy, range, continuous measurements vs. discrete triggerings) and environment constraints (dust and plume effects, terrain roughness) shall be performed. The study phase 1 shall also consider the integration of the altimetric measurements in the complete navigation chain and will derive a set of sensor requirements that will form the basis for follow-on developments in phase 2 once the most promising solution has been identified and selected. Depending on phase 1 results, the altimetric sensor design will be furthered to breadboard level in phase 2 (10 months, 800K). The phase 2 study shall develop any sensor level critical technology, and the breadboard model shall be constructed based on requirements established in the earlier system study part. A time and cost-effective approach for a complete sensor development, its qualification and the integrated avionics testing shall be identified and specified.					
	nd comparative analys				
Phase 2: breadboard	model ready for testing	in realistic environm	ent, available test equi	pment and documenta	ation.
Current TRL:	2	Target TRL:	4	Application Need/Date:	2013
Application Mission:	INSPIRE		Contract Duration:	16	
S/W Clause:	N/A		Reference to ESTER	None	
Consistency with Ha	armonisation Roadma	ap and conclusion:			
N/A					

Ground Testing of the EDLS Navigation Chain for small Mars landers					
Programme:	ETP	Reference:	E905-005EC		
Title:	Ground Testing of the EDLS Navigation Ch	ain for small Mars land	lers		
Total Budget:	500				
Objectives					
One of the key steps in the verification of the Entry, Descent and Landing systems (EDLS) is the testing of its mission critical navigation chain. This testing can be conducted through simulation, laboratory experiments and field testing. The main objective of the proposed activity is to conduct a series of field tests in order to evaluate the performance and behaviour of the navigation part of the EDLS under flight-like conditions for a European Mars Science Network mission.					
Description					
Following the release of the thermal protection system, the navigation chain primary purpose is to fuse altimetric information with					

inertial measurements and possibly descent imagery in order to trigger the various time-critical events like the deployment of the landing system and the retro-rockets ignition. An airborne platform like the ESA Planetary Landing GNC Test Facility (PLGTF) is an adequate environment to perform tests of an EDLS navigation chain and its components (inertial measurement unit, altimetric sensor, possibly a camera). A series of field experiments using the PLGTF and the associated Electrical Ground Support Equipment (EGSE) will be performed in order to demonstrate the good behaviour of the navigation chain w.r.t. mission-like descent dynamics and terrain characteristics. The tests will nominally be conducted in open-loop as they aim at the validation of the navigation function and no retargeting of the platform is required. The possibility of closed-loop tests using the extended PLGTF platform (ePLGTF) shall however be considered in the case the baseline EDLS include the necessity to control lateral velocities.

Deliverables

The Agency will be delivered with field tests allowing verification of the performance and robustness of the navigation chain for 150kg-class Mars landers. The experiment results will be provided in a format allowing post-flight processing and the tuning of the EDLS GNC sensors (especially the altimetric sensor) high fidelity models under realistic flight-like conditions and for various terrain

characteristics.

Current TRL:	4	Target TRL:		Application Need/Date:	TRL5 by 2014
Application Mission:	Network Science		Contract Duration:	10	
S/W Clause:	N/A		Reference to ESTER	None	
Consistency with Harmonisation Roadmap and conclusion:					
N/A					

lars landing				
ETP		Reference:	E919-001MP	
Retro Rockets for Mars landing				
4000				
tro-rocket system for a	pplication during land	ling on a Network scie	nce lander mission.	
gs are not sufficient or ing other CDF studies) rking principle: elocity is reduced to 0 l This way the landing a parachute). burn for a short duration the the application of a construction ties in Europe for such	are too heavy. The ne in the past. by Solid Rocket Moto irbags can be sized fo on to generate the req nce developed motor motors as well as sem	ed for such motors has rs at a certain altitude r a certain "fixed" velo uired thrust for slowing possible to a wider rar ii throttle able motors (been identified during above ground from wh city that is lower than g down the lander. The ge of missions. these motors have a m	g the CDF MarsGEN nich the Lander drops the terminal velocity ere exist some scaling ninimum thrust and
hese are just retro rocke which many have been ition a large military ex	ets, very similar appli produced in Europe perience exists within	cations can be found in for the Ariane 5,4,3,2 a Europe on the develop	booster separation m and 1 launch vehicles a pment and large scale	as well as their manufacturing and use
lid retro-rockets tailored	d to requirements of a	Network Science land	er mission.	
3	Target TRL:	5	Application Need/Date:	2017
Inspire		Contract Duration:	24	
N/A Reference to ESTER None				
armonisation Roadma	ap and conclusion:			
	ETP Retro Rockets for Mar 4000 tro-rocket system for a et motors that are usua gs are not sufficient or ing other CDF studies) king principle: elocity is reduced to 0 I This way the landing a parachute). burn for a short duration the application of a c cies in Europe for such ed by additional liquid with the application o hese are just retro rock which many have been tion a large military ex otors. Though the applic id retro-rockets tailored 3 Inspire N/A	ETP Retro Rockets for Mars landing 4000 tro-rocket system for application during land et motors that are usually mounted in a back gs are not sufficient or are too heavy. The ne ing other CDF studies) in the past. tking principle: elocity is reduced to 0 by Solid Rocket Motor This way the landing airbags can be sized fo parachute). burn for a short duration to generate the reque the application of a once developed motor rises in Europe for such motors as well as sem ed by additional liquid propellant injection) If y with the application of landing on Mars is r hese are just retro rockets, very similar appli which many have been produced in Europe tion a large military experience exists within otors. Though the application in the Martian id retro-rockets tailored to requirements of a 3 Target TRL: Inspire	ETP Reference: Retro Rockets for Mars landing 4000 4000 tro-rocket system for application during landing on a Network scient et motors that are usually mounted in a back shell for Descent and 1 gs are not sufficient or are too heavy. The need for such motors has ing other CDF studies) in the past. king principle: elocity is reduced to 0 by Solid Rocket Motors at a certain altitude at This way the landing airbags can be sized for a certain "fixed" velo parachute). burn for a short duration to generate the required thrust for slowing to the application of a once developed motor possible to a wider ramises in Europe for such motors as well as semi throttle able motors (ed by additional liquid propellant injection) have been conducted in y with the application of landing on Mars is not available in Europe hese are just retro rockets, very similar applications can be found in which many have been produced in Europe for the Ariane 5,4,3,2 at ion a large military experience exists within Europe on the develop otors. Though the application in the Martian atmosphere is different id retro-rockets tailored to requirements of a Network Science land 3 Target TRL: 5 Inspire Contract Duration: N/A Reference to ESTER	ETP Reference: E919-001MP Retro Rockets for Mars landing 4000 4000 4000 ttro-rocket system for application during landing on a Network science lander mission. et motors that are usually mounted in a back shell for Descent and Landing applications or gas are not sufficient or are too heavy. The need for such motors has been identified during ing other CDF studies) in the past. *king principle: elocity is reduced to 0 by Solid Rocket Motors at a certain altitude above ground from wl This way the landing airbags can be sized for a certain "fixed" velocity that is lower than parachute). burn for a short duration to generate the required thrust for slowing down the lander. The e the application of a once developed motor possible to a wider range of missions. ies in Europe for such motors as well as semi throttle able motors (these motors have a r ed by additional liquid propellant injection) have been conducted in the scope of a project with the application of landing on Mars is not available in Europe. hese are just retro rockets, very similar applications can be found in booster separation m which many have been produced in Europe for the Ariane 5,4,3,2 and 1 launch vehicles at ion a large military experience exists within Europe on the development and large scale otors. Though the application in the Martian atmosphere is different, the working princip id retro-rockets tailored to requirements of a Network Science lander mission. 3 Target TRL: 5 Application Need/Date: inspire Contract Duration:

Airbags for small	Airbags for small landers - Breadboard and Test					
Programme:	ETP		Reference:	E920-001MS		
Title:	Airbags for small lar	nders - Breadboard ar	nd Test			
Total Budget:	1500					
Objectives						
Design, manufactu	re and test an airbag bro	eadboard in relevant	environment for a 150kg	-class Mars lander		
Description						
 Following the phase 1 (airbags design and justification by analyses), Phase 2 focuses on breadboard manufacturing and tests. The activity shall include: Design and justify the airbag breadboard. Define and justify the test plan, including elementary tests if necessary and full scale breadboard test in relevant environment (Mars pressure). Manufacture the breadboard. Prepare and conduct landing tests. Evaluate the results and correlate the models Deliverables 						
Breadboard model	tested in relevant envir	onment to TRL5.				
Current TRL:	4	Target TRL:	5	Application Need/Date:	2013	
Application Mission:	Network Science		Contract Duration:	18		
S/W Clause:	N/A		Reference to ESTER	EDL: Landing System for Touchdown of Small Surface Probes (i.e. airbags)		
Consistency with	Harmonisation Roadn	nap and conclusion:				

Airbags for Small Landers: Extended testing of the landing system with a large variety of impact parameters					
Programme:	ETP	Reference:	E920-003MS		
Title:	Airbags for Small Landers: Extended testing of the landing system with a large variety of impact parameters				
Total Budget:	1500				
Objectives					

Verify the mechanical properties of the airbag materials under ageing and sterilization cycles effects involving joints tests. Perform additional drop tests of the whole landing system with a large variety of impact parameters and with many different types of abrasion layer constructions.

Description

Airbags for small landers have been developed at ESA in previous TRPs studies. The airbag design has been developed (T319-035MC) and a first set of appropriate standard material tests has been performed to provide data for the simulation mdoel validation of the airbag. In the follow-on activity (E920-001MS), running at the moment, the airbag will be manufactured and a first set of drop-

tests will be performed in certain horizontal and vertical velocity condition.

The purpose of this new study is to verify the mechanical properties under ageing and sterilization cycles effects involving as well joints and to perform more drop tests in different velocity conditions than the running contract.

In order to design the allowables for the materials, the following condition shall be taken into account for the airbag system (including joints):

- ageing loss: it is intended as the life cycle to which the materials are subjected is taken into account, including the DHMR (125 degC for 18 hours TBC) and the outgassing process (vacuum cycle TBD) under packaging pressure conditions (TBD).
- radiation loss: it is principally due to UV exposure during manufacturing. The exposure time is TBD hours considering the manufacturing flow chart. The ABS system is not exposed to space environment radiation.

- temperature loss: the operative mission temperature range for the ABS system is -100/+50 degC. The mechanical tests will be performed in temperature controlled ambient in order to evaluate the performances and losses in operative conditions.

Therefore the following tests shall be performed:

1. UV exposure

2. Outgassing: the materials are put through a vacuum cycle (TBD) under packaging pressure conditions

3. DHMR: the materials are put through the same temperature cycle of DHMR (3 heat treatment cycles) under packaging pressure 4. Operative temperature range: the materials are put through temperature cycles between +/-70 degC under packaging pressure conditions.

In order to reach TRL 6, the airbag system need to be tested with a large variety of impact parameters (i.e. velocities, rocks and slopes) and with as much flight representative equipments as possible. The system should include the airbag system itself, the inflation system as well as the jettisoning/retraction system.

The followign shall be performed:

- Drop tests of the system to be performed under different conditions and with many different types of abrasion layer constructions combined with different impact parameters

- Drop tests of the system, potentially in vacuum chamber in order to simulate Martian atmospheric pressures (1/100 of Earth's). **Deliverables**

Hardware, Test plan, test results, material characterization, test video, Modelling and analysis of theoretical test cases, FEM						
Current TRL:	3	Target TRL:	6	Application Need/Date:	2015	
Application Mission:	INSPIRE		Contract Duration:	18		
S/W Clause:	IN/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

Solar Power Regula	Solar Power Regulator Breadboard for Mars Surface Missions					
Programme:	TRP		Reference:	T903-012EP		
Title:	Solar Power Regulator	r Breadboard for Mar	s Surface Missions	•		
Total Budget:	300					
Objectives						
	s the optimisation of po he payload for Mars Su		es and control to achiev	e the maximum photo	ovoltaic power transfer	
Description						
atmosphere, dust der daytime. Compared Maximum Power Po conditioning electron In the TEC-EP powe and mass/size impro due to their inability conditioning electron This activity consists - system analysis to - trade offs and simu	Solar Arrays on the Mars Surface face harsh, non homogenous and highly unpredictable environments due to suspended dust in the atmosphere, dust deposition, occurrence of dust storms, high daily thermal excursion and sun incidence evolution during the daytime. Compared to conventional shunt switching regulators, regulators based on Pulse Width Modulation (PWM) converters and Maximum Power Point (MPP) Trackers (MPPTs) would enable a significant increase of photovoltaic power transferred by the conditioning electronics to the platform and the payload. In the TEC-EP power laboratory, specific power topologies are currently being studied and tested which should allow efficiency and mass/size improvements over more conventional designs. The existing MPPT tracking algorithms are not well suited for Mars due to their inability to differentiate a local MPP to the absolute MPP, and other principles can be investigated and plugged into the conditioning electronics to be able to track maximum solar array power in any condition. This activity consists of 4 main tasks: - system analysis to identify the most promising power conditioning designs and MPPT solutions; - trade offs and simulations for the identification of the most suited Solar Array Regulators and MPPT designs; - detailed design of the innovative Solar Array Regulators and MPPT;					
Deliverables						
Breadboards, test res	sults and study reports					
Current TRL:	2	Target TRL:	4	Application Need/Date:	2015	
Application Mission:	Inspire Contract Duration: 18					
S/W Clause:	N/A		Reference to ESTER	None		
Consistency with H	Consistency with Harmonisation Roadmap and conclusion:					

consistent with Harmonisation Power Management and Distribution second semester 2008

	1 of space and terrestr				
Programme:	TRP		Reference:	T903-014EP	
Fitle:		space and terrestrial of	cells for future Mars lande	er/rover missions	
Fotal Budget:	200				
Objectives					
			ar cells under Mars surfac ments can be made in futu		
Description					
terrestrial solar ce Hence, the maxin junction class cell (scheduled to be c new cells needs to In addition, simul performance unde limited to technol Mars. A previous	ells are not optimised for num cell efficiencies or ls have been characteris qualified in 2012) and o be undertaken to prov lataneous characterisati er Mars conditions and logy such as contract gr	or the illumination, dus a Mars are below the e sed under Martian con will likely be used in p ride accurate assumpti- on of the best availabl highlight areas where rid design, without cha	an be obtained from the sist and temperature environ ffeciences quoted for space ditions, while newer 30% post-2018 lander/rover mi ons of the power generative e terrestrial GaAs based co such cells could be partia anges to semiconductor la Solar Cell Development for	nment seen by Ma ce operation. Curri class cell designs ssions. Therefore on on Mars for so ells will allow an lly-modified (in a yers) in order to c	ars landers and rover. rently only the 28% triples s have become available e, characterisation of thes plar power system sizing. a assessment of their a future development optimise them for use on
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for	optimised for earth orb l: le latest available space on the characterisation	ial applications may prite it. and terrestrial GaAs I results, potential moo ditions (in principle ex	rovide more power over a based solar cells under Ma difications that could be m kcluding modifications to	artian environmer ade to terrestrial	rface conditions than cel ntal conditions cell structures in order to
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech	optimised for earth orb l: le latest available space on the characterisation operation in Mars con of cell performance on	al applications may prit. and terrestrial GaAs I results, potential moo ditions (in principle ex Mars surface.	rovide more power over a based solar cells under Ma difications that could be m	artian environmer hade to terrestrial the semiconducto	rface conditions than cel ntal conditions cell structures in order to or layer structure)
which have been This activity shall () Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables	optimised for earth orb l: le latest available space on the characterisation r operation in Mars com of cell performance on nology development pl	al applications may prit. and terrestrial GaAs I results, potential moo ditions (in principle ey Mars surface. an for undertaking suc	rovide more power over a based solar cells under Ma difications that could be m scluding modifications to	artian environmer hade to terrestrial the semiconducto	rface conditions than cel ntal conditions cell structures in order to or layer structure)
which have been This activity shall () Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a	optimised for earth orb l: le latest available space on the characterisation r operation in Mars con- of cell performance on nology development pl	al applications may prit. e and terrestrial GaAs h results, potential moo ditions (in principle es Mars surface. an for undertaking suc prmances	rovide more power over a based solar cells under Ma difications that could be m scluding modifications to ch modifications and qual	artian environmer lade to terrestrial the semiconducto ifying such cells f	rface conditions than cel ntal conditions cell structures in order to or layer structure)
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation	optimised for earth orb l: le latest available space on the characterisation r operation in Mars con- of cell performance on nology development pl	al applications may prit. e and terrestrial GaAs h results, potential moo ditions (in principle es Mars surface. an for undertaking suc prmances	rovide more power over a based solar cells under Ma difications that could be m scluding modifications to	artian environmer lade to terrestrial the semiconducto ifying such cells f	rface conditions than cel ntal conditions cell structures in order to or layer structure)
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation Current TRL: Application	optimised for earth orb l: e latest available space on the characterisation operation in Mars con- of cell performance on nology development pl and terrestrial cell perfo- is for modifications to t	al applications may prit. e and terrestrial GaAs have results, potential moo ditions (in principle es Mars surface. an for undertaking suc rmances errestrial cells and tec Target TRL:	rovide more power over a based solar cells under Ma lifications that could be m scluding modifications to ch modifications and qual hnology development pla	artian environmer hade to terrestrial the semiconductor ifying such cells f n Application	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a	optimised for earth orb l: e latest available space on the characterisation r operation in Mars com- of cell performance on nology development pl and terrestrial cell perfo is for modifications to t 2/3	al applications may prit. e and terrestrial GaAs have results, potential moo ditions (in principle es Mars surface. an for undertaking suc rmances errestrial cells and tec Target TRL:	rovide more power over a based solar cells under Ma difications that could be m scluding modifications to ch modifications and qual hnology development plat 3/4	artian environmer lade to terrestrial the semiconducto ifying such cells f n Application Need/Date:	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: S/W Clause:	optimised for earth orb l: le latest available space l on the characterisation r operation in Mars com- of cell performance on nology development pl und terrestrial cell perfor- is for modifications to the 2/3 All solar powered for	al applications may print. and terrestrial GaAs by a results, potential mood ditions (in principle examples of the surface. an for undertaking success of the surface of	rovide more power over a based solar cells under Ma difications that could be m keluding modifications to ch modifications and qual hnology development plan 3/4 Contract Duration: Reference to ESTER	artian environmer lade to terrestrial the semiconducto ifying such cells f n Application Need/Date:	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: S/W Clause:	optimised for earth orb l: le latest available space on the characterisation r operation in Mars com- of cell performance on nology development pl und terrestrial cell perfo- is for modifications to t 2/3 All solar powered n N/A	al applications may print. and terrestrial GaAs by a results, potential mood ditions (in principle examples of the surface. an for undertaking success of the surface of	rovide more power over a based solar cells under Ma difications that could be m keluding modifications to ch modifications and qual hnology development plan 3/4 Contract Duration: Reference to ESTER	artian environmer lade to terrestrial the semiconducto ifying such cells f n Application Need/Date:	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been This activity shall 1) Characterise th 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: S/W Clause:	optimised for earth orb l: le latest available space on the characterisation r operation in Mars com- of cell performance on nology development pl und terrestrial cell perfo- is for modifications to t 2/3 All solar powered n N/A	al applications may print. and terrestrial GaAs by a results, potential mood ditions (in principle examples of the surface. an for undertaking success of the surface of	rovide more power over a based solar cells under Ma difications that could be m keluding modifications to ch modifications and qual hnology development plan 3/4 Contract Duration: Reference to ESTER	artian environmer lade to terrestrial the semiconducto ifying such cells f n Application Need/Date:	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been of This activity shall) Characterise the 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: S/W Clause:	optimised for earth orb l: le latest available space on the characterisation r operation in Mars com- of cell performance on nology development pl und terrestrial cell perfo- is for modifications to t 2/3 All solar powered n N/A	al applications may print. and terrestrial GaAs by a results, potential mood ditions (in principle examples of the surface. an for undertaking success of the surface of	rovide more power over a based solar cells under Ma difications that could be m keluding modifications to ch modifications and qual hnology development plan 3/4 Contract Duration: Reference to ESTER	artian environmer lade to terrestrial the semiconducto ifying such cells f n Application Need/Date:	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been of This activity shall) Characterise the () Identify, based optimise them for () update models () Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: S/W Clause: Consistency with	optimised for earth orb l: le latest available space l on the characterisation of cell performance on nology development pl and terrestrial cell perfor is for modifications to t 2/3 All solar powered n N/A h Harmonisation Road	al applications may print. a and terrestrial GaAs I a results, potential mood ditions (in principle ex- Mars surface. an for undertaking success an for unde	rovide more power over a based solar cells under Ma difications that could be m accluding modifications to ch modifications and qual- hnology development plat 3/4 Contract Duration: Reference to ESTER :	artian environmer lade to terrestrial the semiconducto ifying such cells f n Application Need/Date:	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been of this activity shall) Characterise the D Identify, based optimise them for D update models Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: S/W Clause: Consistency with Development of a Development of a set of the set	optimised for earth orb l: le latest available space l on the characterisation r operation in Mars com- of cell performance on nology development pl and terrestrial cell performance 2/3 All solar powered a N/A h Harmonisation Road	al applications may print. a and terrestrial GaAs I a results, potential mood ditions (in principle ex- Mars surface. an for undertaking success an for unde	rovide more power over a based solar cells under Ma difications that could be m kcluding modifications to ch modifications and qual hnology development play 3/4 Contract Duration: Reference to ESTER : d survivability tests	artian environmer nade to terrestrial the semiconductor ifying such cells f n Application Need/Date: 12	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been of This activity shall) Characterise the 2) Identify, based optimise them for 3) update models 3) Produce a tech Deliverables Report on space a Recommendation Current TRL: Application Mission: 5/W Clause: Consistency with Development of Programme:	a low temperature Lit	al applications may prit. a and terrestrial GaAs I a results, potential moo ditions (in principle ex- Mars surface. an for undertaking suc rmances errestrial cells and tec Target TRL: missions Imap and conclusion thium ion battery and	ased solar cells under Ma based solar cells under Ma difications that could be m keluding modifications to ch modifications and qual hnology development play 3/4 Contract Duration: Reference to ESTER : d survivability tests Reference:	Application Need/Date: 12 E903-013EP	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.
which have been of This activity shall () Characterise the () Identify, based optimise them for () update models () update mo	a low temperature Lit	al applications may prit. a and terrestrial GaAs I a results, potential moo ditions (in principle ex- Mars surface. an for undertaking suc rmances errestrial cells and tec Target TRL: missions Imap and conclusion thium ion battery and	rovide more power over a based solar cells under Ma difications that could be m kcluding modifications to ch modifications and qual hnology development play 3/4 Contract Duration: Reference to ESTER : d survivability tests	Application Need/Date: 12 E903-013EP	rface conditions than cel ntal conditions cell structures in order to or layer structure) for space use.

the possibility of the Li ion battery recovery after storage at very low temperature (-50C or colder)

Description

In applications such as landers and rovers, the battery has to deliver high energy at low temperature. ABSL Space products (UK) evaluated in 2007 the best COTS Li ion cells operating at -20 degC for Exomars. A cell was selected and a battery was assembled and tested at Estec. Li ion cells are evolving quickly, due to terrestrial markets needs (electronics, automotive,...) and new cells with higher specific energy are now available and should be evaluated at low temperatures. Some manufacturers are also developing Li ion cells for low temperatures conditions; such cells could be of interest if they offer sufficient specific energy. After characterisation of available cells, the survivability of the cells in extreme temperatures will be assessed. In case of malfunction, or dust storm on Mars leading to loss of power and loss of thermal management, the Li ion battery could be exposed to very low temperatures. The recovery of a battery after exposure to temperatures below freezing point of the electrolyte, is not known. The proposed activity will include two phases:

Phase 1 - Thorough evaluation of high specific energy COTS cells at low temperature, and of available prototype of cells optimised for low temperatures, - Selection of the best candidates, - Battery design and assembly, - Life-test at low temperature.

Phase 2: - Very low temperature storage Test: storage at very low temperature at different state of charge, for different durations; - Test of different recovery scenarios (i.e Charge conditions; rate, minimum temperature required).

Deliverables					
Technical Notes, characterisation tests results, Battery breadboard, battery tests results, recovery plan					
Current TRL:	3	Target TRL:	ר ו	Application Need/Date:	2012
Application Mission:	INSPIRE, SFR		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	None	
Consistency with Harmonisation Roadmap and conclusion:					
Yes. Follow-on from Battery roadmap issue 1 revision 3 September 24 2006. Activity D1					

Programme: TRP Reference: T911-001GR Title: Simulation tool for breakup/burnup analysis of Mars orbiters Total Budget: 300 Objectives Development and application of a generic simulator for the entry into Mars atmosphere from Mars-bound and hyperbolic initial orbits, modelling the aerothermal/aerodynamic heating, delamination and breakup effects in response to identify solutions for meeting planetary protection constraints as well as potential collision hazards during entry. Description As the validation of existing tools and models are based upon Earth break-ups, they need to be adapted to a Mars entry with particular attention to a lower density CO2 atmopshere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related dimosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of now incidence has to be varied between 0 and 180 iij/½ with a step size of 151½. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyteal. In order to assess the possible improvements the reasults s	Simulation tool for breakup/burnup analysis of Mars orbiters						
Total Budget: 300 Objectives Development and application of a generic simulator for the entry into Mars atmosphere from Mars-bound and hyperbolic initial orbits, modelling the aerothermal/aerodynamic heating, delamination and breakup effects in response to identify solutions for meeting planetary protection constraints as well as potential collision hazards during entry. Description As the validation of existing tools and models are based upon Earth break-ups, they need to be adapted to a Mars entry with particular attention to a lower density CO2 atmopshere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 %/t/w with a step size of 15%/t/s. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of specific m	Programme:	TRP		Reference:	T911-001GR		
Objectives Development and application of a generic simulator for the entry into Mars atmosphere from Mars-bound and hyperbolic initial orbits, modelling the aerothermal/aerodynamic heating, delamination and breakup effects in response to identify solutions for meeting planetary protection constraints as well as potential collision hazards during entry. Description As the validation of existing tools and models are based upon Earth break-ups, they need to be adapted to a Mars entry with particular attention to a lower density CO2 atmosphere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 i;//s with a step size of 15i; j/s. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of speciff c materials for a Mars entry wehiclicle which consist	Title:	Simulation tool for brea	akup/burnup analy	sis of Mars orbiters	rs		
Development and application of a generic simulator for the entry into Mars atmosphere from Mars-bound and hyperbolic initial orbits, modelling the aerothermal/aerodynamic heating, delamination and breakup effects in response to identify solutions for meeting planetary protection constraints as well as potential collision hazards during entry. Description As the validation of existing tools and models are based upon Earth break-ups, they need to be adapted to a Mars entry with particular attention to a lower density CO2 atmopshere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 i ¹ / ₁ with a step size of 15 ¹ / ₂ / ₂ . This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of specific materials for a Mars atmosphere, i.e. their ablation-rate and coupled thermal-material characteristics. d. Investigate contribution of above models in implementing them into an existing break-up tool adapted to Mars atmosphere to better support modelling of fragmentation mechanisms including time dependency	Total Budget:	et: 300					
orbits, modelling the aerothermal/aerodynamic heating, delamination and breakup effects in response to identify solutions for meeting planetary protection constraints as well as potential collision hazards during entry. Description As the validation of existing tools and models are based upon Earth break-ups, they need to be adapted to a Mars entry with particular attention to a lower density CO2 atmopshere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 %/2 with a step size of 15%/2. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of specific materials for a Mars entry vehicle which consists of typical S/C material, including CFRPs and high temperature alloys (during entry in the Mars atmosphere, i.e. their ablation-rate and coupled thermal-material transtres. d. Investigate contribution of above models in implementing them into an existing break-up tool adapted to Mars atmosphere to better support modelling of fragmentation mechanisms including time dependency, in particular regar	Objectives						
As the validation of existing tools and models are based upon Earth break-ups, they need to be adapted to a Mars entry with particular attention to a lower density CO2 atmopshere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 i¿/v with a step size of 15i¿/v. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of specific materials for a Mars entry vehicle which consists of typical S/C material, including CFRPs and high temperature alloys (during entry in the Mars atmosphere, i.e. their ablation-rate and coupled thermal-material characteristics. d. Investigate contribution of above models in implementing them into an existing break-up tool adapted to Mars atmosphere to better support modelling of fragmentation mechanisms including time dependency, in particular regarding the level of definition required to so that ne attrual sterilization due to heating during entry can be evaluated and compare with the Planetary Protection bioburden requirements. If simple model used (few nodes), validat	orbits, modelling t	he aerothermal/aerodynam	ic heating, delamin	nation and breakup	p effects in response to identify solutions for		
particular attention to a lower density CO2 atmopshere and use of CFRP or high temperature alloys (e.g. titanium-based) structural materials. In order to improve knowledge of a non-controlled entry with related destruction, the existing models need to be extended to validate their use for Mars entries: a. improving the destructive entry analysis of non-tumbling and tumbling objects. This includes both rarefied and continuum flow in the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 i¿½ with a step size of 15i¿½. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of specific materials for a Mars entry vehicle which consists of typical S/C material, including CFRPs and high temperature alloys (during entry in the Mars atmosphere, i.e. their ablation-rate and coupled thermal-material characteristics. d. Investigate contribution of above models in implementing them into an existing break-up tool adapted to Mars atmosphere to better support modelling of fragmentation mechanisms including time dependency, in particular regarding the level of definition required to simulate relevant local destructions, harge scale destructions, and finally fragmentation. Also, the tool shall be able to provide thermal heating information (time dependent temperature profiles) of the assemblies and components during entry and after break-up, so that the natural sterilization due to heating	Description						
the related atmosphere with built in criteria for the transition region from rarefied to continuum flow and aerodynamic heating model for that regime. b. CFD/DSMC solvers and possibly specific windtunnel tests shall be used to extend the database. For each selected free stream condition also the angle of flow incidence has to be varied between 0 and 180 � with a step size of 15�. This will allow determining mean aerodynamic loads for one tumbling motion period. Based on this data base the tumbling entry and impact of these objects shall be analyzed. In order to assess the possible improvements the results shall be compared with results obtained by a well validated break-up tool with its present modelling system using some generic shapes. c. To set up a database on the behaviour of specific materials for a Mars entry vehicle which consists of typical S/C material, including CFRPs and high temperature alloys (during entry in the Mars atmosphere, i.e. their ablation-rate and coupled thermal-material characteristics. d. Investigate contribution of above models in implementing them into an existing break-up tool adapted to Mars atmosphere to better support modelling of fragmentation mechanisms including time dependency, in particular regarding the level of definition required to simulate relevant local destruction mechanisms which by local melting, perforation allow aero-thermal flux to penetrate in the spacecraft, induce loss of connections, large scale destructions, and finally fragmentation. Also, the tool shall be able to provide thermal heating information (time dependent temperature profiles) of the assemblies and components during entry and after break-up, so that the natural sterilization due to heating during entry can be evaluated and compared with the Planetary Protection bioburden requirements. If simple model used (few nodes), validation of a few generic cases (e.g., internal heating of a few electronic modules) is required. Assume tumbling and use average heat flux for input. f. Validate tool by co	particular attentior materials. In order to improv validate their use f	to a lower density CO2 at e knowledge of a non-cont or Mars entries:	tmopshere and use	of CFRP or high to	temperature alloys (e.g. titanium-based) structura , the existing models need to be extended to		
	the related atmosp model for that regi b. CFD/DSMC sol condition also the determining mean these objects shall well validated brea c. To set up a data including CFRPs a material characteri d. Investigate cont better support moc required to simula in the spacecraft, i provide thermal he break-up, so that th bioburden requirer electronic modules f. Validate tool by e. Apply the exten The goal is to have control (delta-qual	here with built in criteria forme. vers and possibly specific angle of flow incidence ha aerodynamic loads for one be analyzed. In order to as ak-up tool with its present it base on the behaviour of sp ind high temperature alloys stics. ribution of above models it telling of fragmentation mode te relevant local destruction induce loss of connections, ating information (time de ne natural sterilization due nents. If simple model uses b) is required. Assume tum comparison with MRO en ded tool on some typical en e a reliable tool that can be ification of parts) and miss	or the transition re- windtunnel tests sl s to be varied betwe tumbling motion ssess the possible in modelling system opecific materials for s (during entry in t n implementing the echanisms includir n mechanisms whi large scale destruct opendent temperatu to heating during of d (few nodes), valib bling and use aver- try analysis. ntry scenarios, incl-	gion from rarefied hall be used to exterveen 0 and 180 � period. Based on tl mprovements the r using some generic or a Mars entry veh he Mars atmospher em into an existing ng time dependency ch by local melting ctions, and finally f re profiles) of the entry can be evalua idation of a few get age heat flux for in luding uncontrolled	to continuum flow and aerodynamic heating end the database. For each selected free stream ½ with a step size of 15�. This will allow this data base the tumbling entry and impact of results shall be compared with results obtained by c shapes. hicle which consists of typical S/C material, ere, i.e. their ablation-rate and coupled thermal- g break-up tool adapted to Mars atmosphere to cy, in particular regarding the level of definition g, perforation allow aero-thermal flux to penetrat fragmentation. Also, the tool shall be able to assemblies and components during entry and aft ated and compared with the Planetary Protection eneric cases (e.g., internal heating of a few nput. d entry of the MSR Orbiter. C design and reduce the impact of bioburden		
	Test results to veri	fy new parameters used in	the simulation.				

Test results to verify new parameters used in the simulation. Updated simulation tool. Results of typical entry scenarios.

Current TRL:	3	Target TRL:		Application Need/Date:	2012
Application Mission:	INSPIRE and all other	Mars missions	Contract Duration:	9	
S/W Clause:	Operational Software		Reference to ESTER	T-1103	
Consistency with Harmonisation Roadmap and conclusion:					
N/A					

Programme: ETP **Reference:** E906-003FI Title: SPEX (Spectro-Polarimeter for Planetary Exploration) Characterization Program **Total Budget:** 220 Objectives The objectives are: - Fully characterize the technology employed on SPEX; - Develop the required support equipment/tools for determination of the polarimetric performance of the system; Characterize the thermal sensitivity of the system; Pre-qualification of SPEX system. Description SPEX, the Spectro-Polarimeter for Planetary Exploration, is a new technology development for remote sensing measurements of planetary atmospheres. The new concept makes use of the polarization properties of birefringent crystals, and allows for very compact instrument concepts without moving parts. A previous development program resulted in a breadboard (prototype) of the instrument through which a proof of principle was achieved. As a potential technology for a Mars orbiting mission, the development activities are included for Mars robotic exploration program (MREP) beyond the ExoMars program, with the aim to increase the maturity of the system and its TRL to 5. Deliverables 14 technical notes and a final report. Application **Current TRL:** 5 Target TRL: Need/Date: Application Several 24 **Contract Duration:** Mission: **Reference** to S/W Clause: N/A ESTER Consistency with Harmonisation Roadmap and conclusion:

UHF/X-band back-s	UHF/X-band back-shell antenna system for Mars entry vehicles				
Programme:	ETP	Reference:	E907-007EE		
Title:	UHF/X-band back-shell antenna system for	Mars entry vehicles			
Total Budget:	800				
Objectives					
1	lop an antenna system based on proven tech Exploration missions.	nological concepts up	to EM level for Entry, Descent and Landing		
Description					
optimised to enhance are far from optimal a complexity penalty o alternative solutions l overcome these limit implementation need	stems operating at UHF and X band are critic the probability of success and gather all pos as they use either a large number of radiating r failing to provide the gain necessary to mee based on a thorough assessment of the interp ations. While the primary technology for rad s to be optimised from the electrical, mechan ttenna system will be developed up to Engine	sible data about this cr g elements to ensure to et the link-budged over lay among radiating el- liating elements is avail nical and mission opera	itical mission phase. Current configurations roidal coverage resulting in a mass and the required large field of view. The use of ements and lander geometry is expected to lable, the overall antenna system		
Deliverables					

Study report and Engineering Model

Current TRL:	3	Target TRL:		Application Need/Date:	2015
Application Mission:	INSPIRE		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	Yes	
Consistency with Harmonisation Roadmap and conclusion:					

Mars Sample Return

n	nent system sealing					
Programme:	ETP		Reference:	E914-001MM		
Fitle:		nent system sealing and	monitoring technologies	- development and	d validation	
Total Budget:	1500					
Objectives						
 The objectives of the activity are to:) to define the sealing technologies for the flight containment system required to ensure a safe return of Mars samples with respect o planetary protection category V, restricted Earth return, within the resources available. i) develop, test and verify the selected technologies; ii) Update the design concept for the MSR Bio-Containment System; provide recommendations to the MSR system studies. 						
Description		·			<u>,</u>	
- demonstrate the i iii) Update the des It is expected that representative con Deliverables Documentation Test Samples	implications of the se ign concept for the M a follow-on activity (ls for the individual techn caling processes on the sp ASR Bio-Containment Sp (not part of the present p	nologies and use flight-li pacecraft (e.g. heat and c ystem and provide recon roposal) will then apply	bris generation, and the second	e system design.	
- demonstrate the i iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models	implications of the se ign concept for the M a follow-on activity (tainment system brea	Is for the individual techn ealing processes on the sp ASR Bio-Containment Sp (not part of the present p adboard for integrated tes	nologies and use flight-li pacecraft (e.g. heat and c ystem and provide recon roposal) will then apply sting	Application	e system design.	
- demonstrate the i iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL:	implications of the se ign concept for the M a follow-on activity (ls for the individual techn caling processes on the sp ASR Bio-Containment Sp (not part of the present p	nologies and use flight-li pacecraft (e.g. heat and c ystem and provide recon roposal) will then apply	lebris generation, umendations to the the validated techn	e system design.	
- demonstrate the i iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application	implications of the se ign concept for the M a follow-on activity (tainment system brea	Is for the individual techn ealing processes on the sp ASR Bio-Containment Sp (not part of the present p adboard for integrated tes	nologies and use flight-li pacecraft (e.g. heat and c ystem and provide recon roposal) will then apply sting	Application	e system design.	
- demonstrate the i iii) Update the des It is expected that representative con Deliverables Documentation Test Samples	a follow-on activity (tainment system brea	Is for the individual techn ealing processes on the sp ASR Bio-Containment Sp (not part of the present p adboard for integrated tes	nologies and use flight-lipacecraft (e.g. heat and c ystem and provide recon roposal) will then apply sting	Application Meed/Date:	e system design.	
- demonstrate the iii) Update the des iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application Mission: S/W Clause:	a follow-on activity (tainment system bread	Is for the individual techn ealing processes on the sp ASR Bio-Containment Sp (not part of the present p adboard for integrated tes	nologies and use flight-lipacecraft (e.g. heat and constrained provide reconstrained provide reconstrained by sting 3 3 Contract Duration: Reference to	Application Need/Date:	e system design.	
 demonstrate the isii) Update the desiii) Update the desiii Conservation Test Samples Courrent TRL: Application Mission: S/W Clause: Consistency with 	a follow-on activity (tainment system bread	Is for the individual techn ealing processes on the sp ASR Bio-Containment S (not part of the present p adboard for integrated test Target TRL:	nologies and use flight-lipacecraft (e.g. heat and constrained provide reconstrained provide reconstrained by sting 3 3 Contract Duration: Reference to	Application Need/Date:	e system design.	
demonstrate the i iii) Update the des iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application Mission: S/W Clause: Consistency with not known	a follow-on activity (a follow-on activity (tainment system brea 2 MSR N/A	Is for the individual techn ealing processes on the sp ASR Bio-Containment S (not part of the present p adboard for integrated technological Target TRL:	all objects and use flight-lipacecraft (e.g. heat and constrained provide reconstruction) roposal) will then apply sting 3 Contract Duration: Reference to ESTER	Application Need/Date: 24 N/A	2015	
- demonstrate the iii) Update the des iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application Mission: S/W Clause: Consistency with not known Biosealing and M	implications of the se ign concept for the M a follow-on activity (tainment system bread 2 MSR N/A Harmonisation Road onitoring Technolo	Is for the individual techn ealing processes on the sp ASR Bio-Containment S (not part of the present p adboard for integrated test Target TRL:	ainment System - Sealin	Application Need/Date: 24 N/A	2015	
- demonstrate the iii) Update the des iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application Mission: S/W Clause: Consistency with not known Biosealing and M	a follow-on activity (a follow-on activity (tainment system brea 2 MSR N/A	Is for the individual techn ealing processes on the sp ASR Bio-Containment S (not part of the present p adboard for integrated technological Target TRL:	all objects and use flight-lipacecraft (e.g. heat and constrained provide reconstruction) roposal) will then apply sting 3 Contract Duration: Reference to ESTER	Application Need/Date: 24 N/A	2015	
- demonstrate the iii) Update the des iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application Mission: S/W Clause: Consistency with not known	a follow-on activity (tainment system bread 2 MSR N/A Harmonisation Road entitoring Technolog ETP	Is for the individual techn ealing processes on the sp ASR Bio-Containment S (not part of the present p adboard for integrated technological Target TRL:	ainment System - Sealin Reference:	Application Need/Date: 24 N/A ng tests and EM of E914-004QI	e system design. nologies to a flight 2015 design	
- demonstrate the iii) Update the des iii) Update the des It is expected that representative con Deliverables Documentation Test Samples Software models Current TRL: Application Mission: S/W Clause: Consistency with not known Biosealing and M Programme:	a follow-on activity (tainment system bread 2 MSR N/A Harmonisation Road entitoring Technolog ETP	Is for the individual techn ealing processes on the sp ASR Bio-Containment S (not part of the present p adboard for integrated technological Target TRL: admap and conclusion: gies for a Sample Containant	ainment System - Sealin Reference:	Application Need/Date: 24 N/A ng tests and EM of E914-004QI	e system design. nologies to a flight 2015 design	

Based on the previous results of the MREP-1 activity "Biosealing and Monitoring Technologies for a Sample Containment System", the objective of this TDA is to perform additional, already identified, tests on critical components of the sealing system, adapt the design of the container accordingly, perform necessary breadboarding and produce a design of an EM of the biosealing and monitoring system.

Description

This mission enabling technology development for MSR is a continuation of a 2.5 year 1500 kEuro contract completed in June 2013 to develop a flight biosealing and monitoring system for a MSR mission.

Phase 1:

Based on the previou	Based on the previous study and test results, the following additional tests on critical components of the sealing system are					
necessary:						
-Aging of polymeric						
-Further developmen	t of metal energized sea	als, incl. change from	internal to external con	npression, seal mating	g surface	
-Optimisation of the	Nanofoil application fo	r the breaking-the-ch	ain lid			
-Continuation of the	particle penetration test	ts (sealing system per	formance validation) in	i line with PRA and up	pdated metal seal	
application						
-Optimisation of mor	nitoring system					
-Update of PRA						
-Opening process						
Some of these tests w	vill introduce a design r	nodification of the co	ntainer (e.g., stiffening	to better support the	metal seal) and the	
sealing system and th	erefore will also result	in new breadboards.				
-Design of Engineeri	ng Model					
Manufacturing and te	ests need to be under str	rict PA/QA control fo	or Phase 1 to meet the se	chedule and ensure that	at the conclusions are	
relevant.						
Deliverables						
Updated breadboards	for the sealing and for	the containment system	em, design of EM upda	ted PRA, DDVP for 0	QM and FM.	
Current TRL:	Current TRL: 3 Target TRL: 4 Application Need/Date: 2017					
Application Mission:						
S/W Clause:	N/A		Reference to ESTER			

Biosealing and Monitoring Technologies for a Sample Containment System - EM development and testing					
Programme:	ETP	Reference:	E914-005QI		
Title:	Biosealing and Monitoring Technologies fo	r a Sample Containmen	t System - EM development and testing		
Total Budget: 2000					
Objectives					

Objectives Based on the previous MREP-2 activity of biosealing and monitoring system development, manufacture an EM and perform end-toend integrated tests.

Description

In this follow-on activity, the following work is envisaged:

Consistency with Harmonisation Roadmap and conclusion:

-Manufacturing of EM, representative of all interfaces, material and processes, incl. internal (aluminium) and external (titanium) container, CBL with Nanofoil and C-seals, lid for internal and external container, monitoring system -Integrated end-to-end test

Manufacturing and tests need to be under strict PA/QA control meet the schedule and ensure that the conclusions are relevant.

Denverabits						
Engineering Model and test reports, data package.						
Current TRL:	4	Target TRL:	5	Application Need/Date:	2017	
Application Mission:	MSR		Contract Duration:	16		
S/W Clause:	N/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

Shape Memory Alloy actuators for MSR biocontainer sealing - feasibility demonstration						
Programme:	GSTP Reference: G215-001FP					
Title:	Shape Memory Alloy actuators for MSR biocontainer sealing - feasibility demonstration					

Total Budget:	200					
Objectives						
		hape memory alloys (SM ealing technologies.	A) as an actuator to close	/seal the MSR bio	container structure as an	
Description						
BioContainment f - Required force to - Reliability of fur - Tolerance agains	or MSR mission: o lock the seal ction t environment and c ssure, EMC, radiati nent	ualification limit	espect to function as a me	chanism for seal c	closure of a	
 C) Definition of te How to proof fur Develop analytic Pressure test vs. D) Design of test s Design of SMA e Analyse resource 	st set up liction al procedure to proo material research (a et-up	nalyse slice by e.g. SEM r, weight etc.				
Deliverables						
Documentation an	d breadboard			_		
Current TRL:	2	Target TRL:	4	Application Need/Date:	2019	
Application Mission:	MSR	MSR		12		
S/W Clause:	N/A	N/A Reference to ESTER				
Consistency with	Harmonisation Ro	admap and conclusion	:			

MSR Double walled isolators - feasibility concept study						
Programme:	TRP	Reference:	T914-005MM			
Title:	MSR Double walled isolators - feasibility co	MSR Double walled isolators - feasibility concept study				
Total Budget:	200	200				
Objectives	Objectives					
Evaluate the feasibility of a concept Design for a "double walled isolator" as primary containment to receive and analyse MSR samples in an ultra clean environment.						

Description

The challenge of the MSR containment facility is to comply with planetary protection requirements of a category V, restricted Earth return, mission and hence prevent any uncontrolled release of potentially hazardous martian material and at the same time protect the samples from terrestrial contamination that could jeopardize in particular the life detection and biohazard assessment protocol and in general compromise the sample quality.

To maintain a clean, contained environment for curation and analysis of returned Mars samples, the MSR biological containment facility parallel studies (ESA contracts Nr 21431, 22226) have identified a potential solution, e.g. a double walled isolator.

Such an isolator must provide a primary containment at least equivalent to Biological Safety Cabinet (BSC) class III. Interfaces need to be available to pass the samples into and out of the isolator. The isolator must be capable of housing a robotic manipulation system and interfacing with a range of analytical instrumentation. In addition, the control of terrestrial contamination and cross contamination between samples and the recovery of martian material following handling processes is of high importance. As such, compatibility with a decontamination process including sterilisation and ultra cleaning, needs to be accounted for in the design.

This study needs to determine whether such a concept is feasible, demonstrate by test or analysis critical functions, describe a risk analysis and mitigation solutions before entering in a subsequent phase in a detailed design and breadboarding activity.

Programmatic consideration:

- The double walled isolator is a key technology to be mastered before starting a design work for MSR containment facility. - It is not advisable to neglect this ground element since the development time for such a facility is longer than for most flight projects and the approval for use is given by external entities. The timeline follows recommendations provided by the international iMARS team, the latest US National Research Council Report and both (ESA and NASA) planetary protection advisory groups.

Deliverables							
Feasibility study on a concept Design							
Current TRL:	1	Target TRL:	2/3	Application Need/Date:	TRL5 by 2015		
Application Mission:	MSR		Contract Duration:	12			
S/W Clause:	IN/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							

MSR Double walled	l isolators - breadboai	rd					
Programme:	ETP		Reference:	E914-005MM			
Title:	MSR Double walled is	MSR Double walled isolators - breadboard					
Total Budget:	800						
Objectives							
Design, breadboard	and validate double wal	lled isolators to receiv	ve and analyse MSR sar	mples in clean and ult	ra clean environment.		
Description							
return, mission and I detection and biohaz MSR biological cont double walled isolate A detailed feasibility before entering a sec This proposal addres The DWI must provi need to be available system and interfacin contamination betwee compatibility with d - Recover solid mate - Clean all equipmen and samples - Be address	y study for a DWI conce cond phase of a detailed asses this second phase: the a primary containing to pass the samples into ng with a range of analy een samples and the reco econtamination/cleanin	ward contamination a clean, contained env el studies (ESA contra ept, including a demo design and breadboa ent level at least equi o and out of the isolat rtical instrumentation overy of martian mate g processes needs to 1 SR hardware and san ieans, to minimise hu	and generation of false p ironment for curation at acts Nr 21431, 22226) h instration by test or ana arding activity. valent to a Biological S or. The isolator must be i. In addition, the contro erial following handling be taken into account at inples - Sterilise all equi man interaction with th	ositive and negative i nd analysis of returne have identified a poter lysis of critical function afety Cabinet (BSC) of e capable of housing a ol of terrestrial contant g processes is of high nd validated for the D pment in contact with e sample	results in the life d Mars samples, the ntial solution , e.g. a ons has been proposed class III. Interfaces a robotic manipulation nination and cross importance. The WI. This process shall:		
Deliverables							
Technical Data Pack	age including Detailed	design, and function	al breadboard.				
Current TRL:	2	Target TRL:	5	Application Need/Date:	TRL5 by 2018		
Application Mission:	2020+ Contract Duration: 18						
S/W Clause:	N/A		Reference to ESTER				
Consistency with H	armonisation Roadma	ap and conclusion:					

Manipulation systems for sample handling in a Sample Receiving Facility					
Programme:	TP Reference: E913-010MM				
Title:	Manipulation systems for sample handling i	Anipulation systems for sample handling in a Sample Receiving Facility			
Total Budget:	000				
Objectives					

Identify and demonstrate feasibility for a micro manipulation system interfaced to an isolation system for samples returned from Mars respecting the requirements for sample manipulation under containment, contamination control and maintaining sample quality.

Description

To handle returned Mars samples for biological hazard assessment, whilst maintaining the science contained within them, it will be necessary to make use of remote manipulation systems to remove contaminating humans as much as possible from the process. These systems will need to be able to:

- Handle the samples and sub samples (order of grams down to micro grams)

- Operate in a freezer temperature (~250K), ambient or low pressure, dry nitrogen environment

- Produce a minimum of contamination into the sample environment from the materials and lubricants used in their construction.

- Be able to be sterilised decontaminated via a qualified process prior to installation in the containment area
- Be able to operate for a minimum of 6 months with a minimum of planned servicing
- Operate in a double walled isolator with minimal through wall intrusion

Activity in 2 phases:

i)200 kEuros for 12 months to consolidate the requirements, provide a preliminary design iteration & trade off, description of a development program

ii) 800 kEuros for 24 months for design and performing breadboard testing.

Deliverables

Requirements, preliminary design, development plan, detailed breadboard design, TRR, breadboard test report, recommendation for future activities.

Current TRL:	0	Target TRL:		Application Need/Date:	2015	
Application Mission:	MSR and other sample return missions		Contract Duration:	36		
S/W Clause:	IN/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

Integrated GNC se	Integrated GNC solution for Autonomous Mars Rendezvous and Capture						
Programme:	ETP	ETP Reference: E905-010EC					
Title:	Integrated GNC solution for Auton	nomous Mars Rendezvous a	and Capture				
Total Budget:	750						
Objectives							
capture of a Martian experience in Europ	n canister. This will be done by reusin	ng where applicable and fu e designed, from the optim	f the MSR mission, capable to demonstrate the rther the available RVD development and isation of the GNC strategies to the selection and				
Description							
such systems. In pa	The activity shall start from past studies (incl. the 2 HARVD and Mars NEXT ones) and experiences and the GNC requirements for such systems. In particular, the synthesis and analysis of the multivariable GNC system. The design shall make use of sensors (cameras, RF sensors and LIDAR) and actuators developed in parallel activities with special emphasis on the design of the end-to-						

Model uncertainties shall be identified, quantified and used in the design process. All the MSR rendezvous phases from finding the target in space to the capture shall be covered with the corresponding modes transition. A sofware simulation and validation platform with real-time and hardware-in-the-loop capabilities will be further developed starting from an existing one. FDIR needs and solutions shall be identified and developed to make the system failure tolerant beyond its inherent robustness by design.

end rendezvous navigation chain for which dedicated feasibility analysis and preliminary requirements shall be provided.

Identified alternative techniques that can benefit to the success and optimisation of the MSR rendezvous strategy shall be considered to the level where comparative trade offs can be performed. This does include the study of elliptical scenarios in a dedicated WP (GNCO heritage), including an assessment of the maximal orbital parameters boundaries that can be handled by an autonomous GNC in the initial phases fo the MSR rendezvous.

Plans shall be elaborated for the development of the selected architecture for early prototyping prior to potential adoptation by a project at TRL6.

Deliverables

A fully functional GNC system for all the MSR RVD phases with all algorithms implemented on a real-time test-bench. Requirements for the MSR rendezvous sensors. A fully functional GNC performance simulator in both RT and non real time version.

Current TRL:	3/4	Target TRL:		Application Need/Date:	2012
Application Mission:	IM		Contract Duration:	24	
S/W Clause:	IN/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					

RF Long Range Navigation Sensor Breadboar

 Programme:
 ACP
 Reference:
 CG80

 Title:
 RF Long Range Navigation Sensor Breadboard

 Total Budget:
 300
 300

Design and Development of a breadboard of an RF Long Range Navigation Sensor for Long-Range Rendez-Vous stages in the Mars Sample Return.

Description

From Mars Sample Return mission analyses it has been shown that the best technology to support the Long-Range Rendez-Vous operations is the one based on RF. This activity will elaborate the necessary trade-offs to find the most suitable RF technology (transponder-like two-way ranging, Formation-Flying-like RF metrology, radar). The starting point will be the mission requirements (nominal plus a wide range of degraded mission scenarios) and a 1st-version of the technical specifications of the RF sensor. The contractor will also consolidate the technical specification based on the afore-mentioned trade-offs, and produce an architectural design. From this architectural design, a breadboard will be developed. This breadboard will be representative of the critical subsystems contained in the architectural design. The breadboard will be used by the contractor to demonstrate on the feasibility of the chosen technology and architecture for the Mars Sample Return Mission.

Deliverables

Deliverables					
Technical Notes an	nd breadboard to	demonstrate on critical techn	ologies.		
Current TRL:	1	Target TRL:	3	Application Need/Date:	2012
Application Mission:	1	Return and missions alike ge Rendezvous requirements	Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER	T-7723, T-7745, T-8	070
Consistency with	Harmonisation	Roadmap and conclusion:			
EE D. die Emeran	Matuala T.	-1	- TEC ETN/2007 (4		

FF Radio Frequency Metrology. Technical Dossier and Roadmap. TEC-ETN/2007.64

RF Long Range Na	RF Long Range Navigation Sensor Breadboard						
Programme:	ETP		Reference:	E906-004ET			
Title:	RF Long Range Navig	ation Sensor Breadbo	oard				
Total Budget:	300						
Objectives							
Design and Develop Mars Sample Return	ment of a breadboard of	f an RF Long Range N	Navigation Sensor for I	long-Range Rendez-V	ous stages in the		
Description							
Description From Mars Sample Return mission analyses it has been shown that the best technology to support the Long-Range Rendez-Vous operations is the one based on RF. This activity will elaborate the necessary trade-offs to find the most suitable RF technology (transponder-like two-way ranging, Formation-Flying-like RF metrology, radar). The starting point will be the mission requirements (nominal plus a wide range of degraded mission scenarios) and a 1st-version of the technical specifications of the RF sensor. The contractor will also consolidate the technical specification based on the afore-mentioned trade-offs, and produce an architectural design. From this architectural design, a breadboard will be developed. This breadboard will be representative of the critical subsystems contained in the architectural design. The breadboard will be used by the contractor to demonstrate on the feasibility of the chosen technology and architecture for the Mars Sample Return Mission.							
Deliverables							
Technical Notes and breadboard to demonstrate on critical technologies.							
Current TRL:	1	Target TRL:	3	Application	2012		

			Need/Date:			
Application Mission:	Mars Sample Return and missions alike with long-range Rendezvous requiremen	S Contract Duration:	12			
S/W Clause:	N/A	Reference to ESTER	T-7723, T-7745, T-8070			
Consistency with Harmonisation Roadmap and conclusion:						
FF Radio Frequency Metrology. Technical Dossier and Roadmap. TEC-ETN/2007.64						

RF Long-Range Navigation Sensor EM Development Programme: ETP Reference: E906-005ET Title: RF Long-Range Navigation Sensor EM Development E906-005ET Total Budget: 1000 Objectives The development to Engineering Model level of a sensor able to provide long range sample canister location during MSR rendezvous. Description Description The MSR cannister of samples (target vehicle) will be launched from the Martian surface and injected in a stable orbit, with severe limitation are nearly relative to the terrent which multiple multiple in a stable orbit, with the severe severe severe the severe severe the severe severe the severe severe severe the severe severe severe severe severe the severe severe

limitations on payload capacity and resources. Injection accuracy relative to the target vehicle waiting in orbit will be limited by the navigation means of the ascent stage, its surface location, timing and the target vehicle navigation. The target vehicle shall be then detected and tracked by an orbiter (chaser) that will subsequently performed the corresponding rendez-vous manoeuvres. In the detection of the target vehicle, a significant dispersion is expected, which will require therefore in-orbit navigation means from up to thousands of kilometers. Previous studies at mission analysis level and preparatory work for the Aurora Core Programme activity CG80 "RF Long-Range Navigation Sensor Breadboard and Engineering Model" (temporarily on hold) has shown that RF-based sensors in chaser and target vehicles are the optimal approach in order to achieve navigation across long ranges. Activity CG80 (to be shortly resumed with a re-arranged scope) targets the trade-offs, design and bread-boarding aspects. The next logical step is the development of the engineering model in the proposed activity as follow-on of CG80. The CG80 activity (in its new scope) will achieve TRL3. The proposed activity will go from TRL3 to TRL5.

The objective of this activity is the development of the Engineering Model based of the RF Long-Range sensor based on the results of the previous Aurora CR80 activity, together with the corresponding lab testing and the necessary design consolidation. The engineering Model comprises two units. One to be installed in the chaser and the other to be installed in the target vehicle. Both units will be architecturally very different due to different nature of the platforms (chaser and target vehicle). This EM can be also used to study feasibility of the same concept for long-range rendez-vous in other planetary/Moon missions. Coordination with TEC-EC is foreseen.

Deliverables

Engineering model of the long-range RF sensor (two units: one to be on-board of orbiter and the other to be on-board of sample container vehicle).

Current TRL:	3	Target TRL:	ר <i>ו</i>	Application Need/Date:	2018	
Application Mission:	MSR		Contract Duration:	18		
S/W Clause:	IN/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						
FF Radio Frequency Metrology. Technical Dossier and Roadmap. TEC-ETN/2007.64						

End to end ground testing of GNC solution for Autonomous Mars Rendezvous and Capture						
Programme:	ETP	Reference:	E905-012EC			
Title:	End to end ground testing of GNC solution	for Autonomous Mars	Rendezvous and Capture			
Total Budget:	800	800				
Objectives						
To perform an end-to-end integrated testing of the GNC system covering all the RVD and capture phases for a MSR and precursor type mission. The tests will be conducted in closed-loop in an existing dedicated ground facility, reproducing as much as possible flight-like conditions.						
Description						
Building on the dynamic test benches with hardware-in-the-loop capabilities developed in past studies (HARVD), the activity shall						

conduct ground validation campaigns of the previously developed GNC systems for Mars rendezvous. The goal will be to perform an integrated testing covering all the phases of the MSR rendezvous: search & detection, homing and terminal rendezvous in a representative dynamics environment and using mature GNC avionics.

Deliverables							
Open and closed-loop tests results. Validated rendezvous system in a ground representative environment.							
Current TRL:	5 Target TRL: 6 Application Need/Date:				2015		
Application Mission:	IM,MSR		Contract Duration:	18			
S/W Clause:	N/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							

Sample Canister Capture Mechanism Design and Breadboard							
Programme:	ACP		Reference:	CG50			
Title:	Sample Canister Capt	ure Mechanism Desig	n and Breadboard				
Total Budget:	350						
Objectives	Objectives						
Develop alternatives	concepts and BBM tes	ting of a MSR capture	e mechanism (CM), no	t involving inflatable	structures.		
Description							
During the return ph and then to the Earth to the Orbiter could I - a Capture mechanis - a Docking mechani In the capture scenar manoeuvre to approa CM will transfer the trap, subsequent SC In a previous ESA ac carried out, and an In built and tested succ modified, fully inflat inflatable envelope v performed. The aim of this activ concepts from ACDI Follow-on activities testing. Note: the requirement of an inflatable CM. been developed for N	eturn (MSR) mission wi ase, a Sample Containe Return Capsule (ERC) be performed either by sm (CM), catching a fre ism (DM), mating the M rio, the SC (quasi-spher ach the incoming SC wi captured SC through it processing operations v ctivity (Aurora Capture nflatable Capture mecha essfully on ground at ar table ICM was develop vas found leaking in sev ity is to investigate alte M will be revisited. A E will be proposed, to der this of a CM with limited Alternatively, allowing NASA-JPL by Honeybe uirement would be ben	r (SC) carried by a M b. The Phase A2 MSR Capture or by Dockin ee-flying, passive SC, <i>I</i> AV on the Orbiter to ical) will be released 1 ith adequate position, s outlet toward the tra will be performed by C / Docking Mechanisr anism (ICM), with a r mbient. In a follow-or ed at EM level for TV veral places after vibra- ernatives concepts for BBM with 0-g simulat velop the CM up to T d stowed volume impress g a larger stowed enve- er Robotics and succe	ars Ascent Vehicle (M. system studies conside g, i.e. with: b take the SC. by the MAV into a free velocity and attitude an p, an enclosure in the O ther subsystems - esse n - ACDM) a conceptu igid frame, was selecte ESA activity (Capture testing: following succ ation testing; eventually the CM, not involving ion GSE for SC will be RL 5, including therma psed a deployable captu lope, a simpler CM wit ssfully tested in parabo	AV) shall be transferr or that the transfer of t of that the transfer of t of the SC will be capt Drbiter, in which it wi al study of CM and D d and developed: a Br of Docking Mechaniss cessful functional test y, thermal vacuum tes inflatable structures. I e tested in laboratory of l vacuum (TV) and particular inflatable structures in the solid, non-deploya	ed to a Mars Orbiter he SC from the MAV the Orbiter will ured by the CM. The ll be secured; from the l transfer to the ERC. M candidates was readboard Model was n Testing), a ing at ambient, the ting could not be Relevant earlier environment. arabolic flight (PF) favoured the selection able capture cone has		
BBM of CM, SC GS	E ejection device with	0-g simulation, electr	onics, harness and requ	ired mechanical and e	electrical GSE for		
laboratory testing.	laboratory testing.						
Current TRL:	2/3	Target TRL:	4	Application Need/Date:	2012		
Application Mission:	MSR		Contract Duration:	12			
S/W Clause:	N/A Reference to ESTER						
Consistency with H	armonisation Roadma	ap and conclusion:					
1							

Sample canister capture mechanism parabolic flight test							
Programme:	ETP		Reference:	E915-005MS			
Title:	Sample canister captu	re mechanism parabo	lic flight test				
Total Budget:	150						
Objectives							
Parabolic Flight testi	ing of a non-inflatable s	ample capture mecha	anism breadboard for au	tomated Mars orbit re	endezvous		
Description							
or free-flying Sample Container (SC) to capture and transfer the SC to the Earth Return Capsule (ERC). A previous activity under the Aurora Core Programme (CG50) will have developed a breadboard of a non-inflatable sample canister capture mechanism. This activity is aimed at parabolic flight testing of the breadboard to demonstrate the terminal phase of autonomous sample capture during Mars orbit rendezvous. The contractor shall be responsible of relations with the French Centre d'essais en vol and with Novespace for the organization of a parabolic flight test campaign.							
Deliverables							
Test results from par	abolic flight test campa	ign of the capture m	echanism breadboard.				
Current TRL:	3	Target TRL:	4	Application Need/Date:	2012		
Application Mission:	MSR		Contract Duration:	6			
S/W Clause:	N/A		Reference to ESTER				
Consistency with H	Consistency with Harmonisation Roadmap and conclusion:						

Improvement of De	Ita DOR performances for 1 nrad accura	cy for precise land	ing sunnort			
Programme:	TRP	Reference:	T912-001GS			
Title:	Improvement of Delta DOR performances	for 1 nrad accuracy	for precise landing support			
Total Budget:	250					
Objectives	•					
 To evaluate the te by enhancing the currer increase the similarity betwee 2) To define the prop 	enhancing the current Delta-DOR system or by using alternative satellite signal structure (e.g. spread-spectrum technique to					
Description						
Delta-DOR. The targ feasibility of such le on enhancement of e possibility to reach 1 development of alter therefore: 1) Evaluate the techn 2) Evaluate possible solutions proposed in bandwidth broadene very similar, thus ma spectrum DOR signa technique. In this cas As part of the study performance as well undertaken to demor	et angular accuracy would be in the order or vel of accurcay has been partially investigate nd-to-end accuracy for spacecraft tracking to nrad accuracy (in X- and Ka-band) with eit native technologies in terms of S/C signal st nological developments needed to enhance th alternatives on the S/C signal structure that n the previous GSP activity was to have the sid to 152 MHz in the 34.2-34.7 GHz band (K uximizing the noise canceling effect of the in al, the group delay ripple is reduced by a fact is the DDOR correlator software has to be al the selection for the most appropriate spread	f 1 nrad in the satel ed in the frame of a echniques"). Here i her technological in ructure to be used f ne current Delta-DO could lead to the sa spacecraft transmitt a-Band). This choi tterferometry measu tor of 10, without th ble to handle the de spectrum modulati nain. Simulations of tify critical areas in	previous GSP activity (" Interdisciplinary study t is proposed to address specifically the mprovements on the current systems or via for Delta-DOR measurements. The study shall DR system to the 1 nrad level me (or better) level of accuracy. One of the ting a spread spectrum DOR signal over a ce makes the spacecraft and the quasar signals urement. Moreover, by adopting a spread ne necessity of any particular calibration spreading of the spread spectrum range signal. ton scheme will be traded off based on f the on-board and on-ground process shall be			

Deliverables							
 * Technical documentation (design, trade-off) * Simulators of on-board and on-ground enhanced Delta DOR systems. 							
Current TRL:	2 Target TRL: 3 Application Need/Date: 2018						
Application Mission:	MSR, Precision landing missions		Contract Duration:	12			
S/W Clause:	N/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							

Planetary communication system based on modulated retro-reflection						
Programme:	TRP		Reference:	T916-003MM		
Title:	Planetary communicat	tion system based on a	modulated retro-reflection	ion		
Total Budget:	300					
Objectives						
	activity is to develop a nd power consumption				remely miniaturised in	
Description						
1 1 1	le of laser communicat er-cube or cat's-eye retr			an be applied optically	y by modulating the	
This type of optical communication system enables one terminal to be extremely small and lightweight with very low power consumption (required only for the modulation system). The outgoing laser beam can also be modulated (at a different frequency) enabling bidirectional communications. However, the maximum link distance is only in the order of a couple of hundred km, because the link budget drops with the fourth power of distance, which also limits the achievable data rate. Retro-reflectors require no pointing system, but for hemispherical coverage a retro-reflector array is necessary. Several institutes are investigating the use of modulated retro-reflection systems for laser communication applications in asymmetrical link arrangements, where one partner terminal is located on a platform on which mass, volume and power consumption must be minimised, such as on planetary landers/rovers or sample-return missions. The Contractor needs to have experience with modulated retro-reflector systems, but shall first investigate the latest results from literature. In addition he will identify the space missions/applications for which such a system could be beneficial. He shall then design an optimised system and develop a breadboard prototype and test it in a relevant environment.						
Deliverables						
Breadboard of a trans	sceiver and a retro-refle	ection system for low-	power communication		•	
Current TRL:	2	Target TRL:	3	Application Need/Date:	2015	
Application Mission:	MSR, INSPIRE		Contract Duration:	18		
S/W Clause:	N/A Reference to ESTER					
Consistency with H	armonisation Roadma	ap and conclusion:				

Enhanced interplanetary meteoroid population model					
Programme:	TRP	Reference:	T904-003EE		
Title:	Enhanced interplanetary meteoroid population model				
Total Budget:	300				
Objectives					
The main objective of the activity is the development of an enhanced meteoroid environment model that can be used for impact risk assessments for space missions in near-Earth and interplanetary space (applicable for heliospheric distanced of 0.05 to 10AU with main application being Near-Earth space from approx. 0.7 to 2AU).					

The model shall compute number density, impact flux/ fluency, velocity (heliocentric and relative to spacecraft), impact angle

otaction for the MSD Forth Do

distribution, and imparted linear momentum as a function of meteoroid mass. It shall cover the mass range 10-15 g to 100 gram. **Description**

Every spacecraft in orbit is impacted by meteoroids. Because of their high velocity (10-70 km/s) even sub-millimetre sized particles can damage spacecraft parts and potentially disable spacecraft functions. Existing meteoroid flux models that can be apllied outside of Erath orbit are only at prototype state and have uncertainties of the flux at a given mass of a factor 5-10 even for the Mars distance. Such an uncertainty can lead to overdesign or an unacceptable large risk.

The interplanetary meteoroid environment consists of 3 main populations: The sporadic or background population, the stream population, and the interstellar population For most orbits and times the sporadic population is dominant. In recent years new data have become available, mainly radar and optical observations, have become available and the production process of meteoroids (mainly from comets) has been better understood. The new data and understanding should now allow to produce an enhanced interplanetary meteoroid population model. The new observational data shall be analysed, preprocessed and assessed for consistancy and suitability as input for a new model. This data reduction shall consider the experinec gained during the IMEX study (ESA contr. 4000106316) which addresses meteoroid streams. In a second step a computer based model shall be developed that predicts the meteorid fluxes for user specified interplanetary orbits, mission durations, target orientations and size and velocity ranges. The model shall include all known meteoroid populations.

Deliverables							
Softwaae and related documentation of the developed enhanced interplanetary meteoroid model							
Current TRL:	SW	Target TRL:	SW	Application Need/Date:	2015		
Application Mission:	Interplanetary missions from Mercury to Saturn		Contract Duration:	24			
S/W Clause:	N/A		Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:							

Miero Meteorids and Orbital Debris (MMOD) impacts characterisatio

Capsule (ERC)		10D) impacts chara	cierisation and prote		n in ite-entry		
Programme:	ETP		Reference:	E904-004FP			
Title:	Micro Meteorids and (entry Capsule (ERC)	Orbital Debris (MMO	D) impacts characteris	ation and protection for	or the MSR Earth Re-		
Total Budget:	700						
Objectives							
 to characterise MM to verify the therma 	The objectives of this activity are: - to characterise MMODs impacts on the ERC Thermal Protection System (TPS) and define associated impact equations - to verify the thermal behaviour of impacted TPS - to develop a Micrometeorids detection system breadboard to be incorporated on the ERC TPS,						
Description							
Martian particles into be demonstrated, inc critical event for the Phase 1: - perform high veloc samples of 1 or 2 son protect the ERC from - derive impact equa	l element of the MSR n o the Earth biosphere, v cluding for the TPS whi TPS performance. This ity impact tests with M rts (low density and hig n the less energetic mic tions to be used in futur lpy tests on impacted T	which is unacceptable ch is a single point fai activity focuses on M MOD-like particles (r h density). Some tests rometeorids) re studies	for Planetary Protectic ilure. Previous studies IMOD impact mitigati nean micrometeorids v shall include an ERC	on. Consequently a ver have shown that MMC on and is divided in 2 velocity being about 15 cover simulator (this o	y high reliability must DD impacts are a phases: 5 Km/s) on TPS cover is foreseen to		
Phase 2: - starting from the phase 1 results, derive requirements for a micrometeorid (MM) detector system (MDS) that has been proposed in previous studies in order to detect the higher energy MM that perforate the TPS despite the ERC cover. This detector allows to reduce the mass of the ERC cover to an acceptable level, while fulfilling the Planetary Protection requirements with a very low probability of mission loss - design and build an MDS breadboard - verify the MDS breadboard performance using MM impact tests							
Deliverables							
1 ,	breadboard, tests numer	,	1				
Current TRL:	2	Target TRL:	4	Application	2018		

				Need/Date:		
Application Mission:	MSR		Contract Duration:	24		
S/W Clause:	N/A		Reference to ESTER			
Consistency with Harmonisation Roadmap and conclusion:						

Aerobraking Flight Representative Demonstrator						
Programme:	ETP		Reference:	E905-001EC		
Title:	Aerobraking Flight Re	epresentative Demon	strator			
Total Budget:	350					
Objectives						
			C & avionics demonstra and subsequent missior		ight-representative	
Description						
The activity consists in developing a flight-representative Aerobraking demonstrator, in order to support the real-time evaluation of Aerobraking Strategies as analyzed and designed in the activity "Robust Autonomous Aerobraking Strategies" (ref T305-031EC), assess their adequation with mission requirements, to support the preparation of their subsequent implementation on IM 1 and/or 2, and following missions. In that purpose, following tasks will be carried on : - detailed design of relevant AOCS/GNC algorithms (including Aerobraking algorithms) and their implementation on a flight- representative processor - detailed HW design of the avionics subsystem, including flight-representative communications (protocols, delays, signal attenuation) - detailed Aerobraking FDIR design to validate failure detection, isolation and reconfiguration in Aerobraking contingency cases. - detailed design of Dynamics, Kinematics, Environment and Sensor Models for their implementation on a real-time kernel (like dSpace) Note : the avionics detailed design will be based on ESA Reference Avionics System Architecture for exploration (RASTA). AOCS/GNC testbench based on RASTA kernel and dSpace-like real-time environment A set of flight-representative AOCS/GNC SW covering Aerobraking strategies as selected in the activity "Robust Autonomous Aerobraking Strategies" (ref T305-031EC) Technical Documentation according to ECSS-E40 tailored for this application.						
Deliverables						
			-			
Current TRL:	3	Target TRL:	4	Application Need/Date:	TRL 5 by 2018	
Application Mission:	MSR		Contract Duration:	12		
S/W Clause:	N/A Reference to ESTER					
Consistency with H	armonisation Roadma	ap and conclusion:				

Design of a crushable TPS for the ERC					
Programme:	TRP	Reference:	T319-036MC		
Title:	Design of a crushable TPS for the ERC				
Total Budget:	370				
Objectives					
	proposed activity is to investigate ways of bu apporting Thermal Protection System, TPS),		ctional structure, that acts as a heatshield for amping capability for hard landing.		
Description					
For the re-entry phase, the TPS is sized to limit the temperature on the inner side of the lander, i.e. a thermal insulation is needed between the external surface and the inside "cold" structure and payload. During the hard landing phase, mechanical decoupling is needed between the external surface that hits the ground at high velocity and the inner payload for which deceleration load shall be limited. This dual thermal/mechanical insulation need leads to the idea of using one single structure, possibly a composite made of					

several materials, e.g. CFRP foam, honeycomb or the titanium hollow spheres to be developed, to achieve both isolation functions. Such a multifunctional structure would allow simplifying the lander architecture, reducing the number of sub-assemblies and thus reducing the mass and complexity.

- Review of the MSR requirements for heatshield and earth impact after re-entry.

Investigate solutions to combine the structural/thermal and impact damping functions of the heatshield. Identify the material characteristics needed and potential candidates, including foams, honeycomb and hollow spheres. Trade-off the solutions.
 Provide a material specification as input for the activity on low conductivity/high temperature crushable material using hollow spheres

- Design and analyses of a MSR integrated heatshield and earth impact damping structure, possibly using titanium hollow spheres if this material proves best suited and sufficiently mature.

- Manufacturing and impact tests of a breadboard (several might be needed for several destructive tests).

Deliverables

Documentation (Final Report, Summary Report, and Technical Data Package, incl. Photographic Documentation). Hardware (breadboard).

Current TRL:	1	Target TRL:	1	Application Need/Date:	2012
Application Mission:	NEXT, MSR (>2016)		Contract Duration:	18	
S/W Clause:	N/A			High Speed Earth Re-Entry of Sample Capsules: Advanced Heat Shield Concepts	
Consistency with Harmonisation Roadmap and conclusion:					
N/A					

Material develop	nent for a crushable TPS for the ERC				
Programme:	TRP	Reference:	T920-002QT		
Title:	Material development for a crushable TPS	for the ERC			
Total Budget:	250				
Objectives					
Earth landing durin physical and chemi	To establish manufacturing technology and scale-up of crushable hollow-sphere made of Ti alloy for use in a crushable TPS for Earth landing during an MSR mission. To characterise the static and dynamic mechanical properties of the material, as well as the physical and chemical properties. To develop and characterise joining techniques of the Ti alloy hollow-sphere to conventional materials used in space applications.				
Description					
The crushable materials are today either honeycomb or polymeric (or carbon) foams. The honeycomb can sustain only compressive stresses and looses its effectiveness when stressed in the nominal direction, the foam are limited to low temperature or procured outside Europe. In this activity, the pure Ti hollow-sphere technology (contract 18167) will be transferred to a high performance Ti alloy. The mechanical and physical characteristics of the material will be established at high and room temperature, the technologies for joining the Ti hollow-sphere to other materials will be developed and characterised.					
This material is theoretically far better than any existing ones for such passive landing applications as it combines high specific stroke properties with high in-service temperature (about 600C) and a low thermal conductivity.					

Deliverables					
Technical notes - Test samples - Test reports - Breadboard - industrial development roadmap					
Current TRL:	2/3	Target TRL:	3/4	Application Need/Date:	2012
Application Mission:	MSR		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8148	
Consistency with Harmonisation Roadmap and conclusion:					

Delta-development of TPS for high heat loads			
Programme:	ETP	Reference:	E921-002PA
Title:	Delta-development of TPS for high heat loads		

Total Budget:	700				
Objectives					
The objective is to complete the development, and subsequently characterise and pre-qualify a European ablative heatshield TPS material for the Earth re-entry capsule, able to cope with the stringent environment (typical peak heat fluxes of 15-20MW/m2 and heat loads up to 200MJ/m2) while conforming to the mass budget. The development shall be based on the material developed in a previous TRP-activity. The pre-qualification shall include an extensive plasma test campaign.					
Description					
This activity shall also investigate aerodynamics issues such as static, dynamic stability, etc. and thus include wind tunnel tests with a representative demonstrator of the MSR re-entry capsule (on which the selected TPS material can be mounted) at different flight regimes taking into account ablation and pyrolysis effects which should be an outcome of the ablative material characterization phase described above.					
The TRL shall be br	ought from 4 to 5 durin	g this activity.			
 Low-density TPS the ground (requiren characterisation). Th qualification. High-density TPS data) 	2) High-density TPS - SEPCORE concept (1990's CNSR development), ARD and military applications (restricted access to the				
Deliverables					
Material samples, do	ocumentation				
Current TRL:	4	Target TRL:	5	Application Need/Date:	2013
Application Mission:	MSR		Contract Duration:	24	
S/W Clause:	N/A Reference to ESTER T-8283, T-8538				
Consistency with Harmonisation Roadmap and conclusion:					
Adaptation of TPS	materials of High-den	sity for High Heat	load (AT3H) re-entry a	applications	
Programme:	ETP		Reference:	E921-003PA	

Programme:	ETP		Reference:	E9	021-003PA	
Title:	Adaptation of TPS ma	Adaptation of TPS materials of High-density for High Heat load (AT3H) re-entry applications				
Total Budget:	300					
Objectives						
needs for the MSR	heat load material is bein mission, there is the nee high heat loads to the nee	d to assess all possible	e TPS options. The	he objectiv	ve is to adapt exist	ing highly reliable
Description						
Description High-density TPS materials (e.g. Carbon Phenolic) lead to a large mass penalty for sample return missions. However, they are often flown in military applications in very harsh thermal environment and thus have a large data record, decreasing overall risk, and some of them have flown in space projects (albeit with a milder environment, e.g. Carbon Phenolic on Ariane nozzles or Aleastrasil on ARD). A high-density material which fits best with sample return applications will be characterised. Its use in high speed Earth re-entry applications will be assessed. Adaptations of the existing material should be limited to the minimum to keep the flight data record as relevant as possible for risk analysis purposes. The reliability of the manufacturing processes will also be assessed. A major part of this activity will consist in testing this material in the relevant environment (heat fluxes of 15-20 MW/m2 and heat loads up to 200 MJ/m2) mostly at sample level and to perform a risk analysis of the TPS reliability which will be fed by the results of this test campaign. Testing will also cover the simulation of a re-entry after micrometeoroid impacts. Technology heritage: high-density TPS - SEPCORE concept (90's, CNSR development), ARD and military applications.						
Material samples, t	est results, documentation	n				
				A	nlication	

 Current TRL:
 3
 Target TRL:
 4
 Application Need/Date:
 TRL 5 by 2015

 Application Mission:
 MSR, Moon of Mars sample return, MarcoPolo-R
 Contract Duration:
 15

 S/W Clause:
 N/A
 Reference to
 15

		ESTER		
Consistency with Harmonisation Roadmap and conclusion:				

Ablative TPS Nume	erical Test Cases - Ma	thematical Code Ass	sessment & Improven	ent	
Programme:	GSTP		Reference:	G921-007MT	
Title:	Ablative TPS Numerio	cal Test Cases - Math	ematical Code Assessn	nent & Improvement	
Total Budget:	300				
Objectives					
	ity of the mathematical elated uncertainties; an			•	elds; to refine and
Description					
used by different par literature data which complemented by as	uropean Ablation Worl tners to assess the perfo , however, turned out to sumptions, which stron used for ablative TPS s	ormance of available of be incomplete and in gly limited the suitable	codes for ablative TPS n several aspects not co	sizing. Those test cas insistent. Missing dat	ses were based on a had to be
In recent years a new European lightweight ablative material has been developed (TRP-DEAM, MREP-DEAM2) specifically tailored for the Earth return capsule of sample return missions. Also for this new material, now called ASTERM, material and test data cannot be made openly available due to industrial confidentiality aspects. However, a similar material exists, called AQ61, which in its physical composition and performance is very similar to ASTERM, but due to its more complicated manufacturing process is not considered as candidate for relevant flight applications. Within a previous TRP (Thermal Response Characterisation of Reference TPS Material) a dedicated set of plasma tests has been performed which are intended to be used now to establish numerical test cases based on real test data.					
While also a basic se this activity.	t of material characteri	stics of AQ61 is avail	able, material characte	risation will have to b	be completed as part of
In order to rebuild the numerical test case, an integrated solution for charring ablators (including thermo-chemistry), is needed. This can be achieved by the coupling (exchange by files or on the fly evaluation of properties) of a response code for charring ablators with a code for equilibrium chemistry calculations. In order to rebuild the plasma test, the thermal response code must be capable of modelling the test specimen (an axis-symmetric model), and the chemistry code must have the capabilities to model the charring materials used in real ablators (like AQ61, MONA, ASTERM,).					
The following work is to be conducted in this activity: - Establish a booklet with a set of numerical ablation test cases based on available plasma test results of the AQ61 material - Where necessary the available data shall be complemented by relevant additional material characterisation - Coupling of a response code for charring ablators with a code for equilibrium chemistry calculations - Model and run the above test cases with at least three of the ablative TPS sizing codes available in Europe - Compare the results with the available plasma test data, assess the code/model performance and identify the weaknesses of the used codes - Derive relevant uncertainties based on the test cases and extrapolate these uncertainties to relevant entry analysis - Identify relevant code improvements and code delta-development					
The booklet shall be established in progressive steps, starting from a simple test case which is iteratively increasing in complexity. E.g. the ablation-chemistry coupling would be an element of an advanced iteration.					
Deliverables					
	efinition of a set of num material characterisation		d code assessment		
Current TRL:	2	Target TRL:	4	Application Need/Date:	2016
Application Mission:	Sample return mission	15;	Contract Duration:	20	
S/W Clause:	N/A Reference to ESTER T-8282, T-8277				
Consistency with H	armonisation Roadma	ap and conclusion:			
Activity identified in	D/TEC technology roa	admap			
-	65	*			

Deployable & Inflatable Heatshield & Hypersonic Decelerator Concepts - Phase 1

Programme:	TRP		Reference:	T921-005MT	
Title:		le Heatshield & Hype	ersonic Decelerator Con		
Total Budget:	400	se freatsment & frype	Isolite Decelerator Col	icepts - I hase I	
Objectives					
To review the Europ assess the potential	bean capabilities in term which such technologie main technological elen	s might bring to enabl	e new mission concept	s for Mars exploratior	
Description					
	ly invested in early dev (IRDT). This technologian investigation.				
deployable structure	ort was spent by NASA es, multi-functional carb ts in all of these fields, t for future missions.	on fabrics for deploya	ble heatshields, etc.). I	t is not viable for Euro	ope to embark on
The objectives of th	is activity shall be achie	eved through the follow	wing steps:		
 Identify and study different inflatable and deployable heatshield & hypersonic aerodynamic decelerator concepts for atmospheric entry probes, and to assess their potential benefits for potential future Mars exploration missions. In particular, it shall be identified which missions such technologies could enable which are today considered not feasible. Review the related technological elements available in Europe, and assess their maturity for a relevant mission application. The required key technological limits shall be identified. existing solutions be assessed and any required delta-development be identified. The expected technological limits shall be identified. Perform a trade-off on the various concepts considering the expected benefit/interest for future missions and the required development effort and risks. At system level the following aspects will have to be considered: Packing, configuration, aerodynamic stability, potential separation strategies. The technologies to be specifically assessed shall include high temperature fabrics, deployment and inflation mechanisms and integration of the TPS material. The heatshields used so far for entry probes of planetary exploration missions are based on a thermal protection system on a rigid structure. The heatshield typically also acts as hypersonic decelerator. While its dimension is typically limited by geometrical constraints, like e.g. the fairing of the launcher, enlarging the hypersonic decelerator would allow to significantly reduce the ballistic coefficient and thereby the loads experienced by the heatshield during the atmospheric entry. Deployable and inflatable heatshield concepts have therefore moved in the focus of interest in recent years. Such technology might enable future planetary exploration missions which are not feasible today, e.g. increased landed P/L masses or currently unreachable					
(higher altitude) land	ding sites on Mars.				
Deliverables					
	alogical raviant missio	n & application accord	mant trada off)		
	ological review, missio	n & application assess Target TRL:	sment, trade-off) 3-4	Application Need/Date:	2018
Study reports (techn		Target TRL:			2018
Study reports (techn Current TRL: Application Mission: S/W Clause:	1-2 Future planetary explo	Target TRL:	3-4	Need/Date:	
Study reports (techn Current TRL: Application Mission: S/W Clause: Consistency with H	1-2 Future planetary explo N/A farmonisation Roadma	Target TRL: pration missions ap and conclusion:	3-4 Contract Duration: Reference to	Need/Date: 18	
Study reports (techn Current TRL: Application Mission: S/W Clause: Consistency with H	1-2 Future planetary explo	Target TRL: pration missions ap and conclusion:	3-4 Contract Duration: Reference to	Need/Date: 18	
Study reports (techn Current TRL: Application Mission: S/W Clause: Consistency with H Consistent with D/T	1-2 Future planetary explo N/A Iarmonisation Roadma EC technology roadma	Target TRL: pration missions ap and conclusion:	3-4 Contract Duration: Reference to ESTER	Need/Date: 18 T-8079, T-7906, T-7	
Study reports (techn Current TRL: Application Mission: S/W Clause: Consistency with H Consistent with D/T	1-2 Future planetary explo N/A armonisation Roadma EC technology roadma todels for CO2 dissocia	Target TRL: partion missions ap and conclusion: p	3-4 Contract Duration: Reference to ESTER Reference:	Need/Date: 18	
Study reports (techn Current TRL: Application Mission: S/W Clause: Consistency with H Consistent with D/T Standard kinetic m	1-2 Future planetary explo N/A Iarmonisation Roadma EC technology roadma	Target TRL: partion missions ap and conclusion: p	3-4 Contract Duration: Reference to ESTER Reference:	Need/Date: 18 T-8079, T-7906, T-7	

Objectives
The objective of this activity is to provide an ESA standard model for Mars entry chemistry. As a first step, the study will focus on
pure CO2 reactions, including relaxation of internal degrees of freedom (vibration,...)

Description

Mars atmosphere consists in a mixture of CO2 (approximately 95%), N2, Ar and traces of other species. When a probe enters Mars

atmosphere at hypersonic speed, the atmospheric gas mixture is heated and chemical reactions occur (dissociation, ionisation...). The design of the heat shield requires the knowledge of the distribution of heat flux, pressure and shear stress at its surface, that depends on the chemical and physical state of the surrounding gas.

Chemical and vibrational rates are needed for the numerical prediction of the flow properties. They are best provided by processing results of numerous tests in kinetic shock tubes. ESA has developed a facility dedicated to this problem.

The work shall focus on CO2 pure gas, but the influence of the presence of N2 and Ar shall also be preliminary assessed. It is expected to involve mostly experimental work in shock tube(s), but also numerical and analytical work shall be required:

Part of the work shall be to perform by emission/absorption measurements in a shock tube giving ground state and most important excited states populations at high temperature. LIF (Laser Induced Fluorescence) measurements shall also be investigated, for their applicability in such short duration flows.

The electronic densities and temperatures shall also be measured.

A two spectrometer approach for the emission spectroscopy is recommended, so to identify the important bands, and to investigate particular bands at high resolution.

Ab initio calculations (Molecular Dynamics/Schrodinger if required) shall be performed for the most critical chemical rates.

The results of the shock tube tests and of ab-initio calculations shall be collected, to develop a high-fidelity chemical and vibrational kinetic scheme for CO2 mixture.

Different levels of modelling shall be included in the standard kinetic model developed within this activity, including Collisional Radiative (excited state specific) and State to State (vibrational state specific) data.

The final result of the activity is the recommendation of standard chemical kinetics schemes for CO2, with the associated reaction rates and assessment of confidence/uncertainties.

Deliverables

Reports. Experimental data in electronic format (Data Base) and numerical data and associated models also in electronic format to allow future comparisons and/or benchmark tests. ESA standard kinetic models for CO2 mixtures chemistry, ionisation and vibrational relaxation.

Current TRL:	2	Target TRL:		Application Need/Date:	2023
Application Mission:	MREP		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	Т-8090, Т-8089	
Consistency with Harmonisation Roadmap and conclusion:					
ATD Harmonisation 2012					

Catalytic properties of Ablators					
Programme:	TRP	Reference:	T918-004MP		
Title:	Catalytic properties of Ablators				
Total Budget:	500				
Objectives					
The objective of this activity is to determine the catalytic properties of ablators materials in the VKI Plasmatron facility and to derive corresponding physical models for implementation in CFD codes.					

Description

Ablative thermal protection materials are the most critical parts of the thermal protection systems for hypersonic applications that face high velocity (7~10 km/s) atmospheric entry. The thermal protection systems experience very complex interconnected phenomena during a re-entry flight. Their design and improvement require suitable ground testing associated with dedicated measurement techniques. One of the most important measurement techniques is the accurate measurement of material temperature. Further, together with catalycity, emissivity is another important surface properties to be determined. Also, for ablating thermal protection materials, accurate measurement of the recession rate is a critical task for the characterization and proper modelling of the ablative materials. Here is proposed to use optical techniques (such as high speed and/or high-definition cameras) and associated post-

processing techniques to calculate the recession rate of the ablative samples exposed to plasma flow.

Finally, an uncertainty quantification will be performed of both the enthalpy reconstruction and the whole loop enthalpy reconstruction + catalycity identification. An identification of parameters which have a critical impact on the catalycity estimation will be performed. The study would also involve an uncertainty quantification on the gas reaction. In this case the rate constants would be the uncertainty parameters. The existence of correlations between the gas reactions and how the enthalpy or catalycity are influenced by change in the reaction rate coefficients is of large interest. Also, the influence of the diffusion modelling on the identification of the catalytic properties of the material shall be investigated.

The models employed in the computer codes will be upgraded based on the results of the present investigation.

Deliverables

Reports including test plan, test data, numerical reconstruction and assessment of the results. Experimental data in electronic format

(Data Base) and numerical data and associated models also in electronic format to allow future comparisons and/or benchmark tests.					
Current TRL:	2	Target TRL:	4	Application Need/Date:	2023
Application Mission:	MSR, Phootprint and Marco Polo-R		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER	T-7902, T-7897, T-8	094, T-8090
Consistency with Harmonisation Roadmap and conclusion:					

Software Defined Radio Proximity-1 Link Communications Package design Study						
Programme:	TRP	Reference:	ence: T906-002ET			
Title:	Software Defined Radio Proximity-1 Link	Communications Packa	ge design Study			
Total Budget:	300	300				
Objectives						
	The objective of this activity is to investigate the implementation of a flexible and multimission data-relay communication package based on CCSDS Proximity-1 protocol using software defined radio as the enabling technology.					
Description						
flexibility as they a technology (simila	The current European proximity-link transceivers (as developed in the previous ESA missions, for instance Beagle) are limited in flexibility as they are based on a low level of integration between the RF and the digital part. Using the Software Defined Radio technology (similar to that implemented by NASA/JPL for the Electra transceiver) allows a higher level of flexibility with the possibility of unit reconfiguration. Using the software defined approach provides the capability to add/chanee functionality by					

possibility of unit reconfiguration. Using the software defined approach provides the capability to add/change functionality by simply changing the software version. This software upload (software patch) can be done pre-launch or in orbit, which makes the unit very flexible and provides the capability to support multiple missions. This multimission approach is particularly interesting in case of an Orbiter with data-relay capabilities and a long lifetime (such as

Inis multimission approach is particularly interesting in case of an Orbiter with data-relay capabilities and a long interme (such as Mars Express). This way it can support different lander missions (European, American and other international space agencies) even the ones it wasn't intended to serve in the first place. Allowing post-launch reconfigurability of the protocol and signal processing functions over the Orbiter lifetime supports protocol updates and provides the possibility to respond to unanticipated mission scenarios. Secondly, by ensuring a standardised and interoperable data-relay infrastructure allows any lander to make use of multiple data-relay assets, thereby increasing the science return while at the same time reducing mass and power requirements on the lander. The ultimate goal would be to equip every science Orbiter with a standardised relay package, taking away some of the technology burden of small lander missions.

The scope of the activity is to study the implementation of a reprogrammable Proximity-1 transponder based on a software defined radio architecture. The transponder shall support the Proximity-1 protocol in its entirety including support for full duplex operation. The transmit and receive carrier frequencies shall be programmable (by software uploads) to any frequency in the range used by the Proximity-1 protocol (i.e. 390 - 450 MHz). The transponder shall be designed in a modular manner that allows tailoring of the basic transponder to future missions. The proximity-link transponder to be developed shall implement different modes, e.g. only sampling, demodulation, etc. to support the EDL and rendezvous and capture mission modes, it shall also support higher data-rates than those currently available on European hardware, in order to increase the science return. Consideration shall be given to the architecture proposed in order to reduce mass, power and volume envelopes as much as possible.

The contractor shall implement the most critical functionalities in a breadboard.

Deliverables					
TN's, Final Report, b	readboard				
Current TRL:	2	Target TRL:	3	Application Need/Date:	>2016
Application Mission:	MSR, future exploration missions		Contract Duration:	18	
S/W Clause:	N/A		Reference to ESTER	T-8744	
Consistency with Harmonisation Roadmap and conclusion:					
Harmonization Dossier "TT&C Transponders and Payload Data Transmitters" 2012.					

Software Defined Radio Proximity-1 Link Communications Package design EQM				
Programme:	ETP	Reference:	E906-007ET	
Title:	Software Defined Radio Proximity-1 Link Communications Package design EQM			

Total Budget:	2500				
Objectives					
	iis activity is to develop Proximity-1 protocol usi				communication package
Description					
There is currently implement the Ele		n the European mark ASA). The only prox	et to cover future missic mity-link transceivers v	ons needs. The Exc	as Package design Study omars orbiter mission wil the Beagle misssion, this
higher level of flez add/change function		ty of unit reconfigura ng the software version	tion. Using the software	e defined approach l (software patch)	transceiver) allows a provides the capability to can be done pre-launch o
most exploration of space agencies) ev and signal process unanticipated miss to make use of mu requirements on the away some of the The scope of the a based on a softwan including support uploads) to any fre a modular manner developed shall al- return. Considerati	rbiter missions). This we en the ones it wasn't inte- ing functions over the O ion scenarios. Secondly, Itiple data-relay assets, t le lander. The ultimate g technology burden of sm ctivity is to implement a e defined radio architect for full duplex operation equency in the range use- that allows tailoring of t so support higher data-ra	ay it can support diffe ended to serve in the f rbiter lifetime suppor by ensuring a standa hereby increasing the oal would be to equip hall lander missions. In engineering and qua ure and test it. The tra- transmit and reed by the Proximity-1 he basic transponder tes than those current	erent lander missions (Eu irst place. Allowing pos ts protocol updates and p rdised and interoperable science return while at every science Orbiter w alification model of a rep ansponder shall support reve carrier frequencies protocol (i.e. 390 - 450 l to future missions. Final ly available on Europea	propean, American t-launch reconfigu provides the possil data-relay infrast the same time redu- vith a standardised programmable Pro- the Proximity-1 pr shall be programm MHz). The transpo- lly, the proximity- n hardware, in ord	rability of the protocol bility to respond to ructure allows any lander ucing mass and power relay package, taking eximity-1 transponder rotocol in its entirety mable (by software onder shall be designed in
possible. Such a unit could :	also be of interest to scie	ntific missions plane	tary missions and Lunar	· missions requirin	g a proximity link
Deliverables		, r			8 - F
Technical Notes, I	EQM, EIDP's				
Current TRL:	3	Target TRL:	6	Application Need/Date:	2024
Application Mission:	MSR Mars OrbiterSc Lunar missions	ience, Exploration,	Contract Duration:	29	
S/W Clause:	N/A		Reference to ESTER	T-8744	
Consistency with	Harmonisation Roadm	ap and conclusion:			
Consistency with		T			

X-Band cryogenic feed prototyping				
Programme:	TRP	Reference:	T912-005GS	
Title:	X-Band cryogenic feed prototyping			
Total Budget:	600			
Objectives				
	ive X-Band cryogenic feed to be installed in egrated design of the feed (receive and transm			
Description				
The reception performances of the Deep Space Ground Stations is limited by the noise generated in the front end. Any reduction of this noise will allow to increase the data transmitted or to reduce the required mass and power on the spacecraft transmitter. X band is presently used for the telemetry of all deep space missions and will still be the preferred frequency band for future Mars exploration missions. The existing feed and LNA systems have been designed separately. Therefore, the feed system is operated at room temperature while the LNA is operated at 12 K. The overall system noise temperature is therefore suboptimal due to the insertion loss of the waveguide connection and passive elements at room temperature. In order to increase the mission data return, it would be extremely beneficial improving the present G/T by more than 1 dB. This will be achieved by reducing the loss of the feed system have been and trying to cryo-cool as much as possible the passive components of the receiver front end (diplexer, polarizer, waveguides, tracking coupler). The interconnection of the feed and LNA subsystems will be optimised and the cryo-cooler				

subsystem will be designed to guarantee a maximum availability and redundancy. The same feed is going to be used for the uplink at 20 kW. A proper study will be conducted to minimise the effect of the high power uplink on the cryogenic subsystem.

Deliverables					
A prototype of X-Ba	nd cryo-feed subsysten	1.			
Current TRL:	2	Target TRL:	4	Application Need/Date:	2016
Application Mission:	All future missions in X band		Contract Duration:	24	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					
No Harmonisation dossier					

8		for Future Missions		F004 00 5FF	
Programme:	ETP		Reference:	E904-005EE	
Title:	Modelling of the	Mars Environment for	Future Missions		
Total Budget:	400				
Objectives					
	riented, integrated to regolith, and radiatio		of the Mars environment re	equired for missior	1 design, including
Description					
radiation data deri investigations. Thi This avoids that th	Various studies have analysed aspects of the Martian environment, including climate data derived from global circulation models, radiation data derived from monte-carlo studies of cosmic ray propagation in the atmosphere and regolith, and various dust investigations. This activity will review the available models, and develop tools around them that allow easier use in engineering. This avoids that the engineer will have to work with complex tools whose subtleties require considerable effort to work with. Requirements will be established for both the underlying physical modelling, and the engineering tools.				
Denverusies	and associated docur	nentation.			
Current TRL:	3	Target TRL:	37	Application Need/Date:	2017
Application Mission:	All Mars mission	All Mars missions		36	
S/W Clause:	N/A		Reference to ESTER		
Consistency with	Harmonisation Roa	dmap and conclusion	1:	•	

Harwell Robotics A	Harwell Robotics Autonomy Facility (HRAF) - Pilot project 1					
Programme:	ETP	Reference:	E908-001FP			
Title:	Harwell Robotics Autonomy Facility (HRA	F) - Pilot project 1				
Total Budget:	1200					
Objectives						
validation of autonor	The objective is to implement the HRAF core infrastructure and demonstrate, through a pilot project, the value of the facility for the validation of autonomous systems and technologies. This activity is the first in a long-term programme and is funded by the UK through the ESA MREP-2 programme and supported by UKSA.					
Description						
The development of complex autonomous robotic systems will be critical for future planetary exploration missions. At a minimum, elements of the MSR mission such as Sample Fetch Rover, landing with high precision (and hazard avoidance), autonomous sampling and sample transfer or sample container rendezvous and capture will all require ECSS level-3 autonomy and higher. Although the related technology developments are progressing strongly within Europe, there remains a lack of critical infrastructure to allow validation, verification and integration of autonomy components at the mission level.						
The aim of this activity is to setup a facility that supports the validation of autonomous systems and associated technologies to nable the TRL of technologies to be raised, confidence in performance to be gained, cost estimates to be more credible, and eventually missions to be validated. These will require the use of specialist test facilities including mock planetary surfaces,						

software-based sin	nulation environment	nts and physical field tria	als in representative environmentative	onments to provide	e ground truth.
The aim of this activity is:					
Phase 1:					
- Define underlyin	g requirements (inc	luding prime, academic a	and Agency input)		
- Validation Process Definition					
- Define the archit	ecture of the facility	(S/W, H/W environmer	nt, tools)		
Phase 2:					
- Start of Compone	ent Engineering				
- Integration of con	re infrastructure elei	ments (including maturat	tion of the EAGLE softwa	are tool)	
- Prepare and exec		, U			
-	· · ·				
The activity is spli	t into 2 phases: Pha	ses 1 ends with a PDR. A	A successful PDR is the p	rerequisite for the	execution of phase 2.
The pilot project v	vill be based on and	use results and data from	n the SEEKER activity ar	nd EAGLE simulat	tor development (ESA
C21286(2007)).			5		1
Deliverables					
Documentation					
Software (Middley	ware components)				
EAGLE update	• /				
Current TRL:	1	Target TRL:	3	Application Need/Date:	2015
Application Mission:	MSR, Phootprint, Inspire & various Contract Duration:			12	
S/W Clause:	N/A		Reference to ESTER		
Consistency with	Harmonisation Ro	admap and conclusion	:		

Long Term

	ETP				
Fitle			Reference:	E903-015EP	
inc.	European Isotope Production Phase 2				
Fotal Budget:	2000				
Objectives					
commencement of A		production at the UI	ulted in the submission K National Nuclear Lab		
Description					
 Overall objectives of the 7-year plan are as follows: To complete the engineering development of the previously proposed Am241 production plant at Sellafield in Cumbria, England. The outstanding development areas are: plutonium dissolution, plutonium solvent extraction, americium solvent extraction, plutonium finishing, americium finishing, evaporator operation and solvent management. To develop the previously produced concept design into a fully complete and detailed preliminary design, to be taken through the HAZOP1 safety review process, to a point suitable for immediate use in (future) pre-fabrication design/blueprinting. To continue the evolution of the plant safety case and security (nuclear material safeguards) planning, including continued real-time liaison and iteration with the regulatory authorities. Specifically, this 200kEuros Phase 2 activity covers the initial stage of the DEVELOPMENT task which entails: Specification, design and procurement of equipment needed for full-scale inactive testing. Development of chemical models (computer) for each sub-process. Perform maloperations investigations for the solvent extraction processes. 					
Deliverables					
Deliverables to ESA will be documentary (not hardware), but in many cases will derive from the execution of nuclear engineering trials and experimental rig manufacture/procurement within the NNL Central Laboratory. Detailed deliverables are TBD in the contractor's proposal and subsequent negotiation process.					
Current TRL:	4	Target TRL:	5	Application Need/Date:	2016
Application Mission:	INSPIRE and other future Mars missions		Contract Duration:	12	
S/W Clause:	N/A		Reference to ESTER	T-8933	
Consistency with Ha	armonisation Roadma	ap and conclusion:			

Nuclear Power Systems architecture study for safety management and fuel encapsulation prototype development.				
Programme:	ETP	Reference:	E903-003EP	
Title:	Nuclear Power Systems architecture study development.	Nuclear Power Systems architecture study for safety management and fuel encapsulation prototype development.		
Total Budget:	1000			
Objectives				
To develop the NF	To develop the NPS reference architectures for a European ASRG and small RTG, study its accommodation on spacecraft and			

launcher; to derive the end-to-end requirements including storage, transport and launch safety requirements for the fuel encapsulation and develop its design and start breadboarding and testing of the encapsulation, by using consolidated information from previous and ongoing activities.

Description

This activity aims to:

1) Consolidate existing information from ongoing and previous activities (e.g. ExoMars RHU accommodation and T303-040EP Nuclear fuel capsule and aeroshell design study)

2) Establish a reference design for a small European RTG and a Sterling RPS.
3) Study its accommodation on spacecraft (orbiter, lander, rover, small surface stations) and in the launch vehicle to derive the consolidated end-to-end requirements for the fuel encapsulation under consideration of all required safety issues and overall system aspects.

4) Investigate and co	4) Investigate and consider all relevant safety and system aspects of the encapsulation from fuel delivery to launch and transfer to				
Mars.					
5) Design the encaps	ulation and develop a b	preadboard and perfor	m critical tests		
Deliverables					
Technical data package - System architecture of (1) Sterling converter RPS and (2) a small RTG - End-to-End system requirements for encapsulation of nuclear material for space NPSs. - Summary on space nuclear safety issues related to the encapsulation - Test report - Mathematical models H/W: Encapsulation prototype.					
Current TRL:	2	Target TRL:	4	Application Need/Date:	2012
Application Mission:	Mars exploration, (>2018) Contract Duration: 15				
S/W Clause:	N/A Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:					
Consistent with the n	Consistent with the nuclear power dossier and proposed roadmap				

Programme:	ETP		Reference:	E903-004FP	
Title:	Nuclear Power System	ms architecture stud	ly for safety management	and fuel encapsula	ation NPSAFE (phase 2)
Total Budget:	2000			*	· · ·
Objectives					
Continuation of Phase 1 (E903-003EP) to further develop the NPS reference architectures for nuclear power systems and their safety aspects in particular for the fuel encapsulation and aeroshell to progress on its design, bread boarding and testing.					
Description					
heater source enca bread boarded and 2) Consolidation o overall system asp	psulation and aeroshell c extensively tested. f safety end-to-end requi	lesign (T9303-004E	pean RTG (E903-006EP) EP and E903-003EP) the s l encapsulation under con	elected encapsulat	ion technology shall be
Deliverables					
Technical data package - Updated End-to-End system requirements for encapsulation of nuclear material for space NPSs. - Breadboard design - Updated space nuclear safety issues related to the encapsulation - Test report - Mathematical models H/W: Encapsulation prototyp					
Current TRL:	3	Target TRL:	5	Application Need/Date:	2022
Application Mission:	various		Contract Duration:	24	
S/W Clause:	N/A	N/A Reference to ESTER			
Consistency with	Harmonisation Roadm	ap and conclusion	1:		

Radioisotope Heater Unit development (RHU-DEV1)				
Programme:	ETP	Reference:	E903-020FP	
Title:	Radioisotope Heater Unit development (RHU-DEV1)			

Total Budget:	1000				
Objectives					
Development of a Eu	ropean RHU Phase 1				
Description					
(On-going) activities for the small RTG and Stirling RPS need heater sources in the order of 150 Wth. A RHU typically is in the range of a few Wth only. Encapsulation and aeroshell design might be based in principle on similar technologies used for the RTG/Stiling heat source, but will required specific design solutions for the RHU.					
Deliverables					
Technical data package - Design report of a RHU. - Breadboard of encapsulation and aeroshell, use of a heater simulant. - Test report - Mathematical models H/W: Encapsulation prototype					
Current TRL:	1	Target TRL:	3/4	Application Need/Date:	2020
Application Mission:	various Contract Duration: 18				
S/W Clause:	N/A Reference to ESTER				
Consistency with Harmonisation Roadmap and conclusion:					

Safety and aggression tests & demonstrations						
Programme:	ETP		Reference:	E903-005EP		
Title:	Safety and aggression	tests & demonstrati	ons			
Total Budget:	2000					
Objectives						
To safety test a radio	oisotope fuel encapsulat	tion system.				
Description						
Modern RPS fuel m launcher and/or re-e		to the "intact re-entr	y, intact impact" model,	in which the fuel mod	lule is robust against	
Deliverables						
Qualification Test P	lans, Test Procedures ar	nd Test Reports.				
Current TRL:	6	Target TRL:	6	Application Need/Date:	2017	
Application Mission:	Mars exploration, (>2	Mars exploration, (>2018)		36		
S/W Clause:	N/A		Reference to ESTER			
Consistency with H	Consistency with Harmonisation Roadmap and conclusion:					
Consistent with the	nuclear power dossier a	nd proposed roadma	ıp			

Thermoelectric converter system for small-scale RTGs (to ~TRL3/4)					
Programme:	TRP	Reference:	T903-006EP		
Title:	Thermoelectric converter system for small-scale RTGs (to ~TRL3/4)				
Total Budget:	660				
Objectives					
Demonstrate a low-p	power thermoelectric power conversion system	n			
Description					
Smaller RTG systems based on (several) RHUs (e.g. Russian Angel RHUs with 8 W thermal output (mass ~200g) or US RHUs with 1 W thermal output (mass 40 g)) can be used with thermoelectric conversion to provide electrical energy for long life/low activity measurement and communication for in-situ systems. Typical required electrical power is in the order 500 mW to several					

Watts, mission duration 9 to 11 years transfer and at least 1 year of operations. Contract is split into 3 activities:1. Study of the application range and preliminary definition of architecture and interfaces of a thermoelectric converter system for use with small nuclear heat sources (i.e. RHUs). Some competences on this or related subjects have already been developed in Europe through previous studies (funded at individual national level).

2. Thermocouple design study for small RTGs. A comprehensive review of modern thermoelectric materials will be conducted. This shall make assessments and trade-offs of the various materials and construction options (including, e.g, n-type, p-type, segmentation and coatings), and make a clear recommendation of the material(s) and thermocouple type to be selected.

3. Production of a preliminary breadboard model small-scale thermoelectric converter, using simulated (non-nuclear) heat source. Deliverables

Breadboard model small-scale thermoelectric converter, using simulated (non-nuclear) heat source.					
Current TRL:	1	Target TRL:	1 1/4	Application Need/Date:	2011
Application Mission:	Mars exploration, (>2018)		Contract Duration:	15	
S/W Clause:	N/A		Reference to ESTER		
Consistency with Harmonisation Roadmap and conclusion:					
Consistent with the nuclear power dossier and proposed roadmap					

Thermoelectric con	Thermoelectric converter system for small-scale RTGs (to ~TRL3/4)					
Programme:	TRP		Reference:	Т903-006ЕР-В		
Title:	Thermoelectric conver	rter system for small-s	scale RTGs (to ~TRL3/	(4)		
Total Budget:	660					
Objectives						
Demonstrate a low-p	ower thermoelectric po	ower conversion system	m			
Description						
Smaller RTG systems based on (several) RHUs (e.g. Russian Angel RHUs with 8 W thermal output (mass ~200g) or US RHUs with 1 W thermal output (mass 40 g)) can be used with thermoelectric conversion to provide electrical energy for long life/low activity measurement and communication for in-situ systems. Typical required electrical power is in the order 500 mW to several Watts, mission duration 9 to 11 years transfer and at least 1 year of operations. Contract is split into 3 activities:1. Study of the application range and preliminary definition of architecture and interfaces of a thermoelectric converter system for use with small nuclear heat sources (i.e. RHUs). Some competences on this or related subjects have already been developed in Europe through previous studies (funded at individual national level). 2. Thermocouple design study for small RTGs. A comprehensive review of modern thermoelectric materials will be conducted. This shall make assessments and trade-offs of the various materials and construction options (including, e.g. n-type, p-type, segmentation and coatings), and make a clear recommendation of the material(s) and thermocouple type to be selected. 3. Production of a preliminary breadboard model small-scale thermoelectric converter, using simulated (non-nuclear) heat source.						
Deliverables	11 1 .1 1		1 . 1 . 1 . 1			
Breadboard model sr	nall-scale thermoelectri	ic converter, using sin	nulated (non-nuclear) h		1	
Current TRL:	1	Target TRL:	3/4	Application Need/Date:	TRL5 by 2015	
Application Mission:	Mars exploration, (>2018)		Contract Duration:	15		
S/W Clause:	N/A		Reference to ESTER			

Consistency with Harmonisation Roadmap and conclusion: Consistent with the nuclear power dossier and proposed roadmap

Small-scale RTG development to TRL 5					
Programme:	ETP	Reference:	E903-007FP		
Title:	Small-scale RTG development to TRL 5				
Total Budget:	3500				
Objectives					
Continued development of small scale thermoelectric converter, building upon the conclusions of the parallel precursor TRP activities, and culminating in the manufacture and testing of (non-nuclear, electrically heated) engineering models (EM) of an RTG.					

Description

The development shall build upon the findings and conclusions of the parallel TRP activities "Thermoelectric Converter System for small-scale RTGs" (ref: T903-006 EP).

An evolved design shall be developed that is fully optimised with respect to the mass-specific power output of the full RTG system.

Engineering models shall be constructed from fully representative flight materials.

Functional testing will be performed in the simulated space environment (thermal vacuum / mars atmosphere analogue), and one EM will also be subjected to structural testing, e.g. a generic/typical sine & random vibration test. to determine physical integrity.

One EM shall be suitable for long-term testing (to be covered under a subsequent contract if required).

The RTG shall be designed to be fuelled with Am241 heat modules that will be the subject of parallel development activities - therefore close communication between the contracts will be required (i.e. commercial confidentiality is not appropriate)

The scale (sizing) of the RTG EMs will be effectively quantized by the nature of the Am241 heat module and will be determined by ESA prior to the beginning of the contract.

Deliverables					
RTG EMs and variou	is documents TBD.				
Current TRL:	3	Target TRL:	5	Application Need/Date:	2016
Application Mission:	Future Mars missions		Contract Duration:	36	
S/W Clause:	N/A		Reference to ESTER	T-8933	
Consistency with Harmonisation Roadmap and conclusion:					

Thermoelectric converter system for small-scale RTGs (to ~TRL6)					
Programme:	ETP		Reference:	E903-008EP	
Title:	Thermoelectric conve	rter system for sma	all-scale RTGs (to ~TRL6)	
Total Budget:	3000				
Objectives					
Produce an EQM su	itable for fuelling with	radioisotope mater	ial.		
Description					
	ric converter developme elling with radioisotope		on, within the 2011-2015	timeframe. Shall re	esult in production of an
Deliverables					
An EQM suitable for	or fuelling with radioiso	tope material with	test reports.		
Current TRL:	4/5	Target TRL:	6	Application Need/Date:	2017
Application Mission:	Mars exploration, (>2	018)	Contract Duration:	48	
S/W Clause:	N/A		Reference to ESTER		
Consistency with H	Consistency with Harmonisation Roadmap and conclusion:				
Consistent with the	nuclear power dossier a	nd proposed roadn	nap		

Stirling Converter Technology Development phase 1					
Programme:	ETP	Reference:	E903-009EP		
Title:	Stirling Converter Technology Development phase 1				
Total Budget:	2000				
Objectives					
To develop a breadboard model of a Stirling cycle power converter system for use with radioisotopic heat sources.					

Description					
This contract covers the initial development of a Stirling cycle power converter system for space applications, considering use with radioisotopic heat sources. Electrical output in the ~100 W range. A breadboard will be developed and tested in laboratory conditions (using a simulated, non-nuclear, heat source).					
Deliverables					
Consolidated requirements and design documentation. Breadboard model with test reports.					
Current TRL:	2	Target TRL:	3	Application Need/Date:	2013
Application Mission:	Outer Planets, Mars exploration, (>2018)		Contract Duration:	27	
S/W Clause:	N/A		Reference to ESTER	T-8534	
Consistency with Harmonisation Roadmap and conclusion:					
Consistent with nuclear power dossier					

Stirling converter of	development phase 2 t	o TRL6				
Programme:	ETP Reference: E903-010EP					
Title:	Stirling converter development phase 2 to TRL6					
Total Budget:	3300					
Objectives						
Continued developm	nent of the Stirling conv	verter system, includi	ng its interfaces with the	e radioisotopic fuel, a	and the spacecraft	
Description						
Continued developm	nent of the Stirling conv	verter system, includi	ng its interfaces with the	e radioisotopic fuel, a	and the spacecraft.	
Deliverables						
Shall result in produ	ction of EQM suitable	for fuelling with radi	oisotope material with t	est reports.		
Current TRL:	3/4	Target TRL:	6	Application Need/Date:	2017	
Application Mission:	Outer Planets, Mars exploration, (>2018)		Contract Duration:	48		
S/W Clause:	N/A		Reference to ESTER			
Consistency with H	Iarmonisation Roadma	ap and conclusion:				
Consistent with nuc	lear power dossier					

Combustion chamber and injection technology development				
Programme:	ETP Reference: E919-011EP			
Title:	Combustion chamber and injection technology development			
Total Budget:	2000			
Objectives				
To conduct the necessary preliminary development work for a high thrust (1000-1500N) engine for planetary science and exploration.				

Description

A high thrust apogee engine (HTAE) has been identified as a key technology to provide Europe with an enhanced independent capability for planetary science and exploration.

Gravity losses on Mars Express (MEX) accounted for around 4 % of the Delta V at orbit insertion. This mission used a classical high reliability apogee motor at 400N thrust level and 321s specific impulse (ISP)

The current Exomars (EXM) orbit insertion propulsion relies on a similar single 424N engine with an ISP of 321s. The Mars orbit insertion manoeuvre (MOI) and other manoeuvres bring the total main engine burn time to nearly 6 hours. Furthermore, significant gravity losses are involved in the Mars orbit insertion manoeuvre: 30% delta V or around 300 kg in terms of propellant mass.

A higher thrust apogee engine, 1.0-1.5 kN or similar, with current State of the art performance (~321s ISP) would be of significant benefit. Such an engine recovers more than half of the losses for an EXM class mission while retaining acceleration levels similar to those seen on Mars Express. This, in turn, increases the spacecraft dry mass available on orbit by a similar amount and hence the payload available for useful science. Further, such an approach leads to a relatively compact and mass efficient propulsion system.

A classical apogee engine design is considered for the HTAE. The design will consist of: Propellant flow control valves Injector assembly Combustion chamber Expansion nozzle - Heat shield The overall development requires three phases: Phase 1 is aimed at the verification, by test, of the key elements of such a design with a particular focus on the chamber and injector technology. Phase 2 targets the optimisation and finalisation of the design to critical design review (CDR) status. Finally, phase 3 addresses the qualification of the engine on ground. The activity outlined here relates to phase 1 of the development. Phase 1 - of the high thrust apogee engine HTAE development is split into two further sub-phases; A and B. Phase 1-A is constructed to take the development to a program requirements review (PRR) with a traded concept and supporting analysis confirming the feasibility of the design. Phase 1-B is split into three development strands for the three key components; valve, chamber and injector. Phase 1-B is designed to demonstrate the feasibility of the injector design and to address chamber compatibility issues with an agreed injector reference design. Further, significant emphasis is placed on the injector and chamber development to allow an initial performance optimisation loop and to give good margins w.r.t combustion stability. The phase 1 closes with three separate intermediate preliminary design reviews (IPDR) for the Valve Chamber and Injector respectively. Deliverables Phase 1-A Activities Definition of requirements in terms of performance, physical properties and test facilities. Definition of options for engine designs. Result from trade of engine options based on relevant analysis. Initial design and supporting analysis. Provision of PRR data pack. Phase 1-B Activities Development of HTAE technical specification. Valve technology demonstrator - model design and manufacture. Injector technology demonstrator - Design and manufacture of development model injector elements. Testing injectors for the performance optimisation loop. Chamber technology demonstrator - Chamber development model design, manufacture including testing with reference injector. Provision of I-PDR data packs for valve, injector and chamber Application Current TRL: Target TRL: 3 2012 Need/Date: All exploration missions e.g. Mars Sample Application Return (>2016) and following exploration **Contract Duration:** 24 Mission: missions **Reference** to N/A T-8324 S/W Clause: ESTER Consistency with Harmonisation Roadmap and conclusion: Consistent with the Technical Dossier - Chemical Propulsion Components (Aim C3)

Design, development testing and generic qualification of a High Thrust Apogee Engine (HTAE)				
Programme:	ETP	Reference:	E919-012MP	
Title:	Design, development testing and generic qualification of a High Thrust Apogee Engine (HTAE)			
Total Budget:	4300			

Objectives

This activity will continue the development, to a generic qualification level, of a High Thrust Apogee Engine for the Robotic Exploration Programme.

Description

The MREP-funded Combustion chamber and Injection technology development activity, was a first phase aimed at defining a high thrust apogee engine (HTAE) that was a specific fit to Agency requirements for planetary missions and orbit insertion. The HTAE phase 1 targets an ITAR-free design and examines high performance injector design and cost effective high temperature materials developments. The definition of a flow control valve was also included to complete the equipment definition. The phase 1 activity will conclude in 2013 with a Intermediate PDR (I-PDR) for the injector, chamber and valve.

The follow on Phase 2, which is the subject of this activity proposal, is intended to proceed following a successful close-out of the I-PDR, and is aimed at:

- Completion of design Definition

o Final loop of injector, chamber and valve development testing as identified in Phase 1B will be performed to finalise injector down-selection for the design of the HTAE including any further optimisations identified.

o PDR

- Detailed design

o CDR

- Generic Qualification

o Manufacture of EM (generic qualification) batch 2 test hardware

o Process qualification for injectors, chamber manufacture and if relevant, chamber material coating process

o HTAE Valve development activity - design and manufacture of a qualification model for engine qualification program

o Qualification program of engine(s) to TBC specification (generic qualification requirements)

The Phase 2 will be split into two parts, Phase 2a and Phase 2b as shown below:

- Phase 2a (2000kEuros) starting 2013 for a duration of 24 months until CDR

- Phase 2b (2300kEuros) starting 2015, for a duration of 18 months until completion

Deliverables

Documentation, development models, engineering model engine and valve assemblies.					
Current TRL:	3	Target TRL:	5/6	Application Need/Date:	2016
Application Mission:	· · ·	INSPIRE, Phootprint, MSRO and other future Mars missions		42	
S/W Clause:	N/A	N/A			
Consistency with Harmonisation Roadmap and conclusion:					