
    

 

 
Calculation of the solar parallax using planetary transits. 

 
When Edmund Halley published “A New Method of Determining the Parallax of the Sun, 
or His Distance from the Earth” in 1716, absolute measurements and absolute knowledge of 
distances within our Solar System were not known. From Newton’s Third Law, published 
in 1687 in the Principia Mathematica, Halley and his contemporaries did however know  
the distances of the planets and the planets radii relative to each other. 
 
In 1716, Halley discussed two methods to calculate the absolute value of the distance 
between the Sun and Earth, using planetary transits.  
 
Two observers view a planetary transit from different locations on Earth. To the observer in 
the most northern location on Earth the planet would appear further to the south of the 
Sun’s disc than it would appear to the observer in the most southern location on Earth. 
This effect is called parallax. 
 
In the example that follows, we describe the shadow of a planet onto the solar disk as 
‘planet disc’ and measure this value as an angle, mostly in arc seconds written as ‘’. 
Be aware that, due to the elliptical orbits of planets around the Sun, this angle changes over 
an orbit.  
 
The angular size of Venus during the transit on 5 June 2012 was 0.01198 degrees or 43’’.  
 
The angular size during Mercury at the transit on 9 May 2016 will be 0.003353 degrees or 
12’’.  
 
In addition, the apparent angular size of the Sun changes when observed from the Earth. 
This effect is mostly caused by the elliptical orbit of the Earth around the Sun.  
 
On 9 May 2016, the solar angular size is 0.528 degrees, or 1900’’. 
 
You can find out by yourself using the WebGeocalc Tool of the NAIF team at JPL. 
 
Parallax or angular shift 
 
An angular shift or parallax is the difference in the apparent position of an object against a 
background when viewed along two different lines of sight. You can try this for yourself, 
hold your thumb out, then close one eye at a time and note the position of your thumb 
against objects in the background.  
 
Your thumb will appear to have changed position, Figure 1. This is because by closing one 
eye at a time you viewed your thumb along two different lines of sight. 

http://eclipse.gsfc.nasa.gov/transit/HalleyParallax.html
http://eclipse.gsfc.nasa.gov/transit/HalleyParallax.html
http://wgc.jpl.nasa.gov:8080/webgeocalc/%23AngularSize


    

 

Figure 1: Diagram to show example of parallax by closing one eye at a time 

Method 1: calculating the distance between the Earth and Sun 
 
Let’s assume that two observers are at the same longitude, but at different latitudes. At the 
same longitude  they will observe the entry and exit of the planet disc onto the Sun at the 
same time.  
 
Edmund Halley proposed to observe the Venus transit from London and Cape Town. So, 
here we use the letters L and C, accordingly. 
The distance between the centres of these two discs can be described as an angle, measured 
in arc seconds. See Figure 2. 
 

 
Figure 2: Sketch of two observers L and C observing a planetary transit 



    

 

Figure 2 shows two triangles, a blue triangle with the angle δ and a  black triangle with  
angle ε, where: 
 
L = observer located in London 
C = observer located in Cape Town 
a = half the distance between observers 
dp = distance from planet to the Sun 
dE = distance from Earth to the Sun 
ε = angular distance between the centre of the planet discs on Sun from the planet centre  
δ = angular distance between the centre of planet discs on Sun from the Earth 
D = distance between the centre of the planet discs on Sun as seen by each observer 
 
 
From Kepler’s third law of motion, it was known to Halley, that the distance of a planet 
(Venus or Mercury) to the Sun, dp, and the distance from the Earth to the Sun, dE, are 
related as follows 
 

d𝑝𝑝 = nd𝐸𝐸   
 
Where, for Venus, n = 0.72, and for Mercury n = 0.39 

Figure 3: Triangles Earth centre to planets disc and from planet to the discs 

 
The triangles are sketched out again in figure 3. In addition to the blue triangle with angle 
δ, and the black triangle with angle ε, a red triangle with the angle ε/2 is shown, where: 
 



    

 

 
L = observer located in London 
C = observer located in Cape Town 
a = half the distance between observers 
dp = distance from planet to the Sun 
dE = distance from Earth to the Sun 
ε = angular distance between the centre of the planet discs on Sun from the planet centre  
δ = angular distance between the centre of planet discs on Sun from the Earth 
D = distance between the centre of the planet discs on Sun as seen by each observer 
 
Knowing angle ε, would allow the distance between the Earth and the planet to be 
calculated using trigonometry. With, a, being half the distance between the two observers. 
This distance can be calculated if the precise location of the two observers is known. 
 

𝑑𝑑𝐸𝐸 − 𝑑𝑑𝑝𝑝 =
𝑎𝑎

tan 𝜀𝜀2
 

 
 
To calculate the angle ε,  an approximation that is valid for small angles is used. The angle 
between the two discs of the planet, as seen by the two observes, is very small.  
 
Looking back to Figure 2, the two triangles with the enclosing angles ε and δ (the black and 
the blue triangle) give  
 

tan
𝜀𝜀
2

=
𝐷𝐷 2⁄
𝑑𝑑𝑝𝑝

=  
𝐷𝐷 2⁄
𝑛𝑛𝑑𝑑𝐸𝐸

 

and 

tan
𝛿𝛿
2

=
𝐷𝐷 2⁄
𝑑𝑑𝐸𝐸

 

 
dp is the distance from the planet  to the Sun, as shown earlier this is ndE, where dE, is the 
distance from the Earth to the Sun.  
 
From Kepler’s third law of motion, n = 0.72 for Venus, and n = 0.39 for Mercury. Be aware, 
that these values are average values, as the distance changes over the planet year! Thus 
 

𝑛𝑛 tan
𝜀𝜀
2

= tan
𝛿𝛿
2

 

 
for small angles, this can be approximated to  
 

tan
𝑛𝑛𝜀𝜀
2

= tan
𝛿𝛿
2

 

Therefore 
 

𝜀𝜀 =
𝛿𝛿
𝑛𝑛

 

 



    

 

 
 Angles ε and δ scale down in the same way as the distances from planets to the Sun. 
 
That was the missing piece of the puzzle, as we can measure δ directly from e.g. Figure 4 . It 
is now possible to calculate the distance from the Earth to the Sun in kilometres. 
 
 
Method 1: Example calculation using the transit of Venus 2004 
 
Figure 4 gives an example of the Venus transit observed from different locations on Earth 
in 2004. The angle between the different positions of the discs of Venus  is less than an 
arcminute. 

 
Figure 4: The transit of Venus on 8 June 2004  was recorded by three instruments in the Global 

Oscillation Network Group (GONG), at Learmonth (Australia), Udaipur (India), and El Teide (Spain) 

 
For the example of the transit of Venus observed from Udaipur and Learmonth, let’s apply 
the mathematics step by step: 
 
Step 1 
 
Let’s assume the two coordinates for Udaipur and Learmonth are: (24.58° N, 73.68° E) and 
(37.25° S, 143.43° E) respectively. The  radius of the Earth is 6371km. Assuming the same 
longitude, the distance between the two observation locations is  

 
2𝑎𝑎 = 𝑟𝑟𝐸𝐸 ∗ sin 24.58 −  𝑟𝑟𝐸𝐸 ∗ sin−37.25 = 6506.43 𝑘𝑘𝑘𝑘  

 
As the difference in the longitude has not been considered, a more precise calculation, in 
case you consider two observers at the northern and southern hemisphere: 
 



    

 

2𝑎𝑎 = �(𝑟𝑟𝐸𝐸 ∗ 𝑠𝑠𝑠𝑠𝑛𝑛24.58)2 + (𝑟𝑟𝐸𝐸 ∗ 𝑠𝑠𝑠𝑠𝑛𝑛73.68)22 + �(𝑟𝑟𝐸𝐸 ∗ 𝑠𝑠𝑠𝑠𝑛𝑛37.25)2 + (𝑟𝑟𝐸𝐸 ∗ 𝑠𝑠𝑠𝑠𝑛𝑛143.43)22  
 

2𝑎𝑎 = 12075 𝑘𝑘𝑘𝑘 
 
Step 2 
 
Suppose the two observers have projected their observations on a white piece of paper. 
When meeting after the transit and overlay the two drawings, they can measure the 
distance between the centre of the two discs of the planet  at a well-defined transit time, for 
example, the entry.  
 
The angular size of Venus varies between 9.6’’ and 63’’. During the transit in 2012, the 
angular size of Venus was 57’’, and the measured angular distance (from Figure 4) between 
the centres of the discs of Venus  is about a quarter of it, 57’’/4, this means that δ=14.25. 
The angle ε is obtained as follows 
 

ε =
𝛿𝛿

0.7
= 20.36′′ 

 
and further 

𝑑𝑑𝐸𝐸 −  𝑑𝑑𝑝𝑝 =
6521,46

2    

tan 𝜀𝜀2
= 65 925 148.69 𝑘𝑘𝑘𝑘 

 
Step 3 
 
As shown earlier,  
 

d𝑝𝑝 = nd𝐸𝐸  
 
with n=0.7 for Venus, we obtain: 
 

𝑑𝑑𝐸𝐸 = (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑜𝑜𝑣𝑣𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜 𝑓𝑓𝑎𝑎𝑓𝑓 𝑜𝑜𝐸𝐸− 𝑜𝑜𝑝𝑝)

1−𝑜𝑜
  = 219 750 494.62 km 

 
 
If you compare this to the current knowledge of 1 AU = 149597870 km , the obtained value 
is reasonably close. 
 
 
  



    

 

Method 2: Calculating the distance using contact times 
 
The problem that arose for Edmund Halley was of course that the separation of the discs of 
Venus on the Sun’s surface could not be measured reasonably at his time. However, he 
realised that  the angle ε, could be obtained differently. Halley proposed that each observer 
measures the transit contact points as accurately as possible. From the contact times, it is 
possible obtain angle ε, as follows. 
 
The angular velocity of Venus was already known to Halley and contemporaries and is 0.06 
degrees per hour or 0.06 arcseconds per second. The angular velocity of Mercury is 0.17 
arcseconds per second. This information can be used to calculate the length of the path of a 
planets transit. 
 
As a planet transits the Sun a possible four contact points are made (see Figure 5), it is 
from these contact points that the time of the transit can be measured: 
 

1. First contact – as the disc of planet touches the Sun from the outside as it enters 
transit. 

2. Second contact – as the disc of planet touches the Sun from the inside as it enters 
transit. 

3. Third contact – as the disc of planet touches the Sun from the inside as it exits 
transit. 

4. Fourth contact – as the disc of planet touches the Sun from the outside as it exits 
transit 
 

Two observers measure the transit as shown in Figure 5. The transit time that an observer 
sees is defined by either the time between the grey planet discs or the red planet discs. D, is 
the distance between the centre of the planet disc on Sun as seen by each observer. L1, is 
the length of the transit path from observer on Earth. L2, is the length of the transit from 
an observer on Earth at another location. 
 
If you make your own observations, it might be difficult to measure the time of the first 
point of contact exactly, as you see this point of contact only when it happens. Therefore, 
we propose you take the second point of contact (red disc on left side). 

Figure 5: Transit contact points 



    

 

 
T1 is the length of time that the planet took to transit the disc of the Sun from your 
observations.  You can then use this, and the angular velocity of Venus to calculate the 
length of the transit, L1, in seconds from your location. 
 
You will then need to select a second set of measurements observed at another location to 
work out T2. Repeat the same calculation to obtain the length of the transit, L2. 
 
To work out the angular distance between the disc of the planet, as seen from the two 
different observing locations you can measure it by drawing the following scaled diagram 
of the Sun. 
 
Using a pair of compasses,  draw a circle on a piece of A4 paper. The circle will represent 
the Sun, which has an angular diameter of 1900’’. This can be scaled so that the diameter of 
the circle is 19 cm, which just fits onto an A4 page. 
 
Next, you need two set squares. 
 

Figure 6: Measuring length of transit 

 
The set square, shown on the right in Figure 6, needs to be held steady so that the top part 
is an extension of the Sun’s equator. This can be done easily using graph paper.  
 
The left side of this set square is used to slide the second protractor along. Do this until you 
find the line of exactly the length of L1. Draw the line L1 and do the same for the line L2 as 
shown in Figure 7. Both lines should be parallel to one another. 



    

 

Figure 7: Measuring length of transit 

 
The distance between the two parallel lines is angle ε, in arcseconds. 
 
Once this angle is measured the following steps can  be used to calculate the distance 
between the Earth and the Sun, as shown in Method 1 (see Figures 2 and 3). 
 

𝑑𝑑𝐸𝐸 − 𝑑𝑑𝑝𝑝 =
𝑎𝑎

tan 𝜀𝜀2
 

 

𝑑𝑑𝐸𝐸 =
(𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑠𝑠𝑛𝑛𝑣𝑣𝑑𝑑 𝑓𝑓𝑎𝑎𝑟𝑟 𝑑𝑑𝐸𝐸 −  𝑑𝑑𝑝𝑝)

1 − 𝑛𝑛
 

 
 
Method 2: Example calculation using the transit of Venus 2004 
 
Following the example of the transit of Venus 2004, as used in Method 1, the transit times 
from the two locations are: T1 = 20055 seconds, and T2 = 19526 seconds.  
 
Given the Venus angular speed in its orbit as 0.06 arcseonds per second, the length of the 
transit can be calculated as L1 = 1203.3, and L2 = 1171.56.  
 
Plotted on a circle with diameter of 19cm, the distance between L1 and L2 is 0.22 cm, 
which is equal to 22‘’ (Figure 8). 
 
Compared to the calculations earlier on the page, the result is similar: 203 340 555 km – 
even slightly nearer to the known distance Sun – Earth than the figure calculated in 
Method 1. 
 



    

 

Figure 8: Complete diagram drawn to measure distance between path of transit from two observing 
locations 

 
If you have a good drawing software, you might consider drawing these diagrams  on the 
computer. 
 
Be aware that because measurements will not be made in a controlled environment results 
will vary. In addition, there are many other methods of calculating the distance between 
the Earth and the Sun that give  similar or even better results. Check out, for example, the 
NASA’s stargaze side or Prof. Udo Backhaus pages. 
 
 
 
 
If you have any questions or suggestions, please contact us.  
 
Joe Zender 
ESA BepiColombo Deputy Project Scientist 
joe.zender@esa.int 
 
Rebecca Barnes 
Communications, Outreach and Education Group 
Directorate of Science 
rebecca.barnes@esa.int 
 
 
 
 

http://www-istp.gsfc.nasa.gov/stargaze/Svenus2.htm
http://www.venus2012.de/transit-of-mercury2016/TransitofMercury2016.pdf
mailto:joe.zender@esa.int
mailto:rebecca.barnes@esa.int

