

SIRIUS: Stellar and ISM research via in-orbit (E)UV spectroscopy

Martin Barstow & Jianrong Shi

Project coordinator - Sarah Casewell

www.le.ac.uk

Department of Physics & Astronomy

• Science Working Team

- M. Avillez, R. de Grijs, G. Del-Zanna, A Gomez de Castro, G. Harper, M. Huang, I. Pagano, F. Tian
- Instrument Working Team
 - D. Liddle, N. Kappelman, M. Huang, J. Lapington, J. Larruquert, J-A. Mendez, Q. Song, S. Wang
- Other collaborators
 - T. Appourchaux, N.P. Bannister, F-Z. Chen, S. Eves,
 L. Gomes, L. Harra, J.B. Holberg, L. Ji, C. Jordan, X.
 Kong, M.P. Kowalski, R. Lallement, X. Liu, D. de
 Martino, J.H.M.M. Schmidt, T. Wang, B.Y. Welsh, K.
 Werner, Y. Yuan, J. Zhu

Introduction

- Importance of the EUV (~100 900 Å)
- Science goals stellar and galactic environment
- Requirements for a new mission
- SIRIUS, a high resolution EUV spectroscopic mission
- Key systems and readiness levels
- Conclusions

Extreme Ultraviolet Astronomy

- Once called the "unobservable ultraviolet"
 - Erroneous assumptions about interstellar densities
- Cruddace et al. (1974) predicted feasibility
 - Patchy ISM, lower density
- Demonstrated by sounding rockets & Apollo-Soyuz
- All-sky surveys by ROSAT WFC & EUVE
- Low resolution spectroscopy (R~100), EUVE
- High resolution spectroscopy (R~5000), J-PEX

Importance of the EUV

Important processes traced by hot gas (10⁵-10⁷K)

- Formation and evolution of stars
 - Their interaction with the ISM
 - Effect on planetary atmospheres & habitability
- Activity levels
 - Stellar winds.. control flow of material & cosmic rays from galactic environment
- Recycling of material into ISM
 - Enriching galactic metal content
 - Production of white dwarfs and supernovae

Importance of the EUV

- Region with a high density of spectral lines
 - Stellar atmospheres
 - Stellar transition regions and coronae
- Unique coverage of He II Lyman series
 - Probe of density and ionization in ISM
- No planned missions by any agency...

The J-PEX Spectrometer

Ion etched, blazed grating. MoSi multilayers for high reflection Spherical figure, 2.2m focal length

Evolution into an orbital instrument

- The J-PEX design is scalable
- Multiple units can be constructed
 - Tuned to different wavebands by multilayer thickness
- Gratings in a single unit can be divided for broader wavelength coverage
 - Recent, shortlisted, ESA S-mission proposal
 - Four gratings tuned in pairs to two bands:
 180 220 Å and 200 240 Å

Stellar & Galactic Environment

- Structure & Dynamics of Stellar Coronae
 - Coronal heating, activity and flares Solar quality data for nearby stars
 - Exoplanet environments
- Evolution of White Dwarfs
 - Atmospheric composition & structure
 - Extrasolar planetary debris (arXiv 1402.2164)
- Structure & Ionization of the Local Interstellar Gas
 - Can only be directly measured in the EUV
- Extra-galactic observations in low density regions

Stellar activity in Solar-like stars

Stellar coronae

- Solar-like stars emit mainly in EUV, 170 - 600 Å
 - virtually invisible to XMM-Newton and Chandra HEG
- Measure T_e and N_e from chromospheric temperatures (He II) to 15 MK (Fe XXIII, Fe XXIV)
- Range well studied in Sun
 - Hinode EIS R~3000 solar spectra (170 - 210 and 245 - 290 Å)

Important questions

- Magnitude of the fluxes
 - Knowledge of extremes, but what is "normal"?
- Time variability of activity
 - Age/rotation rate
 - Ranges of short timescale changes?

0.0

- Volatile loss from planetary atmosphere... condition for habitability
- star affects:
- The XUV (X-ray+EUV) irradiance from the parent

Exoplanets in stellar environment

eicester

University of

Sanz-Forcada et al. 2011, A&A, 532, 6

Exoplanets in stellar environment

- Models use EUV fluxes extrapolated from X-ray measurements, but...
 - Real EUV data required as EUV flux comes mainly from the stellar transition region
 - For low activity stars EUV main contribution to the XUV
- Need to study EUV properties of exoplanet systems
 - Specifically those to be investigated by JWST (2018, cf. 2021) and habitable planet hosting stars identified by PLATO 2.0, TESS, STEP, etc.

εEri	K2V
47 Uma	G1V
51 Peg	G2.5IV
Gleise 581	M3
Gleise 876	M4
Pollux	KOIII
υ And	F8V
γ Cephei	K1IV
55 Cancri	G8V
GJ1214	M4.5

Stability of planetary atmospheres

- Gap in SED between X-ray and UV
- Variability time scales
- Thermal properties of flares
- Impact of EUV flux on nearby components and disks
- Main targets TW Hya and AB Dor

TW HYA

Coronal Dynamics - Doppler Imaging

Heliosphere

Axis of chimney

The Local ISM

Typical White Dwarf Chemical Profile

centre 10% 1% 0.1%

Van Maanen's star (1917)

Capability

Interacting Binaries

- E.g. Pre-CV Feige 24
- Period = 4.23d
- $T_{eff}(wd) = 60,000K$
- K_{wd} ~ 50 km s⁻¹
- γ_{total} ~ 70 km s⁻¹
- V_{ISM} ~ -10 km s⁻¹

Feige 24 simulation, exposure = 4000s

SIRIUS - mission implementation

- Instrument slitless, normal incidence off-axis EUV spectrograph
 - R~5000, peak A_{eff} > 10 cm², $\lambda\lambda$ 180 240 Å
- Science goal survey of stellar and galactic environments
- Programme observations of ~100 stellar sources in 3 years, including long term monitoring of a subsample

Primary Scientific Objectives	Targets	Scientific Products
Examine the structure of Stellar Coronae	19 main sequence stars and giants	Shape of spectral line wings; constraints on heating models
Determine the effects of coronae on Planets	10 Planet hosting stars	EUV radiation levels and planetary irradiance
Observations of young stars	9 stars belonging to young associations	Distinguish between coronal emission/accretion stream
Investigate abundance anomalies	19 main sequence stars and giants	Determine the FIP effect; Ne/Fe abundance for dwarfs
Monitoring observations of Flaring stars	16 G-M stars	Measure flows and line widths of flares
Study the evolution of white dwarfs and surrounding material	40 white dwarfs	Abundances for hot white dwarfs; radiative levitation/diffusion balance; determine composition of planetary debris
Probe the structure of local interstellar gas	40 white dwarfs (same observations as for white dwarf evolution)	Determine He ionization fraction; measure He I abundance
Examine hot plasma effects	4 flaring stars	Doppler imaging
Further investigation of abundance anomalies in selected objects	19 main sequence stars and giants	Determine Fe/O abundance for distant dwarfs S/N permitting

Spectrometer subsystems & heritage

Subsystem	Heritage	TRL
Gratings	Hinode, J-PEX	7/8
MCP detectors	ROSAT HRI/WFC, Chandra HRI, J-PEX	7/8
Background filter	ROSAT, J-PEX	7/8
Collimator	Ginga, J-PEX	7/8
Optical tracking camera	J-PEX	7/8
Invar spectrograph structure	J-PEX	7/8
Detector vacuum door	SSULI, J-PEX	7/8
Front end electronics	ROSAT, J-PEX	7/8
Data processing electronics	ROSAT, J-PEX	7/8
High voltage supply (MCP)	ROSAT, J-PEX	7/8

Assembled Satellite

SSTL 300

Vega Launch

Mission Summary

Category	Requirements
Launch Vehicle	Shared launch on Vega or Long March 2C/2D
Trajectory Design	Science Orbit: LEO, above 300km
Flight System	Design Lifetime: 5 years, nominal mission 3 years Payload: Mass 55 kg, Power 13.5 W Pointing: 3-axis,1 arcmin,1 arcsec/s stability Average Science Data Acquisition Rate: 20kb/s
Spacecraft Bus	SSTL-300 or Chinese
Data Return Strategy	Downlink Volume <1.2Gb per day, X-band
Telecommunications	ESA, China or UKSA
Ground Systems	2 contacts per day
Solar Array	1.66 m ² Emcore BTJM triple junction GaAs cells
Propulsion (ACS)	24kg Xe, 32m/s delta-v at an Isp of 48s

Possible responsibilities

- Opportunities for the EU
 - Gratings Carl Zeiss, Horiba
 - Detectors EU institutes, e2v, Photonis
 - Spacecraft SSTL, Airbus
 - Launch, ground segment & operations
- Opportunities for China
 - Optical tracking telescope
 - Structure, collimator
 - Detector contribution, processing electronics
 - Spacecraft TBD
 - Launch, ground segment & operations

Conclusion

- New technology & innovative design yield high sensitivity instrumentation... ITAR free
- New, unique science from a unique instrument
- Observatory-class science at low cost
- Study indicates our proposed SIRIUS EUV spectrograph feasible (within the defined parameters) for this joint opportunity
- Continuing discussions defining mission roles

