

M5 SPICA

CDF Study Executive Summary

Prepared by ESA Study and the CDF* Teams

(*) ESTEC Concurrent Design Facility

Introduction

Background & Mission Objectives

- Request of SCI-FM/FI to perform a preliminary mission design for SPICA, one of the three M5 candidates.
- SPICA:
 - joint European-Japanese project
 - offers significant improvement in far-infrared spectroscopic and survey capabilities over NASA's Spitzer and ESA's Herschel space observatories, ensure continuing advances in this field.
 - complement the capabilities of existing and foreseen major observatories, such as the ground-based Atacama Large Millimetre/submillmetre Array and the space-based Webb telescope.
- Launch 2032 with JAXA's new H3 launcher.

Responsibilities

ESA

- Mission Prime
- SVM
- Science Instrument Assembly (SIA), incl. Telescope
- Mission Operations Centre + Ground Segment (with JAXA Ground Station TBC)
- Science Operations

JAXA

- Payload Module
 - Cryogenics Assembly (JAXA)
 - SIA (ESA)
 - Instruments (SMI = JAXA, Safari = SRON, POL = SCEA)
- Launch
- Ground Station for Mission Operations (TBC)
- Share in Science Operations

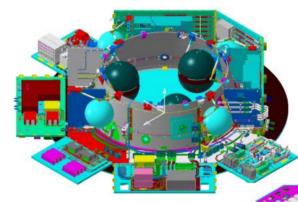
M5 SPICA| Slide 4

Requirements and Design Drivers

- General Mission and System requirements
 - Launch in 2032
 - Orbit around Sun-Earth L2 point
 - 3 years nominal mission lifetime, with 5 years goal
- Design drivers
 - Telescope diameter of 2.5m
 - Active cooling of the telescope below 8K (instrument heads down to 4.8K and 1.8K), passive cooling to 40K
 - Launcher: H3-22L from Tanegashima Space Center (JP) provided by JAXA
 - Procurement and AIV/AIT responsibilities shared among JAXA, ESA and Instrument Consortia
 - Compatibility with an M-size mission
 - TRL5 by mission selection and TRL6 by mission adoption

Reference Studies and Heritage

- CDF NG-CryoIRTel Study, Ref: CDF-152(A) from Dec 2014
 - Telescope, thermal cryo, AOCS and communications trade-offs
 - Baseline design for both PLM and SVM
- SPICA M5 proposal
 - Baseline design in line with NG-CryoIRTel study
 - Telescope diameter increased from 2m to 2.5m
 - Cryogenic cooling relaxed from <6K to <8K
 - Pointing requirements, both absolute and relative, relaxed
 - Added camera/polarimeter instrument POL
- JAXA's Conceptual Design Study (Ref: SPICA-PP-15007-2)
- Herschel / Planck and Gaia heritage
 - Herschel and Planck heritage applicable to both, instruments and platform
 - Planck's configuration and approach to Cryo cooling incl. testing
 - Gaia's refocusing mechanism for the telescope secondary mirror



Herschel-Planck SVM Heritage

Herschel Configuration

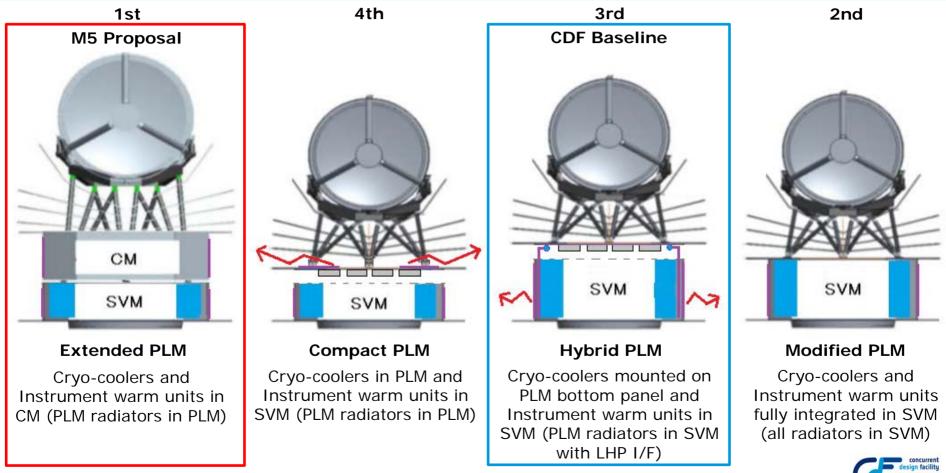
Planck Configuration

Relevant Commonalities

- House avionics equipment and servicing subsystems, as well as the "warm" units of the payload instruments
- Support the PLM Cryogenic system
- Provides mechanical interface to the launcher adapter

M5 SPICA | Slide 8

System Level Trade-offs


- Telescope: Ritchey-Chretien vs On-axis or off-axis Korsch
 - Impact on optical characteristics at focal plane
- Operational orbit: Halo vs Lissajous
 - Reduction of Earth illumination constraints
 - Minimize impact on delta-V and propellant mass
- Conventional AOCS vs need for a dedicated Attitude Sensor
 - Critically assess pointing requirements
 - Minimize impact on cost and complexity
- Accommodation of cryo-units: level of integration with/in the SVM
 - Reduction of mass and volume
 - Minimize impact on procurement and AIV/AIT plans

M5 SPICA | Slide 9

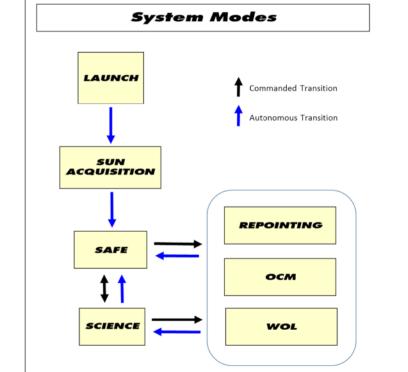
System Options

Mission Phases

- Launch & Early Operation Phase (less than 1 day, max. 2 days)
- Transfer to L2 and insertion in Halo orbit
 - Transfer correction manoeuvre (max. 2 days after launch)
 - Commissioning (max. 3 months, after max. 1 week decontamination)
 - Cryo-cooling of SIA (to be finished max. 6 months after launch)
- Instrument performance verification (to be finished max. 6 months after launch)
- Nominal Operation (2.5 years)
- Extended Operation (2 years)
- Decommissioning (2 weeks)

M5 SPICA | Slide 11

of RCS (to minimize propellant use) or lower cryo-coolers duty cycle (to minimize power needs). ESA UNCLASSIFIED – Releasable to the Public


* Additional Stand-by and Survival modes could be considered to, respectively, use RW instead

System Modes

- Launch
- Sun Acquisition
 - Attitude control on RCS
- Safe*
 - Sun pointing (attitude control on RCS)
 - Comms via HGA
- Science
 - Instrument calibration and nominal operation
 - Comms via LGA only
- Science with Comms •
 - Same as Science plus comms via HGA
- Repointing ۲

M5 SPICA| Slide 12

- Slew between targets
- Orbit Correction Manoeuvre (OCM) ٠
- Wheels Off-Loading (WOL) ۲

Instruments' Budgets

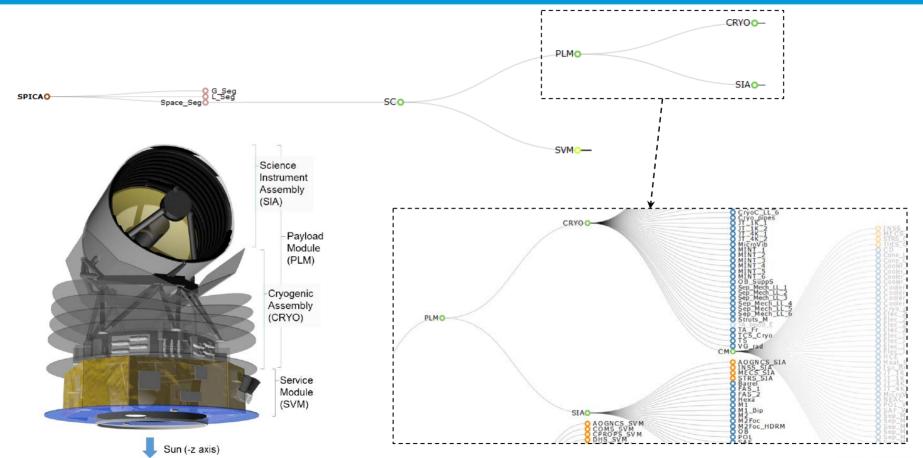
	SAFARI	POL	SMI		SAFARI	POL	SMI
Resources \ Modes				Thermal			
Volume				2ST / Mid-temp (20K, TBC) stage			
Focal-plane unit(s)	1200x1200x500	465x720x450	LR-CAM: 1030x520x230 mm^3	OFF	0	0	8.3 mW
			MR-HR: 1040x790x230	STAND-BY	0	0	8.3 mW
Warm unit(s)	ICU: 380x330x270	DPU: 250x260x200	LR-CAM: 400x300x280 mm^3	RECYCLING/ANNEALING	0	0	8.3 mW
	DPU: 380x330x250	BOL WFEE:390x290x340	MR-HR: 400x300x280	CALIBRATION + OBSERVATION	0	20	26.8 mW
	WFEE: 380x330x100			4K-JT stage		20	20.0
Mass				OFF	-0.24	0.45	0.32 mW
Focal-plane unit(s)	125	20	50.8 kg	STAND-BY	-0.24	0.45	0.32 mW
				RECYCLING/ANNEALING	-0.24	10.4	10 mW
				CALIBRATION + OBSERVATION	14	1.23	3.14 mW
	20	25	27 1	1K-JT stage	14	1.25	3.14 1111
Warm unit(s)	36	25	37 kg	OFF	2	0.69	0.29 mW
Duty cycle	CE 450/	4.55%	20.00%	STAND-BY	2	1.1	0.29 mW
Mission share Within a 24h cycle	65.45%	4.55%	30.00%	RECYCLING/ANNEALING	5.5	4.2	3.1 mW
	7.2	4	4 h/day	CALIBRATION + OBSERVATION	5.5	4.2	2.83 mW
RECYCLING/ANNEALING CALIBRATION + OBSERVATION	16.8	20	20 h/day	CALIBRATION + OBSERVATION	5.5	1.1	2.65
Observation efficiency	10.8	100.00%	84.00%				
Power Consumption (best estimates v		100.0076	84.00%		MAXIMUM	CYCLE AVERAGE	MISSION AVERAGE
Warm unit(s)	w/o margins/			Resources	_		
OFF	0	0	0 W	Power Consumption	258	247.1666667	243.1893939 W
STAND-BY	140	68	35 W	Data Generation: Housekeeping	158	158	158 kbps
RECYCLING/ANNEALING	140	83	35 W		N/A	13.6512	13.6512 Gbit/day
CALIBRATION + OBSERVATION	140	70	35 W	Data Generation: Science	5.67	3.969	3.061306061 Mbps
Data Generation	140	70	55 1		N/A	342.9216	264.4968436 Gbit/day
Housekeeping				2ST stage	28.3	24.96666667	13.68257576 mW
OFF	0	0	0 kbps	4K-JT stage	14.77	14.77	11.14465152 mW
STAND-BY	128	15	15 kbps	1K-JT stage	6.89	6.89	6.479893939 mW
CALIBRATION + OBSERVATION	128	15	15 kbps				
Science							
OFF	0	0	0 Mbps		المرامين	ممما میم ام +	
STAND-BY	0	0	0 Mbps	NUIE: INESE	values are ba	ased on pest	estimates, i.e.
CALIBRATION + OBSERVATION	4	1	5.67 Mbps	with no motive	itu /ou otore	a a raina a a ra	rouided by the
Peak to DHS	4	1	20 Mbps	 with no matur 	ity/system n	nargins, as p	i ovided by the

PI consortia for the sole purpose of the CDF study.

Values provided at start of CDF study (changes since M5 proposal in red):

Instrument	Slit Width	MPE (3σ)	RPE (0-p,3σ)	ΑΚΕ (3σ)
SMI/LR	3.7″	0.92″	0.79" (>600 s)	0.37″
SMI/MR	3.7″	0.92″	0.84" (>600 s)	0.37″
SMI/HR	1.7"	0.44"	0.44" (>600 s)	0.17″
SAFARI	4.5″	1.5″	0.15" (>200 s)	0.15″
POL	N/A	1.0"	0.3" (>3600 s)	0.30″
System level		0.44"	0.15" (>200 s)	0.15″

During the CDF study an effort has been made to better understand and characterize the relevant pointing accuracy figures, both relative and absolute, required by each instrument based on their specs and observation modes.


Further detailed information has been gathered from all PI consortia to support the AOCS dedicated Attitude Sensor trade-off, although the full consolidation of these figures has not being fully achieved within the time and scope of the study.

M5 SPICA | Slide 14

System Architecture (OCDT Model)

M5 SPICA | Slide 15

Mass Budget (CDF Baseline option / H-PLM)

		Element properties	L	evel 4
Element Defini	tion short name	: PLM		
Element Defini	tion long name:	Payload Module		
Subsystem	Switch	PLM Mass Budget		Mass [kg]
AOGNC	Product	Attitude, Orbit, Guidance, Navigation Control		16.80
сом	Not used	Communications		0.00
CPROP	Not used	Chemical Propulsion		0.00
DH	Not used	Data-Handling		0.00
EPROP	Not used	Electric Propulsion		0.00
INS	Product	Instruments		234.96
MEC	Product	Mechanisms		49.29
STR	Product	Structures		911.17
SYE	Not used	System Engineering		0.00
тс	Product	Thermal Control		263.71
· ·		Harness	5%	73.80
		Dry Mass w/o System Margin		1549.73

		Element properties	Level 4
Element Defini	tion short name	: SVM	
Element Defini	tion long name:	Service Module	
Subsystem	Switch	SVM Mass Budget	Mass [kg]
AOGNC	Product	Attitude, Orbit, Guidance, Navigation Control	81.94
сом	Product	Communications	25.55
CPROP	Product	Chemical Propulsion	56.35
DH	Product	Data-Handling	32.03
EPROP	Not used	Electric Propulsion	0.00
INS	Product	Instruments	117.60
MEC	Product	Mechanisms	7.70
PWR	Product	Power	85.67
STR	Product	Structures	535.20
SYE	Not used	System Engineering	0.00
тс	Product	Thermal Control	176.37
		Harness 10	111.84
		Dry Mass w/o System Margin	1230.24

S/C Mass Budget	Mass [kg]		
Dry Mass PLM		1549.73	
Dry Mass SVM		1230.24	
System Margin	20%	555.99	
Dry Mass incl. System Margin		3335.96	
CPROP Fuel Mass		341.77	
CPROP Fuel Margin	2%	6.84	
CPROP Pressurant Mass		0.77	
CPROP Pressurant Margin	2%	0.02	
Total Wet Mass		3685.35	
Target Wet Mass		3700.00	
Below Target Mass by		14.65	

M5 SPICA | Slide 16

PLM Assemblies (CDF Baseline option / H-PLM)

		Element properties	Level 5			Element properties	Level 5
Element Definition s	hort name:	CRYO		Element Definiti	on short name:	SIA	
Element Definition lo	ong name:	Cryogenic Assembly		Element Definiti	on long name:	Science Instrument Assembly	
Subsystem	Switch	CRYO Mass Budget	Mass [kg]	Subsystem	Switch	SIA Mass Budget	Mass [kg]
AOGNC	Not used	Attitude, Orbit, Guidance, Navigation Control	0.00	AOGNC	Product	Attitude, Orbit, Guidance, Navigation Control	16.80
сом	Not used	Communications	0.00	сом	Not used	Communications	0.00
CPROP	Not used	Chemical Propulsion	0.00	CPROP	Not used	Chemical Propulsion	0.00
DH	Not used	Data-Handling	0.00	DH	Not used	Data-Handling	0.00
EPROP	Not used	Electric Propulsion	0.00	EPROP	Not used	Electric Propulsion	0.00
INS	Not used	Instruments	0.00	INS	Product	Instruments	234.96
MEC	Product	Mechanisms	39.69	MEC	Product	Mechanisms	9.60
STR	Product	Structures	377.77	STR	Product	Structures	533.40
SYE	Not used	System Engineering	0.00	SYE	Not used	System Engineering	0.00
тс	Product	Thermal Control	263.71	тс	Not used	Thermal Control	0.00
		Harness (0.00			Harness 0	% 0.00
		Dry Mass w/o System Margin	681.17			Dry Mass w/o System Margin	794.76

Mass Budget (M5 proposal option / E-PLM)

		Element properties	L	evel 4
Element Defini	tion short name	: PLM		
Element Defini	tion long name:	Payload Module		
Subsystem	Switch	PLM Mass Budget		Mass [kg]
AOGNC	Product	Attitude, Orbit, Guidance, Navigation Control		16.80
сом	Not used	Communications		0.00
CPROP	Not used	Chemical Propulsion		0.00
DH	Not used	Data-Handling		0.00
EPROP	Not used	Electric Propulsion		0.00
INS	Product	Instruments		352.56
MEC	Product	Mechanisms		57.69
PWR	Not used	Power		0.00
STR	Product	Structures		1320.13
SYE	Not used	System Engineering		0.00
тс	Product	Thermal Control		408.67
		Harness	5%	107.79
		Dry Mass w/o System Margin		2263.64

		Element properties	Le	vel 4
Element Defini	tion short name	: SVM		
Element Defini	tion long name:	Service Module		
Subsystem	Switch	SVM Mass Budget	N	lass [kg]
AOGNC	Product	Attitude, Orbit, Guidance, Navigation Control		81.94
сом	Product	Communications		25.55
CPROP	Product	Chemical Propulsion		56.35
DH	Product	Data-Handling		32.03
EPROP	Not used	Electric Propulsion		0.00
INS	Not used	Instruments		0.00
MEC	Product	Mechanisms		7.70
PWR	Product	Power		85.67
STR	Product	Structures		434.28
SYE	Not used	System Engineering		0.00
тс	Product	Thermal Control		18.22
		Harness	10%	74.17
		Dry Mass w/o System Margin		815.91

S/C Mass Budget	Γ	Mass [kg]
Dry Mass PLM		2263.64
Dry Mass SVM		815.91
System Margin	20%	615.91
Dry Mass incl. System Margin		3695.46
CPROP Fuel Mass		341.77
CPROP Fuel Margin	2%	6.84
CPROP Pressurant Mass		0.77
CPROP Pressurant Margin	2%	0.02
Total Wet Mass		4044.85
Target Wet Mass		3700.00
Below Target Mass by		-344.85

M5 SPICA | Slide 18

PLM Assemblies (M5 proposal option / E-PLM)

		Element properties	L	evel 5
Element Definition	short name:	CRYO		
Element Definition long name:		Cryogenic Assembly		
Subsystem	Switch	CRYO Mass Budget	ſ	Mass [kg]
AOGNC	Not used	Attitude, Orbit, Guidance, Navigation Control		0.00
сом	Not used	Communications		0.00
CPROP	Not used	Chemical Propulsion		0.00
DH	Not used	Data-Handling		0.00
EPROP	Not used	Electric Propulsion		0.00
INS	Product	Instruments		117.60
MEC	Product	Mechanisms		48.09
PWR	Not used	Power		0.00
STR	Product	Structures		786.73
SYE	Not used	System Engineering		0.00
тс	Product	Thermal Control		408.67
		Harness C)%	0.00
		Dry Mass w/o System Margin		1361.09

		Element properties	Level 5	
Element Definition	n short name:	SIA		
Element Definition long name:		Science Instrument Assembly		
Subsystem	Switch	SIA Mass Budget		Mass [kg]
AOGNC	Product	Attitude, Orbit, Guidance, Navigation Co	ontrol	16.80
сом	Not used	Communications		0.00
CPROP	Not used	Chemical Propulsion		0.00
DH	Not used	Data-Handling		0.00
EPROP	Not used	Electric Propulsion		0.00
INS	Product	Instruments		234.96
MEC	Product	Mechanisms		9.60
PWR	Not used	Power		0.00
STR	Product	Structures		533.40
SYE	Not used	System Engineering		0.00
тс	Not used	Thermal Control		0.00
		Harness	0%	0.00
		Dry Mass w/o System Margin		794.76

		Element properties	Level 6
Element Definition	short name:	CM	
Element Definition long name:		Cooler Module	
Subsystem	Switch	CM Mass Budget	Mass [kg]
AOGNC	Not used	Attitude, Orbit, Guidance, Navigation Control	0.00
СОМ	Not used	Communications	0.00
CPROP	Not used	Chemical Propulsion	0.00
DH	Not used	Data-Handling	0.00
EPROP	Not used	Electric Propulsion	0.00
INS	Product	Instruments	117.60
MEC	Not used	Mechanisms	0.00
PWR	Not used	Power	0.00
STR	Product	Structures	379.20
SYE	Not used	System Engineering	0.00
тс	Product	Thermal Control	408.67
		Harness 0%	6 0.00
		Dry Mass w/o System Margin	905.47

M5 SPICA| Slide 19

System Mass Breakdown History Comparison

		CDF NGCRYO	JAXA			CDF SPICA			
		M-PLM	E-PLM	M-PLM	Delta	E-PLM	H-PLM	Delta	
SVM		1193	776	1088	312	816	1230	414	
POW		90	90	90		86	86		
СОМ		22	22	22		26	26		
DHS		33	33	33		32	32		
AOCS*		71	71	71		82	82		
PROP		89	89	89		56	56		
STR		375	298	412	114	434	535	101	
THE		354	64	138	74	18	176	158	
MEC		12	12	12		8	8		
INST*		59	0	124	124	0	118	118	
SVM Harnes	s	88	97	97		74	112		
PLM		1060	2287	1823	-464	2264	1550	-714	
SIA		N/A	950	950		795	795		
	AOCS					17	17		
	STR					533	533		
	MEC					10	10		
	INST	120	240	240		235	235		
CRYO		N/A	1337	873	-464	1361	681	-680	
	STR					787	378	-409	
	THE					409	264	-145	
	MEC					48	40		
	INST*	0	124	0	-124	118	0	-118	
PLM Harnes	s					108	74		
Dry mass w/ matur	Dry mass w/ maturity margins		3063	2911	-152	3080	2779	-300	
System margin (ESA	System margin (ESA: 20%, JAXA: 15%)		459	437		616	556		
Total dry mass		2703	3522	3348		3696	3335		
Propellant & Pressurant w/ margins		313	353	335		349	349		
Total wet mass		3016	3875	3683	-193	4045	3684	-361	
Target launch mass	5	3500	3700	3700		3700	3700		
Below mass target		484	-175	17	193	-345	16	361	

M5 SPICA| Slide 20

Payload Mass Breakdown History Comparison

				CDF NG-Cryo			
	SAF	POL	SMI	TOTAL w/o margins	TOTAL w/ margins		
Optic units	55.0	0.0	45.1	100	120		
Warm units	25.0	0.0	24.0	49	59		
					179		
				M5 Proposal			
	SAF	POL	SMI	TOTAL w/o margins	TOTAL w/ margins	 	
Optic units	125.0			185	222	 	
Warm units	43.0	16.0	35.0	94	113	 	
					335		already included in NGCryo/SVM/AOC
						 so it was count	ed twice (ESA: 20kg, JAXA: 17kg).
	C 4 F			JAXA			
Ontic units	SAF 125.0	POL	SMI 50.8	TOTAL w/o margins 188	TOTAL w/ margins 225	With FAS* 240	
Optic units Warm units	36.0	12.0 16.0		89	106	 1240	
vvarini units	30.0	10.0	30.7	85	332	 364	
					332	 504	
				CDF SPICA			
	SAF	POL	SMI	TOTAL w/o margins	TOTAL w/ margins		
Optic units	125.0				235		
Warm units	36.0	25.0		98	118		
					353		

M5 SPICA | Slide 21

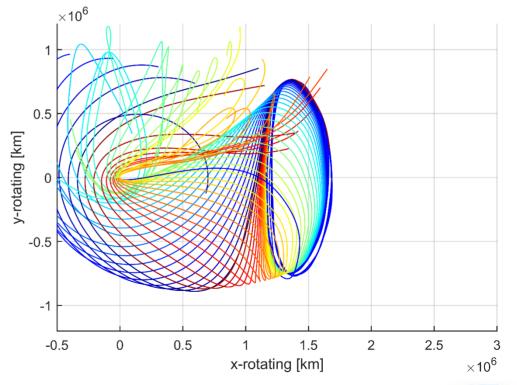
System Budgets Breakdown per Ownership

- The system product tree model has been populated with ownership information
 - This includes ESA and JAXA agencies, and SAFARI, POL and SMI Consortia
 - This allows generating budget breakdown reports for each module or assembly filtering per ownership

JAXA	Total Mass	Parameter	ownersh	ip 🖵
	96	Value	JAXA	T ₊
Equipment	Mass (kg)	Row Labels	r	
Cooler_2ST_1 (CryoCooler_2ST #1)	12	Cooler_2ST_1 (CryoCooler_2ST #1)		
Cooler_2ST_2 (CryoCooler_2ST #2)	12	Cooler_2ST_2 (CryoCooler_2ST #2)		
Cooler_2ST_3 (CryoCooler_2ST #3)	12	Cooler_2ST_3 (CryoCooler_2ST #3)		
Cooler_2ST_4 (CryoCooler_2ST #4)	12	Cooler_2ST_4 (CryoCooler_2ST #4)		
Cooler_2ST_5 (CryoCooler_2ST #5)	12	Cooler_2ST_5 (CryoCooler_2ST #5)		
Cooler_2ST_6 (CryoCooler_2ST #6)	12	Cooler_2ST_6 (CryoCooler_2ST #6)		
Cooler_2ST_7 (CryoCooler_2ST #7)	12	Cooler_2ST_7 (CryoCooler_2ST #7)		
Cooler_2ST_8 (CryoCooler_2ST #8)	12	Cooler_2ST_8 (CryoCooler_2ST #8)		

Mission Analysis

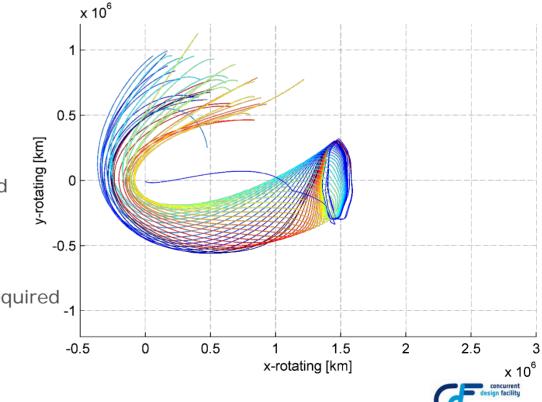
Mission Analysis



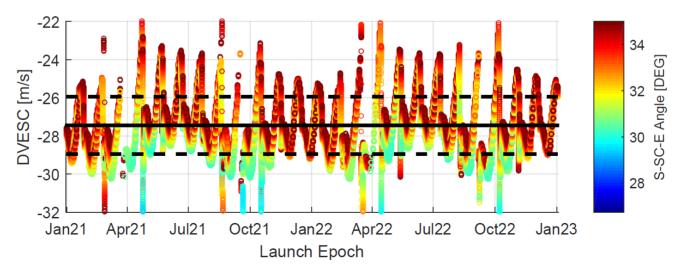
- Requirement: Find the appropriate science orbit and the associated DeltaV budget
- Science Orbit Trades:
 - Free transfer Large Amplitude Quasi Halo Orbit (JWST, Euclid, Herschel, Plato, etc.)
 - Small amplitude Lissajous Orbit (Gaia, Gaia NIR, Planck, etc.)
 - Orbit size is defined by Sun-S/C-Earth angle (SSCE)
- DeltaV budget will strongly depend on the assumptions for the launcher and spacecraft

Orbit Option 1: Large Amplitude Quasi-Halo Orbit

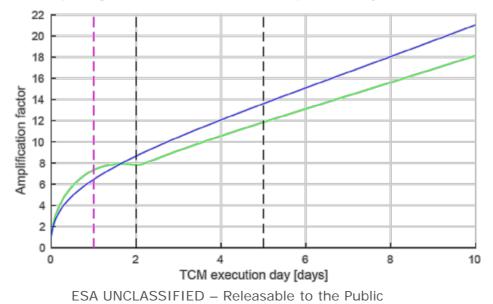
- No orbit injection manoeuvre required
- Stable manifold of the orbit intersects with the near Earth environment
- Direct ascent trajectory can usually provide an all year launch window if argument of perigee value is correct
- Orbits are eclipse free



Orbit Options 2: Small Amplitude Lissajous Orbit


- Orbit injection manoeuvre required, size depends on required amplitude reduction x 10⁶
 - Stable manifold does not intersect with the Earth
 - Fast and slow transfer options available
- For an all year launch window a circular parking orbit is required with the option to select the drift duration (gives free choice in argument of perigee)
- Eclipse avoidance manoeuvres required Frequency depends on size

Injection onto Stable Manifold


- Perigee velocity is usually pre-programmed into the launcher
- Actual stable manifold velocity depends on the phasing with the moon
- Deviation between pre-programmed and required velocity must be corrected by the S/C
- Additionally the launcher dispersion must be corrected

Transfer Correction Manoeuvre 1

- The pre-programmed perigee velocity as well as the launcher dispersion need to be corrected as soon as possible due to the amplification of the error
 - ESOC assumes a correction at day-1, 24 hours after separation
 - The DeltaV budget assumes a correction at day-2, 48 hours after separation (perigee errors will be amplified by a factor of 9)

Station-Keeping

- Orbit maintenance or station-keeping DeltaV requirements will heavily depend on the noise environment of the S/C
- Typical values range from 0.7-7 m/s/year
- The actual value will depend on the residual acceleration environment of the S/C as well as the predictability of the direction of the residual acceleration
 - Balanced thruster configuration with no residual acceleration for attitude vs. unbalanced thruster configuration
 - Well known attitude profile and well characterized propulsion system (e.g. Gaia)
 - Venting of Helium into space with no a-priori defined direction (e.g. Herschel)
- Drastic Station Keeping cost reduction to around 1 m/s/year requires
 - a constraint on the residual acceleration of the S/C
 - or make the accelerations completely predictable in the long term (no target of opportunity).

Lissajous orbit DV is optional – Quasi Halo is baseline

Flight program correction	Example values – Ariane 5/6, Large amplitude Quasi Halo, noisy S/C	Suggested margin	Double on biased trajectory
– 1.5 m/s * 9	13.5 m/s	10%	Yes
Launcher dispersion correct	ion		
– 3-4.5 m/s * 9 (JA)	(A 5.28 m/s) 40.5 m/s (JAXA 47.56 m/s)	0%	Yes
Correction of TCM#1			
- 0.1 * TCM#1	5.4 m/s (JAXA 6.1 m/s)	10%	Yes
Lissajous orbit insertion			
 – 12 m/s/(DEG SSCI 	E) 168 m/s (28->14 Deg)	10%	NO
Station-Keeping			
 0.7-7 m/s/year 	35 m/s	50%	Yes
Disposal			
– 10 m/s	10 m/s	10%	Yes
Eclipse avoidance			
– 15 m/s	15 m/s	10%	Yes
M5 SPICA Slide 30	ESA UNCLASSIFIED – Releasable to the Public		concurrent design facility

Propulsion System Design Trade

- Biased vs. non-biased trajectory
- In some cases the thruster layout is desired to not point towards the payload module to avoid contamination
 - Thrust can only be provided into the anti-Sun direction
 - The trajectory can be biased that manoeuvres are executed only into the anti-sun direction
- Applied e.g. on JWST and Gaia (although due to propulsion system reasons)
- Consequence: The entire DeltaV budget must be doubled with the exception of the Lissajous orbit insertion manoeuvre
- Mission Analysis provides geometric DeltaV values efficiencies must be taken into account by propulsion

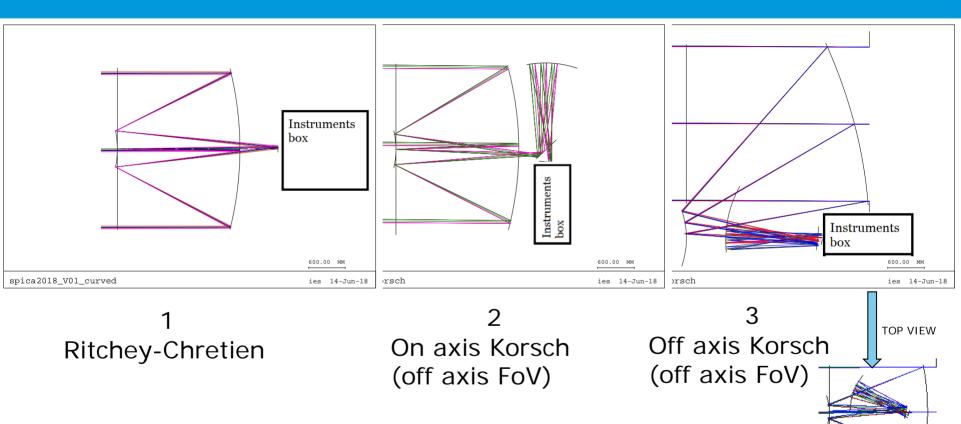
M5 SPICA | Slide 31

Telescope requirements

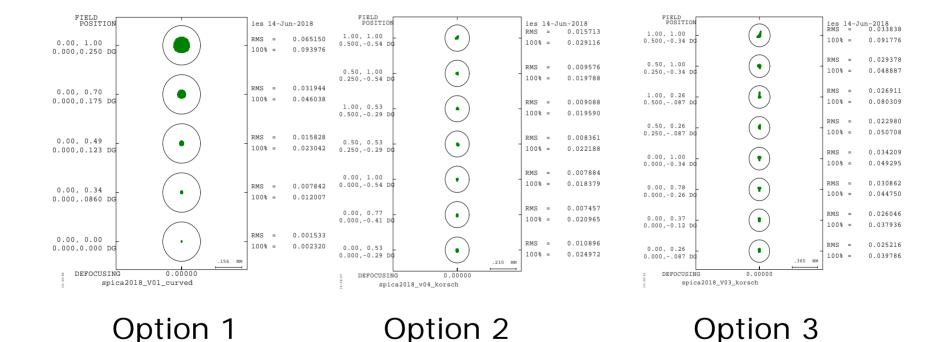
From proposal:

- Entrance pupil diameter 2.5 m
- Infrared light, baseline for requirements 20 μm
- FoV ± 900 arc sec
- Image quality Strehl>0.8 at instrument detector
- Image surface curvature > 600 mm radius

Questions:


- EFL?
- Polarisation?
- Can PSF be elliptical?

Telescope concept options



concurrent

Image at telescope focus

concurrent design facility

Telescope concepts characteristics

Parameter	Option 1	Option 2	Option 3
EFL (mm)	11415	10958	14960
Field curvature	640	Flat	Flat
FoV	± 0.25°	0.25°x 1°	0.25°x 1°
Strehl ratio	> 0.898	> 0.995	> 0.990
Exit pupil-focus distance (mm)	2636	1228	1036

Proposed trade off

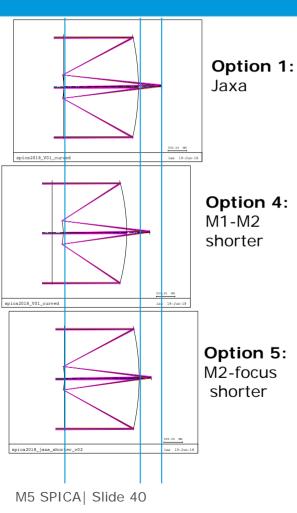
Criterion	Option 1	Option 2	Option 3
Strehl/Field curvature	proposal?	> 0.995/ flat	> 0.990/flat
M1 manufacture	Baseline	Easier manufacture &test	More difficult manufacture/ complex test metrology
Polarisation	No	Some	Some more
Instrument design			
Throughput	Baseline	Worse	Better
Accommodation			

Proposed trade off parameters

Criterion	Option 1 (M5 Baseline)	Option 2 (on-axis Korsch)	Option 3 (off-axis Korsch)
Strehl/Field curvature	>0.898/ 642 mm	> 0.995/ flat	> 0.990/flat
M1 manufacture	Baseline	Easier manufacture / similar test difficulty	More difficult manufacture/ complex test metrology
Polarisation	No	Some	Some more
Instrument design			
Throughput	Baseline	Worse	Better
Accommodation	M2 visible to the sides		
Mass	Baseline	Show-stopper?	Show-stopper?
			🗖 design facility

M5 SPICA | Slide 38

ESA UNCLASSIFIED – Releasable to the Public


Possible changes with respect to JAXA baseline design:

- EFL and f/no preference for f/5.4 => impacts location of instruments in focal plane
- 2. Polarisation looked at it for POL
- 3. Can PSF be elliptical not further considered

Ritchey – Chretien length analysis (300 mm shorter)

If Ritchey-Chretien remains baseline,

- issues to solve ?
- complications of solutions ?

Parameter	Jaxa (Option 1)	M1-M2 shorter (Option 4)	M2-focus shorter (Option 5)
M2 semi- aperture	294 mm	294 mm	294 mm
M1 radius/K	5229.7 mm/	4445 mm/	5229.7 mm/
(conic constant)	-1.0323	-1.029515	-1.041
Strehl	>0.898	>0.873	>0.876
Image surface curvature radius	642 mm	550 mm	632 mm
EFL	11415 mm	10150 mm	10116 mm
Instruments accommodation	Baseline (f/4.57)	f/4.06	f/4.05
Fit in shadow cone (Tel. baffle)	No	?	?

Proposed trade off parameters

Criterion	Option 1 (M5 Baseline)	Option 2 (on-axis Korsch)	Option 3 (off-axis Korsch)
Strehl/Field curvature	>0.898/ 642 mm	> 0.995/ flat	> 0.990/flat
M1 manufacture	Baseline	Easier manufacture / similar test difficulty	More difficult manufacture/ complex test metrology
Polarisation	No	Some	Some more
Instrument design			
Throughput	Baseline	Worse	Better
Accommodation	M2 outside shadow cone		
Mass	Baseline	Show-stopper?	Show-stopper?

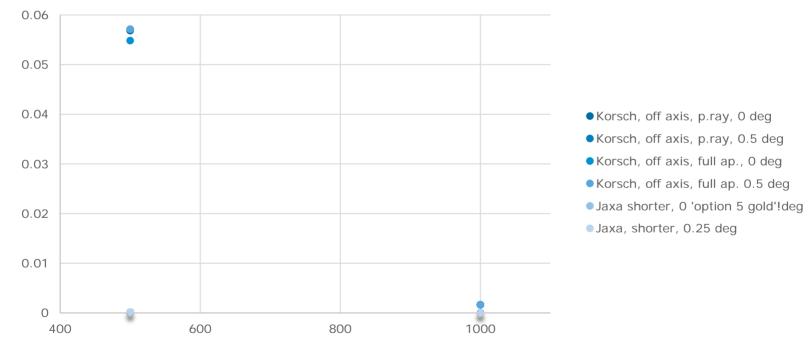
Degree of polarisation

Degree of polarisation (@ 500 & 1000 nm, Silver coating) 0.0045 0.004 0.0035 0.003 0.0025 Korsch, off axis, p.ray, 0 deg 0.002 • Korsch, off axis, full aperture, 0 deg 0.0015 •korsch, off axis, p.ray, 0.5 deg Korsch, off axis, full aperture, 0.5 0.001 deq Jaxa shorter, Odeq 0.0005 Jaxa shorter, 0.25 deg 0 600 800 1000 400 M5 SPICA| Slide 42 ESA UNCLASSIFIED - Releasable to the Public

On axis telescope: 0<degree of polarisation <0.00001
Off axis telescope: 0.00133<degree of polarisation <0.0044

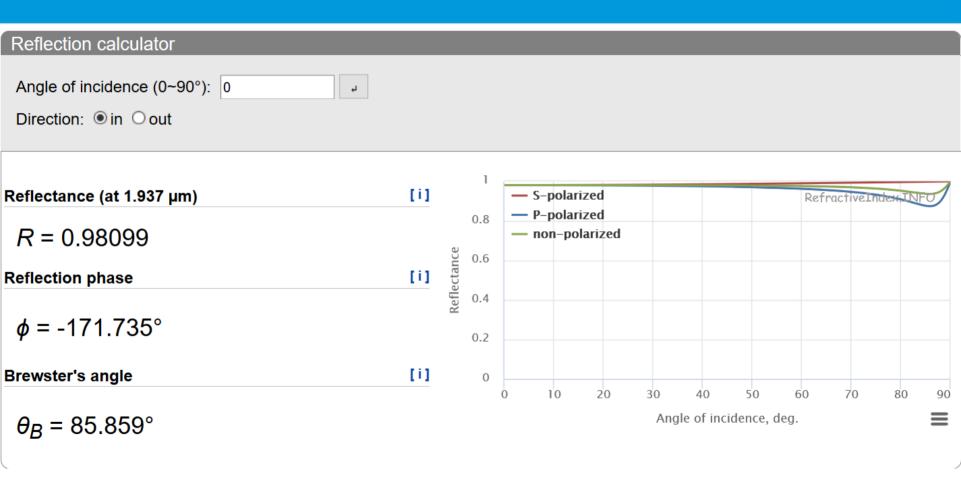
- Size of entrance aperture and field do not change polarisation noticeably
- Coating and λ affect polarisation

Ag, s & p reflectance at 1.937 micron vs AOI

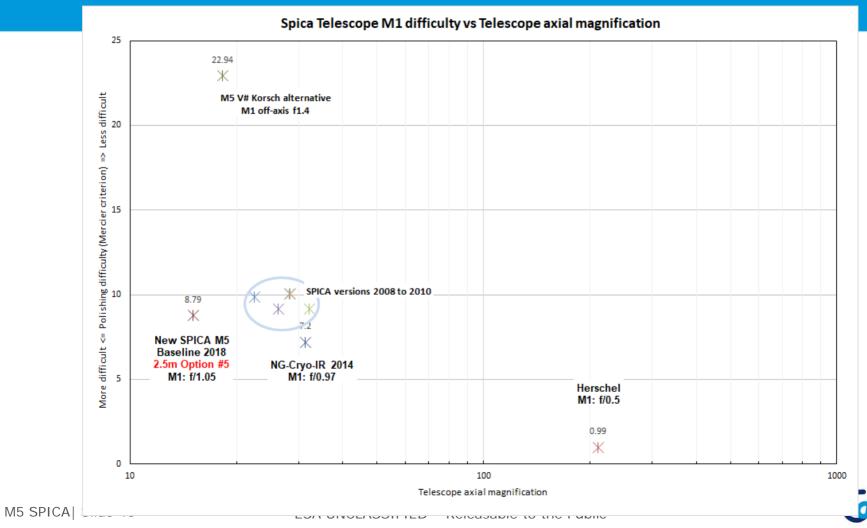

design facility

Reflection calculator Angle of incidence (0~90°):													
Direction: O out													
Deflector es (et 4.027 um)	[1]		1		c 1 c								_
Reflectance (at 1.937 µm)	[1]		0.8		S-polari P-polari					Reti	ractiveIr	idex,£N	-0
<i>R</i> = 0.99519		Ce	0.6		non-po								
Reflection phase	[i]	Reflectance	0.4										
$\phi = -171.877^{\circ}$		Re	0.2										
Brewster's angle	[i]		0	0	10	20	30	40	50	60	70	80	90
$\theta_B = 85.938^{\circ}$				÷				le of inc			,,,		■

Degree of polarisation with Au coating


Degree of polarisation (@ 500 & 1000 nm, Gold coating)

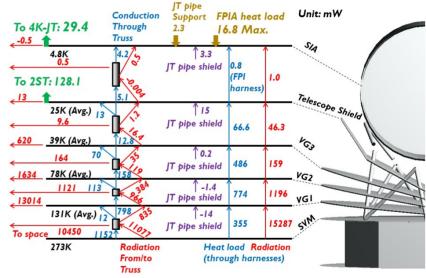
Au- Gold, s & p Reflectance vs AOI



Telescope M1 difficulty space

concurrent

Thermal

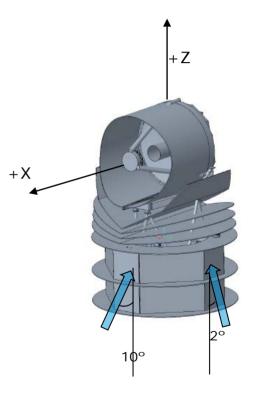


ESA UNCLASSIFIED - Releasable to the Public

Foreword

- Focus on the 'regular' Thermal Control of the PLM.
- Assumed that the V-Grooves and Cryo-chain design has been sufficiently covered by past studies.

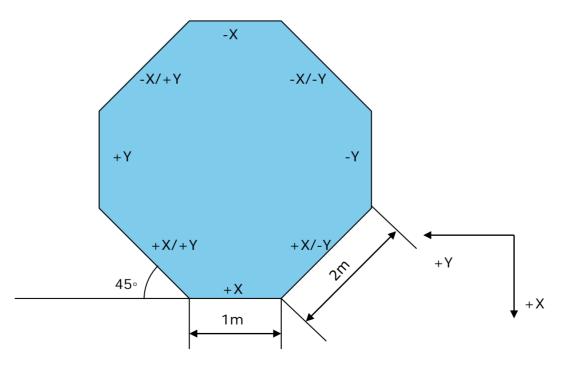
M5 SPICA | Slide 48


Driving parameters and assumptions

- Thermal Control of the Electronics Boxes
 - Dissipation: 763W
 - 82Wx4 (4 CDE controlling 2x2ST coolers)
 - 47Wx2 (2 CDE controlling 1x1KJT)
 - 54Wx2 (2CDE controlling 1x4KJT)
 - 180W SAFARI
 - 35W SMI
 - 18W FAS
 - Maximum temperature (design): 50degC
- Thermal Control of the Cryocoolers
 - Dissipation: 948W
 - 75Wx8 2ST (3x1KJT PC, 3x4KJT PC, 2xSC)
 - 80Wx2 1KJT
 - 94Wx2 4KJT
 - Maximum temperature (design): 30degC

(Total dissipation = 1711W)

- Thermal Control of the SVM units:
 - Dissipation: 544W
 - POW: 180W (temperature range [9degC, 30degC])
 - COMMS: 116W DHS: 41W
 - AOCS: 133W
 - PROP: 74W
 - Maximum temperature (design): 50degC



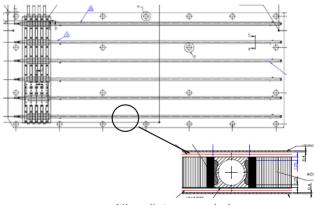
Sun Aspect Angles

Assumption for the dimensions of the Cryocooler Module and SVM

 Note: it makes sense to have the 'small sides' in the +/-X axis to have 2 'big sides' toward –X for the PL.

M5 SPICA| Slide 50

ESA UNCLASSIFIED – Releasable to the Public


E-PLM Option

- General Architecture:
 - Mechanical Coolers, Cooler Drive Electronics and Instrument Electronics are in a separated module on top of the SVM.
 - 'Simple' Thermal architecture preferred for both SVM and CCM:
 - Units mounted directly on the panels coated to serve as radiators (white paint preferred).
 - Heat Pipes are preferred to spread the heat, but for Coolers panels due to the fact that they have to be mounted on the upper half of the panels, Aluminum doublers are necessary to increase the radiator efficiency of the lower part.
 - MLI for radiative insulation, and kapton foil heaters for active thermal control

General view SVM+CCM

All radiator panels have embedded heat pipes

ESA UNCLASSIFIED – Releasable to the Public

Item

Location Dissipation (K)

3x2ST +								X, 10°		\frown	/		
2xJT4K	-X/-Y	413	303	15	15	273	0.9	0.3around Y	179.42	/ 0.8	0.9	2.49	1.24
2x2ST	-X	150	303	15	15	273	0.9	0.3 10	194.02	0.8	0.9	0.99	0.99
3x2ST +	N/ . N	205	202	15	15	273	0.0	2º around X, 10º	170.40		0.9	2.22	1 1 (
2xJT1K 2(2x2ST) CDE +	-X/+Y	385	303	15	15	273	0.9	0.3around Y	179.42	0.8	0.9	2.32	1.16
2xJT1K CDE	+ Y	258	323	/ 10 \	15	298	0.9	0.3 2	129.91	0.9	0.9	0.82	0.82
								2º around X, 10º					
SAFARI	+ X/ + Y	180	323	10	15	293	0.9	0.3around Y	179.42	0.9	0.9	0.64	0.32
N/A	+ X												
SMI+FAS	-X/+Y	53	323	10	15	298	0.9	2º around X, 10º 0.3around Y	179.42	0.9	0.9	0.19	0.09
2(2x2ST) CDE +	- // + 1	55	323		15	290	0.9		179.42	0.9	0.9	0.19	0.09
2xJT4K CDE	-Y	272	323	\ 10/	15	298	0.9	0.3 2	129.91	0.9	0.9	0.87	0.87
		Better gradie Eboxes (larg						The height	of the	e CCM	shall	be 1.3n	n
												CF de	concurrent sign facility

Sizing of the Radiators of the CryoCooler Module: ٠

(K)

Temperature Gradient Uncertainties Temperature

(K)

M5 SPICA| Slide 52

ESA UNCLASSIFIED – Releasable to the Public

Max

Minimum

Height (m)

Lower radiator efficiency due to

Minimum

(m2)

the use of doublers

Radiator Trimming Rad surface

Sun Aspect Sink

Radiator (K) Emissivity Absorptivity angle (deg) Temp (K) efficiency Margin

2° around

E-PLM Option

• Sizing of the Radiator of the SVM:

Item	Location	Dissipati		Gradie nt (K)	Uncertainties	Temperatur e Radiator (K)	Emissivit y	Absorptivit Y	Sun Aspect angle (deg)			Trimming	Minimum Rad surface (m2)	Minimum Height (m)
AOCS	-X/-Y	133	323	10	15	298	0.9		2º around X, 10º Baround Y	179.42	0.9	0.9	0.47	0.23
	-X	100	020	10	10	270	0.7	0.0		17,7.12	. 0.7	0.7	0.17	0.20
									2º around X, 10º					
POW	-X/+Y +Y	180	303	10	15	298	0.9	0.3	Baround Y	179.42	0.9	0.9	0.88	0.44
	+ 1								2º around X, 10º					
COMMS	+X/+Y	116	323	10	15	293	0.9	0.3	Baround Y	179.42	0.9	0.9	0.41	0.21
DHS	+ X	41	323	10	15	293	0.9	0.3	3 10	194.02	0.9	0.9	0.15	0.15
PROP	-X/+Y	74	323	10	15	298	0.9	0.3	2° around X, 10° Baround Y	179.42	0.9	0.9	0.26	0.13
	-X/ + 1 -Y	/ 4	525 N	10	15	270	0.7	0.0		177.42	. 0.7	0.7	0.20	, 0.15
			The	e hei	ght of the	e SVM i	not dr	iven b	y therma	l, unu	sed p	anels		

E-PLM Options

Total mass

(kg)

0.58

6.04

0.00

6.75

1.12

1.00

concurrent

•	Mass Budget	
---	-------------	--

– CCM: 42.9kg

Item	Surface/Number	Mass per Unit/m2 (kg or kg/m2)	Total mass (kg)	
Radiator coating (SG121FD)	8.30 m2	0.30	2.49	
MLI	6.70 m2	0.40	2.68	
Doublers (2mm Alu)	2.32 m2	2.32 m2 5.40		
Heat Pipes	54.07 m	0.35	18.92	
Heaters	6.60 m2	0.80	5.28	
Misc	1.00	1.00	1.00	
		Heating power nece dissipation in the CC		

Mass per Unit/m2 (kg or

kg/m2)

0.30

0.40

0.00

0.35

0.80

1.00

– SVM: 15.18kg

– Total:	58.1kg	
----------	--------	--

Heating power necessary if no dissipation in the SVM: **480W**

M5 SPICA | Slide 54

ESA UNCLASSIFIED – Releasable to the Public

Surface/Number

1.93 m2

15.11 m2

0.00 m2

19.30 m

1.40 m2

1.00

Item

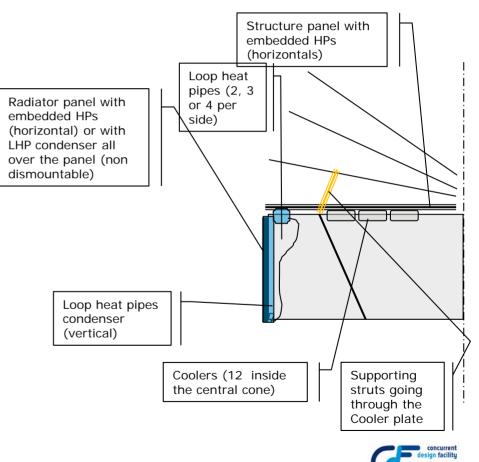
Radiator coating

(SG121FD) MLI

Doublers (1mm

Alu)

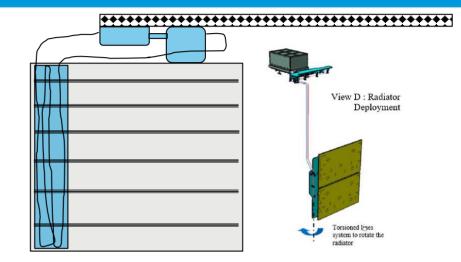
Heat Pipes


Heaters

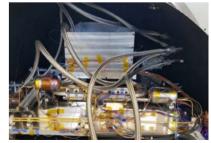
Misc

Hybrid PLM Option

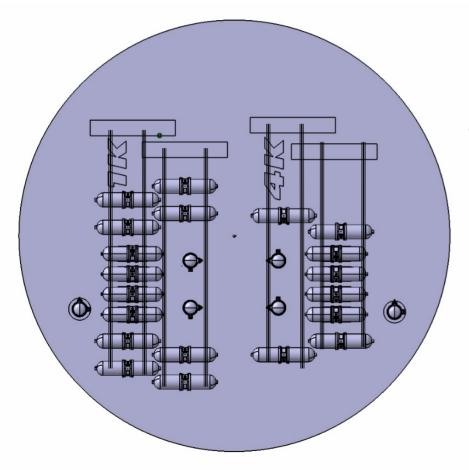
- General architecture:
 - Based on the 'Cooler Plate' Concept.
 - This plate, located on the top of the SVM will accommodate all the mechanical coolers (8x2ST, 2xJT1K, 2xJT4K)
 - Other electronics and units (CDE+Instrument Electronics + SVM equipment) are accommodated in the SVM.
 - Pros:
 - AIT/AIV easier (PLM and Coolers can be tested together without disconnection of the pipes).
 - Coolers are accommodated below the V-Grooves
 - LHP can be used to save heating power in cold case (heat switch)
 - LHP can permit the opening of the radiator panel for late access.
 - CMA are centralized for Microvibration insulation
 - Cons:
 - LHP adds a bit of operational and procurement complexity.




ESA UNCLASSIFIED – Releasable to the Public


Elements of design of the Cooler plate

- Cooler Plate Design
 - 1 big plate with coolers accommodated on 2 halves.
 - Each Half will accommodate:
 - 3x2ST Precooler
 - 1x2ST Shield cooler
 - 2xJT (4K or 1K)
 - 4xLHP evaporator ~250mm size.
 - (400mm evaporator can be used to save mass)
 - Collecting embedded heatpipes
 - Such assembly has been qualified for Alphasat deployable radiator (3x400mm LHPs to manage 2kW of dissipation)
 - Is being developed in a 250mm LHP version (manages 250W) in the HESAS GSTP 6.2
 - Exemple from EHP (B) but an Iberespacio version exists.



M5 SPICA| Slide 56

ESA UNCLASSIFIED - Releasable to the Public

Elements of design of the Cooler plate

- Rough conductivity estimation:
 - Coming from HESAS Thermal balance test: Gradient between the TRP of the equipment and radiator for 1LHP active, 250W transported: 20degC.
 - For 3 LHPs transporting 500W: ~13degC of gradient
 → 15degC is a sound assumption.

Hybrid PLM Option

Good radiator efficiency due to dense embedded heat pipes

• Sizing of the Radiators of the SVM:

Item	Locatio n	Dissipa tion	Max Temperature (K)	Gradie nt (K)	Uncertainties (K)	Temperatur e Radiator (K)		Absorptivit y		Sink Temp (K)	Radiator efficiency	Trimming Margin	Minimum Rad surface (m2)	Minimum Height (m)
Cooler Plate 1	-X/-Y	488	303	15	15	273	0.9	0.3	2° around X, 10° around Y	179.42	0.9	0.9	2.61	1.31
SAFARI SMI FAS	-X	233	323	10	15	298	0.9	0.3	10	194.02	0.9	0.9	0.87	0.87
Cooler Plate 2	-X/+Y	460	303	15	15	273	0.9	0.3	2 ^o around X, 10 ^o around Y	179.42	0.9	0.9	2.46	1.23
2(2x2ST) CDE + 2xJT1K CDE	+ Y	258	323	10	15	298	0.9	0.3	2	129.91	0.9	0.9	0.82	0.82
POW+DHS	+ X/ + Y	221	303	10	15	298	0.9	0.3	2 ^o around X, 10 ^o around Y	179.42	0.9	0.9	1.08	0.54
AOCS	+ X	133	323	10	15	298	0.9	0.3	10	194.02	0.9	0.9	0.50	0.50
COMMs PROP	-X/+Y	190	323	10	15	298	0.9	0.3	2 ^o around X, 10 ^o around Y	179.42	0.9	0.9	0.67	0.34
2(2x2ST) CDE + 2xJT4K CDE	-Y	268	323	10	15	298	0.9	0.3	2	129.91	0.9	0.9	0.85	0.85
											\bigcirc			

The height of the SVM shall be 1.31m

H-PLM Options

- Mass Budget
 - SVM: 47.35kg
 - Cooler Plate:20.56kg

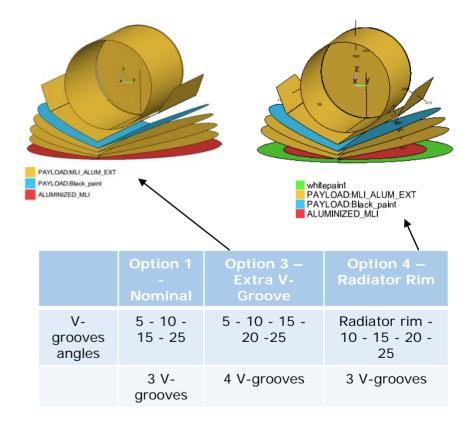
– Total: 71kg

	Item	Surface/Number	Mass per Unit/m2 (kg or kg/m2)	Total mass (kg)
	Radiator coating (SG121FD)	9.57	0.30	2.87
	MLI	9.04	0.40	3.62
	Doublers (1mm Alu)	0.00	0.00	0.00
	Heat Pipes	100.71	0.35	35.25
	Miscellanous	1.00	1.00	1.00
	Heaters	7.23	0.80	5.79
art of he PLM	LHPs	4/02	4.00	16.08
PI PI	Cooler Plate HP	12.80	0.35	4.48
Pa the	Cooler Plate	2 .56	4.14	10.61

Heating power necessary if no dissipation in the SVM: **1500W** (helped by the LHPs)

H-PLM Option

- Calculation of the Heating Power necessary between launch and SA deployment
 - Cooler Plates do not reach their minimum Non Operational temperature (-35degC with margin) within 3h30.
 - The driver for the heating is the POW panel, due to the high minimum temperature of the Batteries (~9degC).
 - Heating necessary after ~1h30 → 860Wh needed
- This can be reduced by accommodating the battery in a different thermal enclosure of the PCDU.

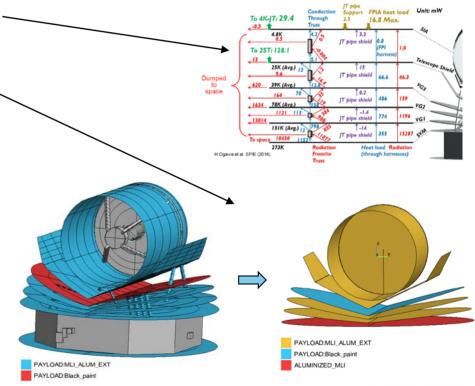


• Concept:

- Use the fact that we can reject the Mechanical Cryocooler dissipation 'directly' (either with a white radiator on top of the SVM or with a dedicated V-Groove) to avoid using LHPs and having a smaller (~0.9m high) SVM.
- Focus on the option with a Radiator Rim (Option 4), as it seems the most straightforward solution and it does not affect the design of the V-grooves.

→ Questions:

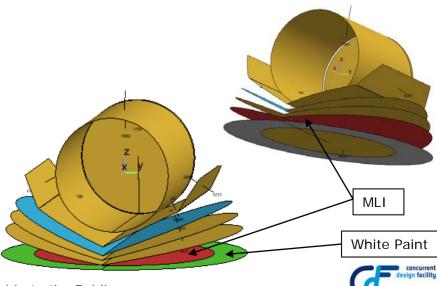
- Can we reject all the dissipation of the Coolers?
- How does it affect the efficiency of the V-Grooves, which translates into the requested heat lift to the Shield Coolers



- First stage: Setting up a simplified model to reproduce JAXA results
 - Conductances coming from the Heat Flow Budget
 - Geometry simplified from NGCryo model
- Manage to reproduce the results only if we assume the MLI of the top plate of the SVM perfectly specular:

	Nominal	JAXA	
	Temperature	Temperature	Delta [K]
	[K]	[K]	Delta [K]
B - shield	25	25	0
VG3	39	39	0
VG2	80	78	2
VG1	134	131	3
VG0	//	//	//
B - SVM	273	273	0
Shield Heat			
load	131.41mW	128mW	3mW

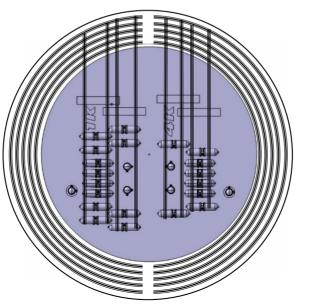
 If we consider a diffusive external layer of the MLI (more realistic) the heat load increased from 131mW to 146mW



- Feasibility of the Rim Design:
 - Objective: being able to reject ~1400W = 1000W/(0.8*0.9) to account for trimming margin and radiator efficiency. 1000W dissipation assumption is slightly larger than the nominal 948W to cover the fact that the shield coolers will need to be operated at higher power.
 - Works with a 60cm Rim Radiator + MLI on the back of the 1st V-Groove.
 - Effect on the V-Grooves?

	Nominal	Rim 60cm	JAXA	
	Temperature [K]	Temperature [K]	Temperature [K]	
B - shield	25	25	25	
VG3	41	44	39	
VG2	86	94	78	
VG1	149	166	131	
VG0	//	//	//	
B - SVM	273	273	273	
Shield Heat load	146.41mW	195.9mW	128mW	
Rim heat rejection	N/A	1414W	N/A	

ESA UNCLASSIFIED – Releasable to the Public



- First Conclusion:
 - It seems feasible to radiate the dissipation of the Mechanical Cryocoolers with the rim radiator.
 - Can be considered if the Shield Cooler can lift ~200mW End of Life (with redundancy)
- Sensitivity:
 - MLI efficiency assumed in the calculation:
 - GL=0.0014W/m2K, GR=0.007
 - If MLI efficiency is multiplied by 2:
 - Heat load on the shield is reduced to ~175mW.

- Elements of design of the Rim Radiator:
 - Thermal bus coming from the Coolers inside the come to the rim.
 - Semi-circular Heat pipes to ensure radiator efficiency of the rim

• Sizing of the Radiators of the SVM:

Item	Location	Dissipatio n	Max Temperature (K)	Gradie nt (K)	Uncertainties (K)	Temperatur e Radiator (K)		Absorptivit y	Sun Aspect angle (deg)	Sink Temp (K)		Trimming Margin	Minimum Rad surface (m2)	Minimum Height (m)
2(2x2ST) CDE + 2xJT4K CDE	-X/-Y	268	323	10	15	298	0.9	0.3	2° around X, 10° around Y	179.42	0.9	0.9	0.95	0.47
SAFARI	-X	180	323	10	15	298	0.9	0.3	10	194.02	0.9	0.9	0.67	0.67
2(2x2ST) CDE + 2xJT1K CDE	-X/+Y	258	323	10	15	298	0.9	0.3	2° around X, 10° around Y	179.42	0.9	0.9	0.91	0.46
SMI FAS	+ Y	53	323	10	15	298	0.9	0.3	2	129.91	0.9	0.9	0.17	0.17
POW	+ X/ + Y	180.00	323	10	15	298	0.9	0.3	2° around X, 10° around Y	179.42	0.9	0.9	0.64	0.32
DHS	+ X	41.00	323	10	15	298	0.9	0.3	10	194.02	0.9	0.9	0.15	0.15
COMMs PROP	-X/+Y	190.00	323	10	15	298	0.9	0.3	2° around X, 10° around Y	179.42	0.9	0.9	0.67	0.34
AOCS	-Y	133	323	10	15	298	0.9	0.3	2	129.91	0.9	0.9	0.42	0.42

The height of the SVM can be 0.9m

Mass Budget	Item	Surface/Number	Mass per Unit/m2 (kg or kg/m2)	Total mass (kg)
– SVM: 25.2kg	Radiator coating (SG121FD)	4.58	0.30	1.37
	MLI	11.13	0.40	4.45
	Doublers (1mm Alu)	0.00	0.00	0.00
	Heat Pipes	45.83	0.35	16.04
	Heaters	2.91	0.80	2.33
	Misc	1.00	1.00	1.00
- Cooler Plate:	Item	Surface/Number	Mass per Unit/m2 (kg or kg/m2)	Total mass (kg)

42.52kg 🔨

	(SG121FD)	7.35	0.30	2.21	
– Total: 67.7kg	MLI	8.55	0.40	3.42	
	Doublers (2mm Alu)	0.00	5.40	0.00	
	Heat Pipes	93.40	0.35	32.69	
	Heaters	4.00	0.80	3.20	
	Misc	1.00	1.00	1.00	

M5 SPICA | Slide 67

ESA UNCLASSIFIED – Releasable to the Public

AOCS

ESA UNCLASSIFIED - Releasable to the Public

AOCS Requirements

- Functional requirements
 - Sun acquisition and pointing (after separation & in safe mode)
 - 3 axes stabilization & scanning mode for Science operations (polarimeter)
 - Delta-V management (orbit & station keeping manoeuvres)
 - Angular momentum management (bias and offload)
- Performance requirements (3σ) covering all instruments
 - Absolute Knowledge Error (AKE) = 0.15" (TBC)
 => we need to confirm the need is AKE and not RKE (otherwise possibly not achievable due to bias)

for SAFARI, 0.17" (TBC) for SMI

- Mean Pointing Error (MPE) = 0.38" /600s
- Relative Pointing Error (RPE) = 0.15" /200s
- Relative Pointing Error (RPE) = 0.3" /3600s

for SMI for SAFARI for POL

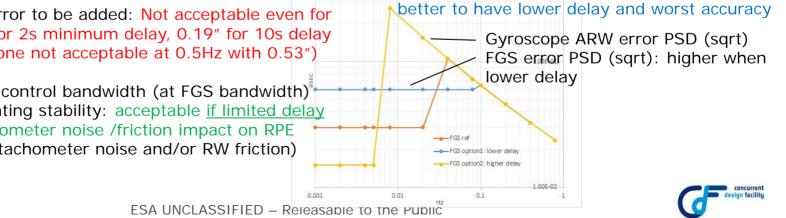
AOCS Trade-offs

- Fine Guidance Sensor (FGS) / Focal plane Attitude Sensor
 Vs conventional Star tracker based attitude estimation
 - FGS based AOCS is mandatory:

Even without ThermoElastics Distortion (TED) stability & calibration accuracy, the next generation High accuracy Star Tracker will not enable to comply to the MPE (around 0.5" with FOV & pixel error and internal TED stability)

- This may be revisited with cold temperature stabilization of the Optical Head if ThermoElastics Distortion (TED) stability is very good
- Conventional Reaction Wheels Vs Cold gas based attitude control
 - A Reaction Wheels based control enables to comply to the RPE:
 This implies obviously strong design constraints (see next slide Design drivers)

AOCS Design drivers - MPE


- Main design driver for the compliance to MPE: Fine Guidance Sensor (FGS) delay (integration time) and accuracy are critical
 - FGS requirements: MKE (star catalog+FOV error+pixel/centroid error) <0.38" with integration + processing duration < 35s
 - => assuming AKE requirement are RKE requirement
 - Very low attitude control bandwidth (few mHz) and no gyroscope
 - Hence management of friction disturbance by wheel speed control loop with high bandwidth (around 0.1Hz or more)

Due the FGS delay:

- Gyroscope ARW error to be added: Not acceptable even for low delay: 0.08" for 2s minimum delay, 0.19" for 10s delay (FGS bias error alone not acceptable at 0.5Hz with 0.53") OR

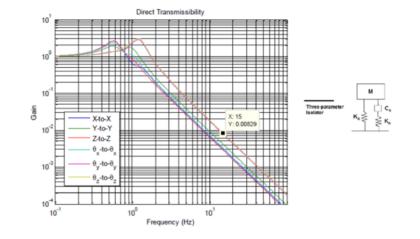
- Very low attitude control bandwidth (at FGS bandwidth) => Degraded pointing stability: acceptable if limited delay 0.09" / 0.01" tachometer noise /friction impact on RPE (higher impact of tachometer noise and/or RW friction)

Sensitivity FGS error Vs FGS delay:

AOCS Design drivers - RPE

- Main design drivers for the compliance to the RPE:
 Microvibrations, tachometer noise and Reaction Wheel (RW) friction disturbance
 - Low RW speeds (2-3 Nms, 300-400 RPM) to avoid coupling with telescope flexible modes
 - => unloading period = 2 days
 - High performance isolation and small RW for sufficient damping of the RW mechanical mode disturbance
 - High performance isolation of the Cryocooler
 - Wheel speed control loop with high bandwidth (around 0.1Hz or more) to optimize tachometer VS friction disturbance impact

AOCS Design drivers – Main assumptions


- Spacecraft inertia: [13240 13240 9810] kg.m2
 - based on Herschel and scaled based on the mass
- The derivation of FGS requirements on accuracy and delay:
 - For the trade-off FGS error Vs FGS delay:
 Calculations using: integration time % (1/error)^2
 Not for budgeting but for optimization trend: the delay is the driver
 - JAXA FAS requirements: Random error (3s) 0.036", Sampling 0.2Hz, FOV 7.5 arcmin Bias error (0-P) 0.53" with WISE star catalogue driving the bias
 - \Rightarrow Assumptions considered as worst case for integration time and delay (35s = 1/0.2 x7)
 - ⇒ But still bias performance feasibility to be demonstrated (including star catalogue): Possibility of using VIS detector to be investigated

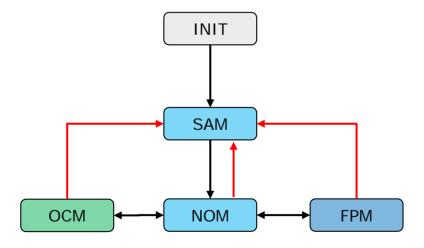
AOCS Design drivers – Main assumptions

 Cryocoolers isolation: based on JAXA inputs

- Reaction Wheels isolation: 0.01 damping at wheel mechanical mode frequency
 - Could be a slope of -40dB/decade starting at 20Hz
 - If isolator resonance (low damping to get high slope) is an issue,
 3-parameters suspension, or active passive suspension maybe used
- Reaction Wheels tachometer: 0.03 rad/s error

AOCS Baseline Design – AOCS equipment

Туре	Units	Driving requirements	TRL			
Sensors	2 Fine Guidance Sensors (FGS) / Focal plane Attitude Sensor	For Fine Pointing Mode Bias with pixel/centroid error & delay are critical for MPE	3			
	2 Attitude Anomaly Detectors (AAD)	For FDIR	9			
	2 Coarse Rate Sensors (CRS)	For detumbling in Safe mode	9			
	2 Sun Acquisition Sensors (SAS)	For Sun acquisition in Safe mode	9			
	3 Star trackers (STR) (3 Optical Heads + 2 Electronic Units)	For Nominal mode attitude estimation High performance off the shelf to relax TED stability and calibration accuracy, and for high accuracy slews and easy				
	1 Fine Gyroscope (GYR) (internally redundant)	transition to FPM, 3OH for redundancy				
Actuators	4 Reaction Wheels (RW)	For attitude control during Nominal mode High performance tachometer are required for RPE	9			
	6+6 1N Thrusters (THR-A)	For small delta-V (& attitude control during them), Safe mode attitude control & angular momentum offloading				
	6+6 20N Thrusters (THR-B)	For large delta-V (& attitude control during them)	9			
Cold redundancy foreseen except for RW & fine Gyroscope						


M5 SPICA| Slide 75

AOCS Baseline Design – AOCS modes

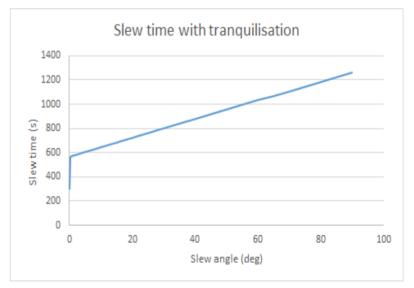
- Safe & initial acquisition Mode (SAM)
- Nominal Mode (NOM)
- Orbit Control Mode (OCM)
- Fine Pointing Mode (FPM)

Units	SAM	ОСМ	NOM	FPM
FGS			(X)	Х
AAD	Х	Х	Х	Х
CRS	Х			
SAS	Х			
STR	(X)	Х	Х	(X)
GYR	(X)	Х	Х	(X)
RW		(X)	Х	Х
THR-A	Х	(X)	Х	
THR-B		(X)		

FGS in NOM for FPM initialization STR and GYR in SAM & FPM for fall back to NOM RW at constant speed in OCM THR1 for continuous momentum offloading in NOM THR1 or THR6 in OCM depending on delta-V

AOCS Baseline Design – Actuators sizing

- 6+6 x 1N Thrusters:
 - tilted by 35deg, Minimum Impulse Bit= 0.05 Ns, Specific impulse= 215s
 - Max torque = [3 3 2.6] Nm
 with accommodation coef = [1.1 1.1 1.3] Nm/N
- 6+6 x 20N Thrusters:
 - a priori not tilted (spin control by the 1N THR)
 - with accommodation coef = [2 2 0] Nm/N
- 4 x 15Nms 0.2Nm Reaction Wheels:
 - Small size / angular momentum preferred for low mechanical mode disturbance
 - Imbalances: static 1.5 gcm / 20 gcm2



AOCS Performances - Agility

esa

- Driving parameters:
 - Slew rate: 0.84 deg/s
 - Tranquilization time: 300s
 for both NOM & FPM control loops:
 driven by the AOCS bandwidth at FGS
 bandwidth frequency
 = > Tranquilization time strongly reduced
 if remaining in NOM
- Performances:
 - 2" slew angle: 302s
 - 8x60" slew angle: 570s
 - 1 deg slew angle: 577s
 - 90 deg slew angle: 1262s

AOCS Performances - Pointing

- MPE marginally Compliant: 0.37" (Spec 0.38") Main contributors:
 - FGS Centroid/Pixel error (including catalogue) = 0.280
 - FGS FOV error = 0.093
- RPE 200s marginally compliant: 0.144" (Spec = 0.15") Main contributors:
 - RW tachometer noise = 0.104"
 - RW microvibrations (with 50% margin) = 0.083"
 - Cryocooloer microvibrations (with 100% margin)
 = 0.048"
 - RW friction jump = 0.006"

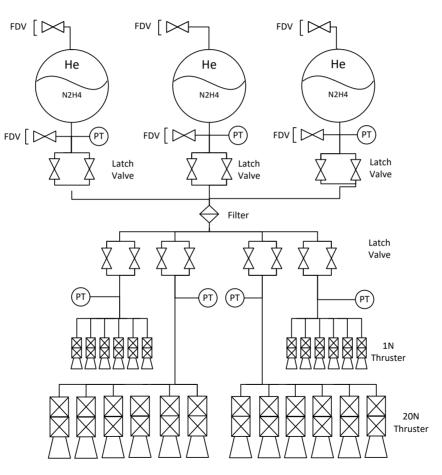
	Contributors	Pointing metrics (asec)			
Type	PES	MPE	RPE 200s	RPE 3600s	
		0.000			
	Cryocoolers microvibrations	0.000	0.048	0.048	
AOCS	FGS FOV error	0.093			
sensing	FGS pixel & NEA error	0.280	0.002	0.002	
AOCS	RW torque noise & friction jump	0.000	0.006	0.006	
control	RW tachometer noise	0.000	0.104	0.104	
	RW microvibrations	0.000	0.083	0.083	
	Total	0.373	0.143	0.143	
	Spec	0.380	0.150	0.300	
	Margin (%)	1.8	4.5	52.3	
	System AOCS sensing AOCS	Type PES System TED stability error (between instruments LOS and FGS LOS) Cryocoolers microvibrations AOCS FGS FOV error sensing FGS pixel & NEA error AOCS jump control RW torque noise & friction jump RW tachometer noise RW microvibrations Total	Type PES MPE System TED stability error (between instruments LOS and FGS LOS) 0.000 AOCS FGS FOV error 0.093 sensing FGS pixel & NEA error 0.280 AOCS FGS pixel & NEA error 0.000 AOCS FW torque noise & friction jump 0.000 RW torque noise & friction gw microvibrations 0.000 RW microvibrations 0.000 RW microvibrations 0.000	Type PES MPE RPE 200s System TED stability error (between instruments LOS and FGS LOS) 0.000 0.000 Cryocoolers microvibrations 0.000 0.048 AOCS FGS FOV error 0.093 sensing FGS pixel & NEA error 0.280 0.002 AOCS Imp 0.000 0.006 AOCS RW torque noise & friction jump 0.000 0.006 RW tachometer noise 0.000 0.003 RW microvibrations 0.000 0.083 Imp Imp 0.373 0.143 Spec 0.380 0.150 0.150	

Propulsion

Assumptions & Requirements

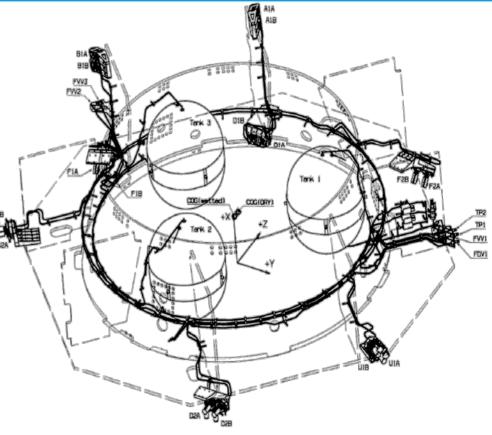
- Design driver, deliver required Δv with minimum contamination by exhaust plume
- Spacecraft dry mass (w/o propulsion): 3335 kg
- Spacecraft maximum wet mass: 3700 kg
- Baseline: hydrazine (monoprop) propulsion system
- 2% propellant residuals
- Large thrusters (20N) are assumed to be aligned with required thrust vector
- Small thrusters (1N) are tilted by 35°

Propellants Trade-off


	Hydrazine	LMP-103S	ΜΜΗ/ΝΤΟ	Hydrazine/ NTO
Specific impulse	200 - 220s	240 - 255s	290 – 300 s	295s
European Supplier	Yes	Yes	Yes	No (but Japanese)
TRL	9	6	9	9
system complexity	simple monoprop blowdown	simple monoprop blowdown	biprop blowdown	biprop pressure fed & monoprop blowdown
Reaction products in science mode	NH ₃ , H ₂ , N ₂	H_2O , N_2 , H_2 , CO, CO ₂ , (as well as acidic droplets)	H_2O , N_2 , H_2 , CO, CO ₂ , (as well as acidic droplets)	NH _{3,} H ₂ , N ₂

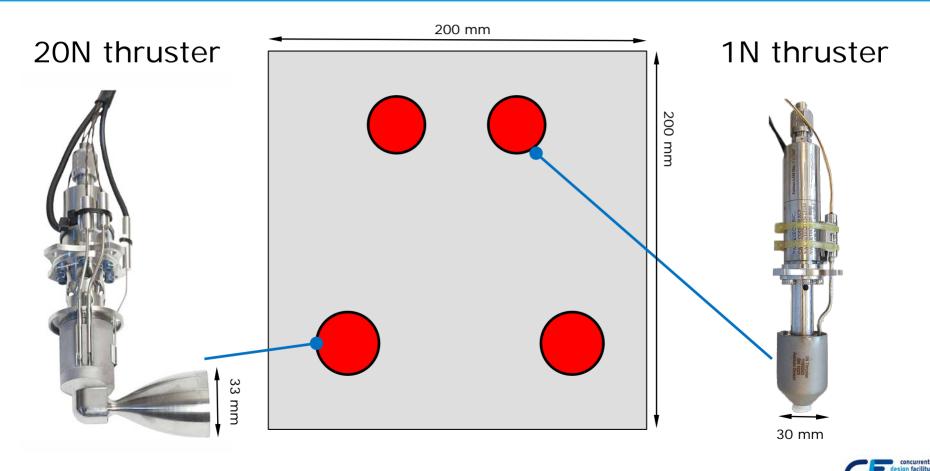
M5 SPICA| Slide 82

Proposed System Architecture

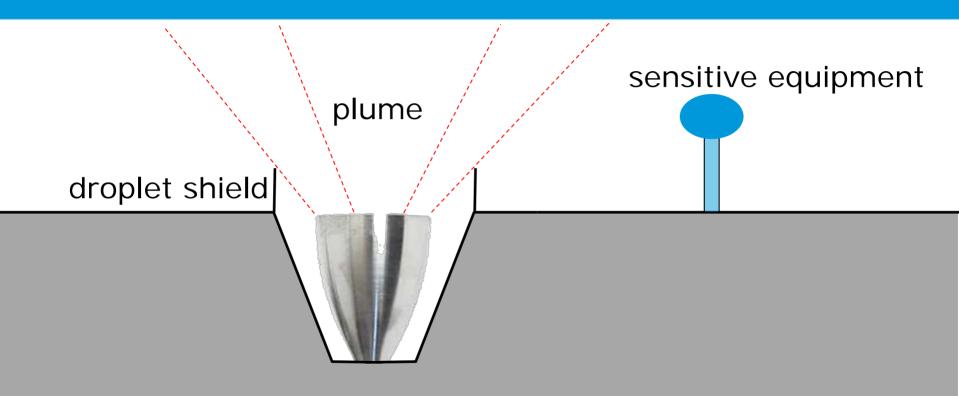


M5 SPICA | Slide 83

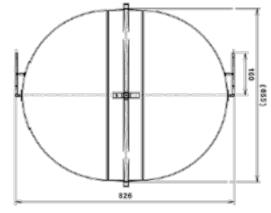
System Design


- Similar to Herschel/Planck
- 3 Tanks (currently ca. 50% oversized)
- 6 thruster brackets and one or two similar sized panels for service valves
- Each Thruster bracket could accommodate:
 - 2 x 1N thruster (redundant)
 - 2 x 20N thruster (redundant)

Thruster Bracket



Droplet Shield


Hydrazine Tanks: 3 x PTD-177

PTD-177 Monopropellant Diaphragm Tank - COTS

- 3 tanks
- maximum hydrazine loading: 415 kg
- current loading: 297 kg
- resulting blowdown ratio: 2.2 : 1

* Maximum Expected Operating Pressure

Heritage		Herschel Pl	anck, Sentinel 3
Fluids		N	2H ₄ (Hydrazine)
Pressurant Gas			He, N ₂
Propellant Mana	gement		Diaphragm
Materials	Shell		TI-6AI-4V
	Tube		Ti-3AI-2.5V
	Diaphragm		EPDM
Mounting interfa	ce	equ	atorial trunnions
Total Volume		177	10.801 in ³
Propellant Volun	ie	1351	8.238 in ³
Temperature Rar	ige	0/+50°C	+32 <i>1</i> +122 °F
Tank Dry Mass		15,5 kg	34,2 lbs
Diameter		654,6 mm	25,77 in
Length		827,0 mm	32,56 in
MEOP*		24,0 bar	348 ps
Proof pressure (c 1,50)	36,0 bar	522 psi
Burst pressure ()	c2,00)	48,0 bar	696 psi
Burst pressure to		55,5 bar	805 psi

Δv + Propellant Assumptions

- All Δv are doubled due to alignment of thrust vector, sun, and payload
 - \rightarrow Thrust can only be provided into the anti-sun direction
- Thruster are pointing directly into thrust direction
- 100 % Margin on AOCS
- 1 N Thruster: 35 degrees tilted

Simplified DeltaV Budget (Mission Analysis Slides)

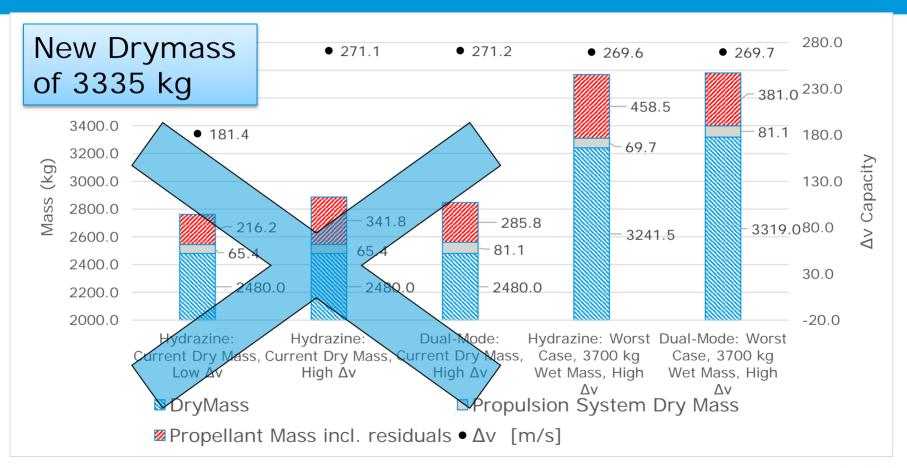
Lissajous orbit DV is optional – Quasi Halo is baseline

•	Flight program correction	Example values – Ariane 5/6, Large amplitude Quasi Halo, noisy S/C	Suggested margin	Double on biased trajectory
	– 1.5 m/s * 9	13.5 m/s	10%	Yes
•	Launcher dispersion correction			
	– 3-4.5 m/s * 9 (JAXA 5.2)	8 m/s) 40.5 m/s (JAXA 47.56 m/s)	0%	Yes
•	Correction of TCM#1			
	- 0.1 * TCM#1	5.4 m/s (JAXA 6.1 m/s)	10%	Yes
•	Lissajous orbit insertion			
	- 12 m/s/(DEC SSCE)	168 m/s (28->14 Deg)	10%	NO
	Station-Keeping			
	 0.7-7 m/s/year 	35 m/s	50%	Yes
•	Disposal			
	– 10 m/s	10 m/s	10%	Yes
•	Eclipse avoidance			
	– 15 m/s	15 m/s	10%	Yes
				concurrent design facility

M5 SPICA | Slide 89

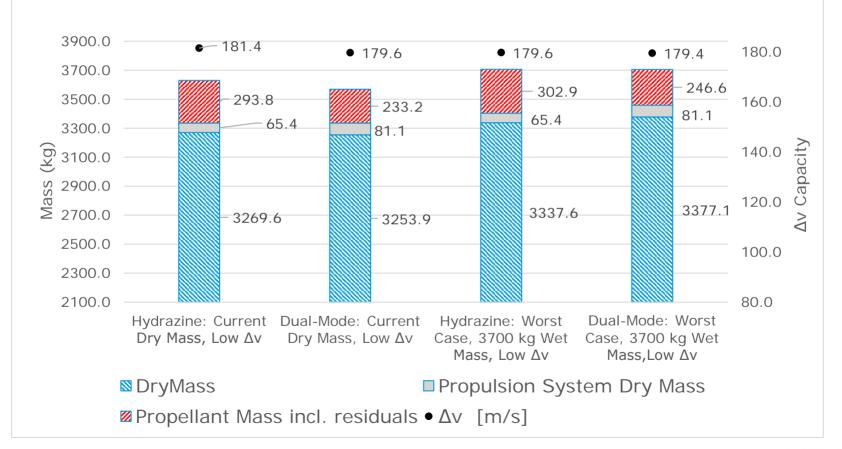
Δv Assumption + Inputs for Propulsion System Calculations

Manoeuvre	∆v [m/s]	propellant mass [kg]
Flight Prog Corr	29.7	
Launcher Dispersion Correction	95.1	
Correction of #TCM1	13.4	
AOCS Budget		3.6
Station Keeping	<u> 15.0 – 105</u>	
Disposal	22	
AOCS Budget		3.4

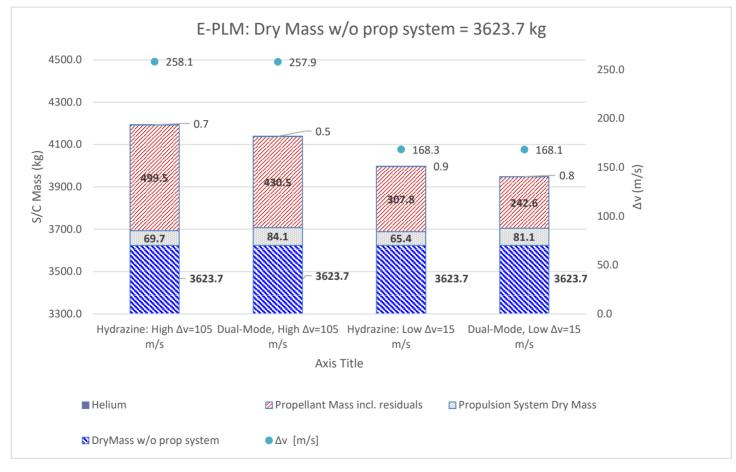

Low $\Delta v \rightarrow$ Station Keeping = 15 m/s High $\Delta v \rightarrow$ Station Keeping = 105 m/s

M5 SPICA | Slide 90

Comparison: Different combinations Dry Mass: 2480.02 kg



Comparison: Different combinations Dry Mass: 3335 kg, Low Δv



M5 SPICA | Slide 93

E-PLM: Comparison

concurrent

M5 SPICA| Slide 94

Hydrazine System

Manoeuvre	mass begin [kg]	mass end [kg]	velocity incre	Thruster	propellant mass [kg]	Fuel mass	Calc. Tank sitan	k pressure [bar]	Firing time l	sp Value
Flight Prog Corr	3623.1	3575.0	29.7	CHT-20N	48.1	48.1	47.6	24.0	13.7	225.4
Launcher Dispersion Correction	3575.0) 3422.4	95.1	CHT-20N	152.6	152.6	151.0	21.3	54.9	220.0
Correction of #TCM1	3422.4	3401.2	13.4	CHT-20N	21.2	21.2	21.0	15.8	7.9	219.5
AOCS Budget	3401.2	3397.6	2.2	CHT-1N	3.6	3.6	3.6	15.2		213.4
Station Keeping	3397.6	5 3373.3	15.0	CHT-1N	24.3	24.3	24.1	15.1		212.6
Disposal	3373.3	3338.8	22.0	CHT-20N	34.5	34.5	34.1	14.5		218.1
AOCS Budget	3338.8	3335.0	2.4	CHT-1N	3.8	3.8	3.8	13.8		211.5
Summation	3335.0)	179.8		288.1	288.1	285.2	13.7		

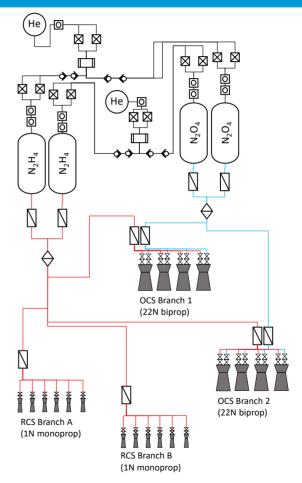
		Residuals	New Drymass
Residuals	3335.0	5.8	3340.8
Helium	1.5		

Dual-Mode System

Method	Manoeuvre	mass begin [kg]	mass end [kg]	Δv [m/s]	Thruster	propellant mass [kg]	Fuel mass	Oxid mass	Firing time Isp	Value
1	1 Flight Prog Corr	3568.2	3531.8	29.7	IHI 22N Dual	36.4	. 19.7	16.7	13.3	295.0
1	1 Launcher Dispersion Correction	3531.8	3417.6	95.1	IHI 22N Dual	114.2	61.7	52.5	41.7	295.0
	1 Correction of #TCM1	3417.6	3401.7	13.4	IHI 22N Dual	15.8	8.5	7.3	5.8	295.0
	2 AOCS Budget	3401.7	3398.1	2.2	CHT-1N	3.6	3.6	0.0		214.8
	1 Station Keeping	3398.1	3373.9	15.0	CHT-1N	24.2	24.2	0.0		213.0
	1 Disposal	3373.9	3338.4	22.0	CHT-1N	35.5	35.5	0.0		210.9
	2 AOCS Budget	3338.4	3335.0	2.1	CHT-1N	3.4	3.4	0.0		210.7
	Summation	3335.0		179.6		233.2	156.7			
1									design	n facility

M5 SPICA | Slide 95

Option: Dual Mode Propulsion System



ion facility

- high specific impulse (295 s vs. 225 s)
- less contamination than MMH/NTO
- simple hydrazine blow down operation for station keeping

break even point – tbd

- for larger delta v:
 - propellant mass saving ca. 70 kg
 - dry mass penalty ~20 kg

Requirements	
Orbit	L2 (not eclipses during operation)
Lifetime	5 years
Power consumption with 20% margin	Launch mode: 165.7W during 2h launch + 971.9W during 1.5h sun acquisition (heaters are ON, 860Wh +20% are needed for the battery) Science + communications mode: 2409.8W (max average)
Solar Angle (SAS)	0 deg (sun-pointing) with +/-10 deg off- pointing considering 2 deg of error
Solar Array	Body mounted (1 panel)

Assumptions	
Radiation degradation	Data extracted from Lisa Pathfinder for the solar array degradation Cover-glass 150 µm
Power bus	28V (based on heritage units for science missions)
Factor degradations for the solar array	Data extracted from Lisa Pathfinder
Maximum temperature of the solar array	140°C (based on other missions in Lagrange orbits and with body mounted solar array)
Redundancy	For the solar array 5 string loss For the PCDU: cold redundant N+1 For the battery 1 parallel cells

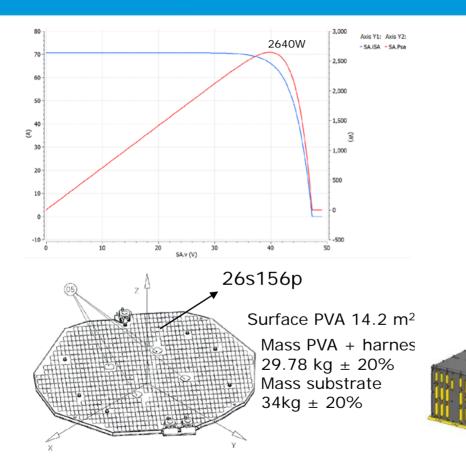
Trade-off/options

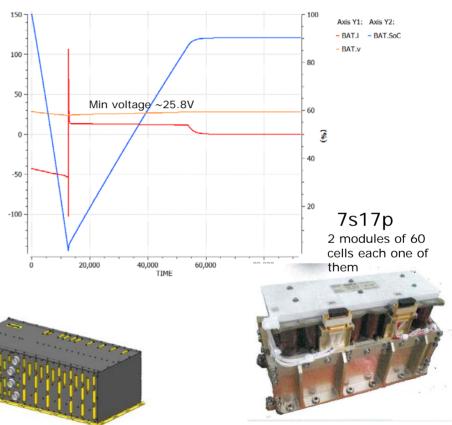
Three options preferred for Deep missions and high power:

- MPPT + unregulated bus
- S3R + regulated bus
- S3R + unregulated bus

	MPPT + unregulated bus	S3R + regulated bus	S3R + regulated bus
Advantages	 Marginal better behavior in EMC Reduction of the thermal gradient No BCR and BDR needed Permit extract the maximum power of the SA 	 More efficient overall for power bus 50V Simplicity of the PCDU design: mass, dimensions 	 More efficient overall for power bus 50V Simplicity of the PCDU design: mass, dimensions No BCR and BDR needed
Disadvantages	 PCDU heavier PCDU more expensive 	 Needed to oversize the SA but SA works to fix voltage Battery higher due to the loss in the BCR and BDR 	- Bus no regulated

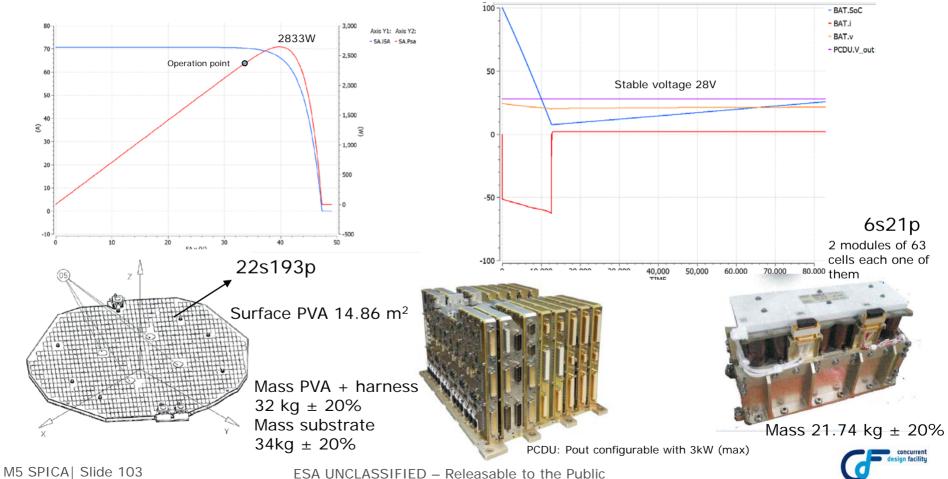
Current Baseline Design



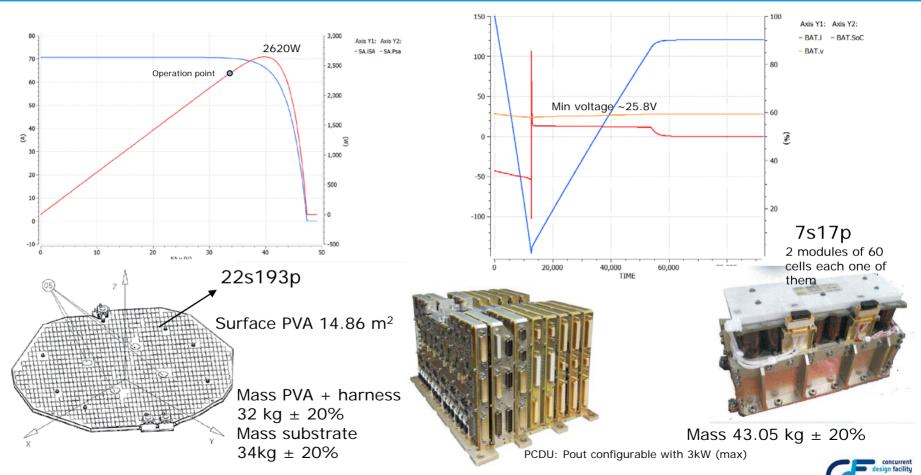

- Baseline Design:
 - Solar Array cells: 3G30 from Azur Space
 - Triple junction solar cell
 - Efficiency ~30% (BOL), 30.18 cm²
 - Max temperature 140 °C
 - 1 string lost
 - Battery cells: VES16 Li-Ion cells from SAFT:
 - 33 mm diameter by 60 mm high
 - Nominal mass: 40.5g
 - 4.5Ah total capacity
 - 4.1V EoC and 2.7V EoD
 - PCDU unit
 - Case 1: Architecture MPPT and unregulated bus of 28V
 - Case 2: Architecture S3R and regulated bus of 28V
 - Case 3: Architecture S3R and unregulated bus of 28V

Design MPPT + unregulated bus

PCDU: Pout configurable


ESA UNCLASSIFIED – Releasable to the Public

Mass 20.7 kg ± 20%


Design S3R + regulated bus

Design S3R + unregulated bus

Conclusion

	MPPT + unreg bus	S3R + reg bus	S3R + unreg bus
Mass	SA: 63.78 kg BAT: 20.7 kg PCDU: 31 kg TOTAL: 115.5 kg	SA: 66 kg BAT: 21.74 kg PCDU: 22 kg TOTAL: 109.74 kg	SA: 66 kg BAT: 20.7 kg PCDU: ~16.5 kg TOTAL: 103.2 kg
Surface SA	14.2 m ²	14.86 m ²	14.86 m ²
Complexity	-	+	+ +
Cost	-	+	+ +

Preferred solution

S3R + unregulated bus

Elements of the Power System

Element	Characteristics	TRL	Heritage
Battery	Configuration 7s17p \rightarrow 2 x modules of 60 cells each on Mass 20.7 kg ± 20% Surface 2 modules of 305 x 196 x 165 mm ³	7	MTG Cheops Euclid
Solar Array	Configuration 22s193p Mass PVA + harness 32 kg ± 20% Mass substrate 34 kg ± 20% Surface PVA 14.86 m ²	7	Proba 3 Euclid Cheops EDRS-C MTG
PCDU	Mass < 16kg ± 5% (TBC) Volume 292 x 350 x 210 mm ³ Fix power dissipated ~ 70W	7	Juice (S3R regulated) Sentinel 3 Sentinel 5P Seosat

On the time of the project development solar cells 4G32 with high efficiency could be used reducing the mass and dimensions of the solar array in around 10%

Mechanisms

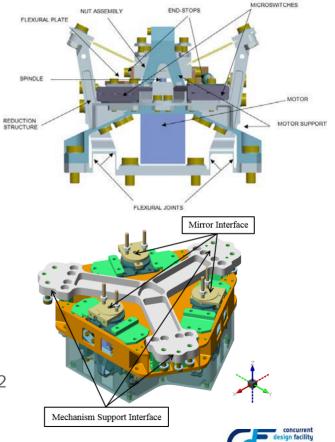
M2 MIRROR MECHANISM

Main functional requirements

- Perform M2 position adjustments along M2 axis direction, and angular tip/tilt rotations;
- Support secondary mirror with 9 kg mass, 600 mm diameter;
- Axial translation range: 600 μm =>
 - mounting the actuators at 200 mm radius, the tilt range will be 2 mrad
- Parasitic motion / cross-talk in lateral directions (decentering) < 5 μm;

ESA UNCLASSIFIED – Releasable to the Public

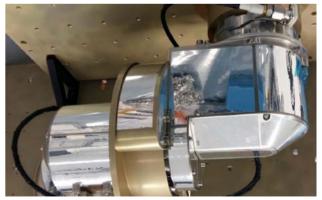
Configuration


- Tripod full symmetrical arrangement the 3 linear actuators;
- Compatible with cryogenic environment 100 K;

M2 MIRROR MECHANISM

- Linear actuator based on Sener Gaia / Euclid heritage:
 - Stepper Motor
 - Planetary Gearbox
 - Plain Screw-nut
 - Flex joint with structural reduction

Located in the centre of the M2;


Antenna Pointing Mechanism

Cesa

Characteristics

- X-Band Antenna: 430 mm diameter;
- Elevation motion range ±38°;
- Pointing accuracy of 0.5 deg and 2 Degrees of Freedom;
- Motors: 2x stepper motors;
- Power consumption, peak <12 W;
- APM Mass: 6 kg (excluding Antenna, HDRM and electronics);
- Heritage: Bepi-Colombo, Euclid;
- 1x HDRM: launch locking at 0° elevation angle;

Mass budget

Agency	Component	S/S	No. of Units	Unit mass (kg)	Mar- gin (%)	Tot. mass (kg)	Power (W)	Notes
ESA	M2 Focus	SIA	1	8	20	9.6	4	-
ESA	M2 Focus HDRM	SIA	1	2	20	2.4	-	-
ESA	APM	SVM	1	6	10	6.6	12	-
ESA	HDRM APM	SVM	1	1	10	1.1	-	-
JAXA	Launch lock for Cryocoolers Isol.	CRYO	6	0.1	5	0.63	-	1 panel, 6 units per panel
JAXA	MINT	CRYO	6	0.2	5	1.26	-	1 panel, 6 units per panel
JAXA	Cryocooler Isolators	CRYO	6	2	5	12.6	-	1 panel, 6 units per panel
JAXA	Separation mechanism with Launch Lock	СМ	6	4	5	25.2	-	-
-	Total	-	28	-	-	59.39	16	-

Data Handling

ESA UNCLASSIFIED - Releasable to the Public

Requirements

- The DHS shall manage Spacecraft modes
- The DHS shall manage the SVM and the PLM
- The DHS shall provide the needed interfaces to the PLM
- The DHS shall be dual chain
- The DHS shall support autonomous operations according

to a mission timeline up-loaded from the ground

- The DHS shall provide the I/F to the Thermal System
- The DHS shall be able to interface to sensors/actuators needed for AOCS/GNC and propulsion

Main Drivers

- Within allocated budget (mass, power, volume)
- Reuse as much as possible from similar mission (L2 orbit: Herschel and Euclid)
- Mature and proven technology

Constraints

Geo return may have an impact on the design

Assumptions & Trade-off

- Cold dual redundancy, no need for warm or hot redundancy (impact on power budget)
- Autonomy of 72 hours for storage
- The PLM is using standard I/F

Note: detailed information regarding the I/F of the PLM to the DHS is not available

Three units will constitute the Data Handling System

- The On Board Computer (OBC)
- The Remote Interface Unit (RIU)
- The Solid State Mass Memory for Science Data (SSMM)

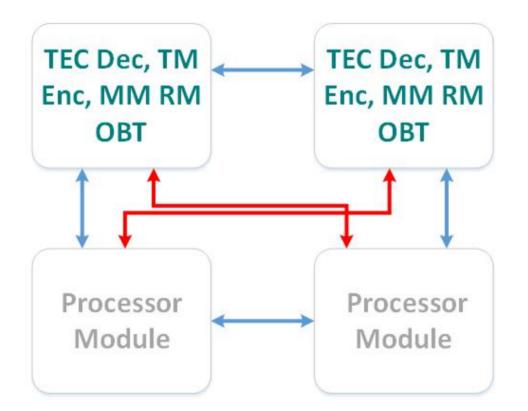
Cesa

Starting from two preselected OBC

• OSCAR from ADS (SCOC3, Leon based SoC)

• Cole based OBC from RUAG (COLE . Leon based SoC)

• The Selected baseline will be based on Cole OBC

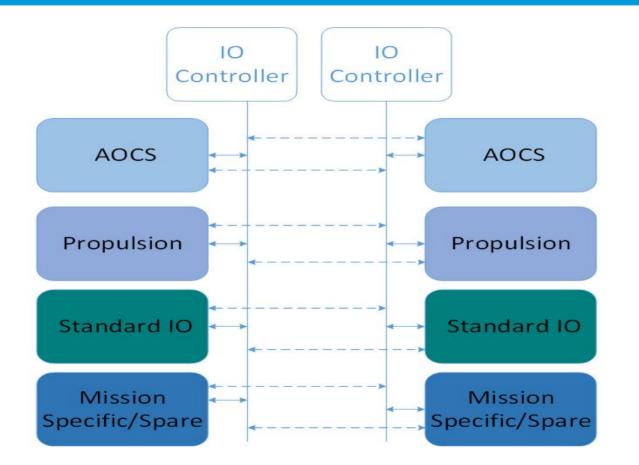


M5 SPICA | Slide 117

ESA UNCLASSIFIED – Releasable to the Public

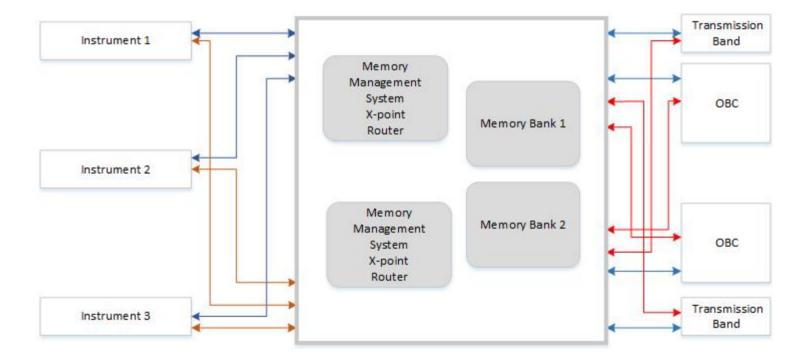
M5 SPICA | Slide 118

RIU - 1



- Many suppliers, the main one: CRISA and RUAG provide RIU compatible with the mission requirements
- Dual redundant unit composed of controller/Interface to OBC and Standard I/F AOCS I/F Propulsion I/F. Many reuse from previous mission, new I/Fs, extension or adaption is expected
- Accommodate all the I/F (sensors, actuators, voltage, current ...) which are not Mil-Std-1553B or SpW
- Interface to Thermal Control Subsystem (Heat pipe, cryo coolers compressors etc...)

RIU 2



M5 SPICA| Slide 120

ESA UNCLASSIFIED – Releasable to the Public

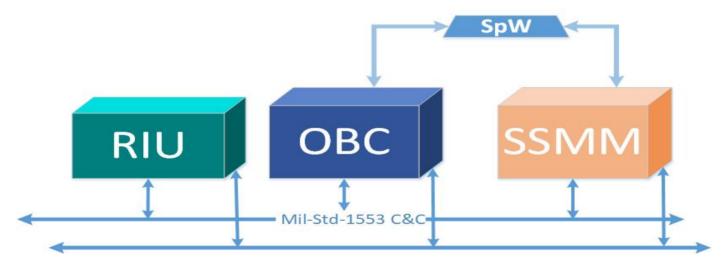
SSMM - 1

- The Controller which includes the MM management, the SpW I/F, the cross switches and the routers can be reused from other projects
- The memory bank need to be developed
- Use of CFDP

Mass Memory Budget -1

	Platform	SAFARI	POL	SMI
Data Generation: HK	30 Kb/s	128 Kb/s	15Kb/s	15Kb/s
Total/day	2.592 Gbit/day	11.0592 Gbit/day	1.296 Gbit/day	1.296Gbit/day
Mission Share		65.45 %	4.55 %	30%
Science Data: Declared Effective		4 Mb/s 2.8 Mb/s	1 Mb/s 0.833 Mb/s	5.67 Mb/s 3.969 Mb/s
RECYCLING/ANNEALING CALIBRATION + OBSERVATION (hours)		7.2 16.8	4 20	4 20
Total/day		241.9 Gbit/day	72 Gbit/day	342.9 Gbit/day

Mass Memory Budget -2



- Total HK stored in OBC MM 16.25 Gbit/day, 25 % EoL -> 20.3 Gbit size
- 72 autonomy -> 61 Gbit, HK Mass Memory EoL size
- Total Science data
- 342.9 Gbit/day + 50 % EOL -> 514.5 Gbit size
- 72 hours autonomy -> 1.544 Tbit, Science Data memory EoL size

Communication Network @esa

- Mil-Std-1553B used for the Command & Control bus: Platform & Payload
- SpW Network used for Science Data

List of Equipments

	Mass (kg)	Margin	Total (kg)	Power (W)	Duty Cycle
OBC	5.5	5%	5.77	14	100%
RIU	15.5	10%	17	34	100%
SSMM	8	15%	9.2	24.5	83%

M5 SPICA | Slide 126

ESA UNCLASSIFIED – Releasable to the Public

Communications:

Mil-Std-1553B for Platform and use the SpW Network as a C&C bus for payload and to carry the science data (Metop-SG)

Mechanical Layout:

OBC + RIU in the same box and SSMM in separate Box (S3)

OBC + SSMM in the same box and RIU in separate Box (JUICE)

 The baseline presented here is mostly based on existing equipment, components and technology. Further improvement/change will be possible by the time of the mission preliminary design

Communications

ESA UNCLASSIFIED - Releasable to the Public

Requirements and Design Drivers

Cesa

Requirements

- Provide telemetry, telecommand and tracking (ranging) functionalities (at any attitude and mode).
- Provide payload (science + instrument HK) data downlink.

Design drivers

- <u>Payload Data Volume</u> (HK + Science)
 - 278 Gbit/day (mission average)
 - 357 Gbit/day (cycle average)
- Large amplitude quasi Halo orbit around SE-L2
 - 1.77e6 [km] (maximum distance)
- Compression of payload data already taken into account

Drives S/S design

Assumptions

- Ground station
 - ESA DSA (X-band, 3 stations), 35 [m] dish
 - Assume contact times well below 8h (DSA servicing several missions by 2032)
- <u>Modulation and coding schemes</u>
 - The following is considered as the starting point:
 - a) Current state-of-art modulation and coding capabilities (for X-band & K-band)
 - b) Use of higher order modulation and SCCC coding schemes (acc. CCSDS 131.2) to go beyond 10 [Msps] (for X-band only)
- Payload (science + HK) bit rates
 - The gross bit rates must be converted to actual payload bit rates
 - MODCOD rates (they take between ~10% & ~50% of the total transmitted bits)
 - 18% overhead considered (CCSDS CADU as per ECSS-E-ST-50-03C)

Trade-Offs

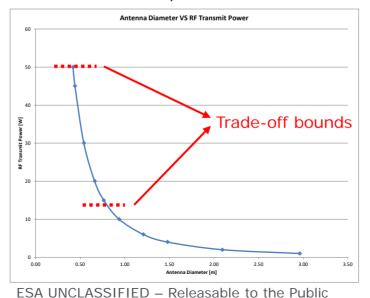
Frequency Bands

- Option 1: X-Band
 - Bandwidth limitation: 10 MHz
 - Can accommodate the required data volumes with the use of higher order modulation (QPSK, 8PSK, 16APSK) and improved coding (SCCC)
 - CCSDS 131.2 (High Data Rate Telemetry) already in place
 - 3/3 DSA with X-band capabilities ; longer contact times required
- Option 2: K-Band
 - No bandwidth limitation
 - Lower component efficiencies (TWTA, ...): higher power consumption
 - Increased subsystem cost, mass and volume (X-Band always required)
 - Tighter pointing requirement
 - 2/3 DSA with K-band capabilities (on-going) ; shorter contact times required

Trade-Offs

<u>Antennas</u>

- HGA
 - APM required to ensure pointing for downlink
 - APM-induced vibrations not a driver for science observations
 - Dish size must not compromise the solar array surface (minimum shadows)
- LGA
- Required for omni coverage (LEOP, Emergency)
- Must be placed such that there are no disruptions on P/L electronics
- Accommodation: on SVM, opposite sides (+Y , -Y) (2 LGA is the typical approach)
 - However: bottom plate of PLM adds constraints on omni coverage
 - 3rd LGA added (on the bottom plate of SVM , -Z axis)
 - Similar approach as for Planck



Trade-Offs

RF output power vs antenna diameter/gain

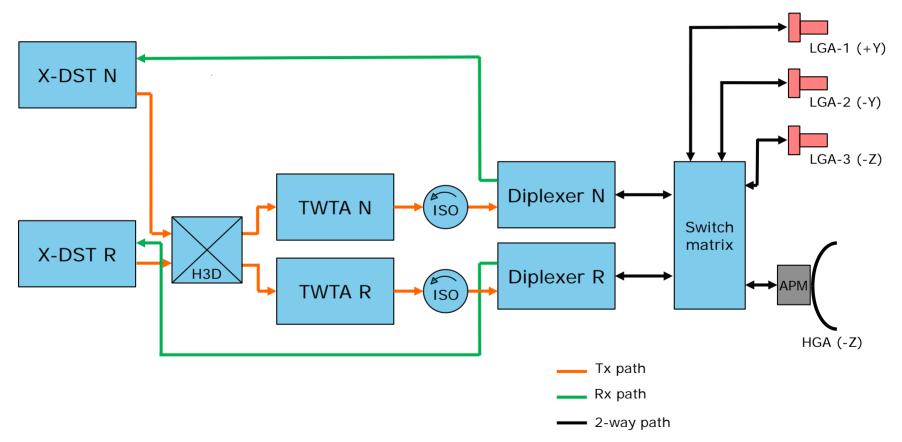
- Data rates and link quality (req. Eb/No) drive EIRP, which needs proper split between:
 - RF output power drives power consumption of amplifiers (affects s/c EPS, TCS)
 - Antenna dish gain + diameter affects s/c configuration, pointing acc.

			Baseline			
Parameter	Option 1	Option 2	Option 3	Option 4	Option 5	Option 6
Frequency band	X-Band	X-Band	X-Band	X-Band	X-Band	K-Band
Modulation Coding	GMSK CC+RS	GMSK Turbo	QPSK SCCC	8PSK SCCC	16APSK SCCC	GMSK Turbo
EIRP	36.2 dBW	32.3 dBW	38.1 dBW	44.6 dBW	49.8 dBW	45.1 dBW
Bandwidth (99%, occ.)	8.6 MHz	8.6 MHz	10 MHz	9.6 MHz	9.6 MHz	51.7 MHz
Science + HK data rate	5.5 Mb/s	4.2 Mb/s	8.6 Mb/s	14.9 Mb/s	19.6 Mb/s	25.4 Mb/s
G/S pass	8 h (max)	8 h (max)	8 h (max)	6 h	4 h	4 h
Science + HK data volume	160 Gb/d	122 Gb/d	247 Gb/d	321 Gb/d	282 Gb/d	365 Gb/d
Target volume (mission avg)	278 Gb/d	278 Gb/d	278 Gb/d	278 Gb/d	278 Gb/d	278 Gb/d

Baseline

Parameter	Option 4
Frequency band	X-Band
Modulation Coding	8PSK SCCC
EIRP	44.6 dBW
Bandwidth (99%, occ.)	9.6 MHz
Science + HK data rate	14.9 Mb/s
G/S pass	6 h
Science + HK data volume	321 Gb/d
Target volume (mission avg)	278 Gb/d

Baseline


Parameter	Option 4
Frequency band	X-Band
Modulation Coding	8PSK SCCC
EIRP	44.6 dBW
Bandwidth (99%, occ.)	9.6 MHz
Science + HK data rate	14.9 Mb/s
G/S pass	6 h
Science + HK data volume	321 Gb/d
Target volume (mission avg)	278 Gb/d

A) Reserving 10 m for RNG	
&	
B) Including 2.6	
Gb/d of platform	
НК ТМ	

G/S pass	5 h 50 m	
Science + HK data volume	310 Gb/d	
Target volume (mission avg)	278 Gb/d	V

Mass & Power

Ī

22.85 [kg] ; 26.3 [kg] (incl. margin)

~137 [W] peak power consumption (one TX ON ; both RX ON)

Mass & Power

Ī

22.85 [kg] ; 26.3 [kg] (incl. margin)

~137 [W] peak power consumption (one TX ON ; both RX ON)

Hardware

3 LGAs for omni coverage (LEOP, emergency)

1 HGA for P/L data downlink (high rate)

1 RF front-end (X-band only), redundant, cross-strapping (hot red. for Rx) (cold red. for Tx)

External RF signal amplification required (via TWTA)

Overall, high TRL (technologies are flight proven)

However, transponder needs additional development (TRL-6 by 2024 feasible)

Mass & Power

Ø

2

22.85 [kg] ; 26.3 [kg] (incl. margin)

~137 [W] peak power consumption (one TX ON ; both RX ON)

Hardware

3 LGAs for omni coverage (LEOP, emergency)

1 HGA for P/L data downlink (high rate)

1 RF front-end (X-band only), redundant, cross-strapping (hot red. for Rx) (cold red. for Tx)

External RF signal amplification required (via TWTA)

Overall, high TRL (technologies are flight proven)

However, transponder needs additional development (TRL-6 by 2024 feasible)

Features

X-band, 8PSK modulation + SCCC coding

Ranging (RNG) and data downlink possible at ~1.1 [Mbps] (P/L bit rate) (10m link for RNG)

(GMSK + PN-ranging) (to-be-used in SolO)

LGAs can be used as back-up for nominal downlink (at lower rates); and also for RNG

Mass & Power

Ō

2

22.85 [kg] ; 26.3 [kg] (incl. margin)

~137 [W] peak power consumption (one TX ON ; both RX ON)

Hardware

3 LGAs for omni coverage (LEOP, emergency)

1 HGA for P/L data downlink (high rate)

1 RF front-end (X-band only), redundant, cross-strapping (hot red. for Rx) (cold red. for Tx)

External RF signal amplification required (via TWTA)

Overall, high TRL (technologies are flight proven)

However, transponder needs additional development (TRL-6 by 2024 feasible)

Features

X-band, 8PSK modulation + SCCC coding

Ranging (RNG) and data downlink possible at ~1.1 [Mbps] (P/L bit rate) (10m link for RNG) (GMSK + PN-ranging) (to-be-used in SolO)

LGAs can be used as back-up for nominal downlink (at lower rates); and also for RNG

Data Rates

Data rates for HK TM & TC (from platform):

- HK TC: 4 [kbps]
- HK TM: 32 [kbps]

High data rates:

- Up to 20 [Msps] (gross) using 8PSK + SCCC (14.9 [Mbps] P/L data rate)
- Up to 2 [Msps] (gross) for combined Data (GMSK) + RNG
 (~1.1 [Mbps] P/L data rate)

Mass & Power

0

22.85 [kg] ; 26.3 [kg] (incl. margin)

~137 [W] peak power consumption (one TX ON ; both RX ON)

Hardware

3 LGAs for omni coverage (LEOP, emergency)

1 HGA for P/L data downlink (high rate)

1 RF front-end (X-band only), redundant, cross-strapping (hot red. for Rx) (cold red. for Tx)

External RF signal amplification required (via TWTA)

Overall, high TRL (technologies are flight proven)

However, transponder needs additional development (TRL-6 by 2024 feasible)

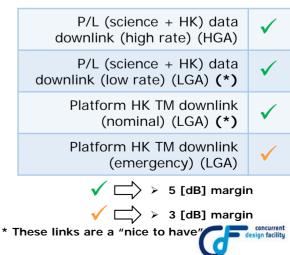
Features

X-band, 8PSK modulation + SCCC coding

Ranging (RNG) and data downlink possible at ~1.1 [Mbps] (P/L bit rate) (10m link for RNG) (GMSK + PN-ranging) (to-be-used in SolO)

LGAs can be used as back-up for nominal downlink (at lower rates); and also for RNG

Data Rates


Data rates for HK TM & TC (from platform):

- HK TC: 4 [kbps]
- HK TM: 32 [kbps]

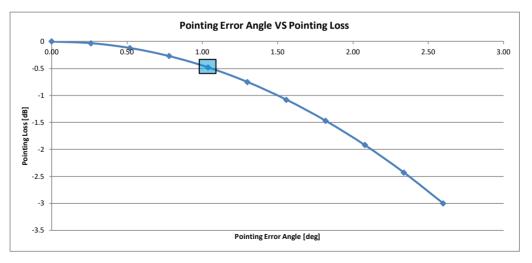
High data rates:

- Up to 20 [Msps] (gross) using 8PSK + SCCC (14.9 [Mbps] P/L data rate)
- Up to 2 [Msps] (gross) for combined Data (GMSK) + RNG
 (~1.1 [Mbps] P/L data rate)

Driving Link Budgets (at farthest distance)

ESA UNCLASSIFIED - Releasable to the Public

Data Volume (achieved)
(assuming 6h pass)Data Volume (required)Feasible with
baseline design?Gross data volume -> 432 Gbit/pass
(actual data volume sent to ground)Payload (science + HK) data volume
(mission average) -> 278 Gbit/dayYESPayload (science + HK) data volume
(cycle average) -> 357 Gbit/dayNO


As a result, specific management of instrument cycles shall be needed at some points during the mission in order to fulfill communications needs

• Baseline: X-Band, 8PSK + SCCC

- 45 [W] RF output power (TWTA) (16.5 [dBW])
- 0.44 [m] ø HGA ; boresight gain of 30 [dBi]
 - 3dB beam-width @ ± 2.60 [deg] \longrightarrow drives pointing accuracy
 - 0.5 [dB] pointing loss <--> 1.05 [deg] pointing error

ESA UNCLASSIFIED – Releasable to the Public

Equipment List

- X-band DST (TAS-I): needs modifications ۲ (CCSDS 131.2-B-1 for high rate TM downlink)
- TWTA (TWT + EPC) (Thales): TRL-9
- LGA (Rymsa, RUAG): choked horn, ۲ TRL-9

X-band TWT

- **HGA** (Rymsa, RUAG): technologies are TRL-9 Euclid HGA
- **RFDN** (several): TRL-9, ۲ waveguide (passive) equipment

M5 SPICA| Slide 146

ESA UNCLASSIFIED – Releasable to the Public

(0.65 [cm])

Options

- Option 1: [X-Band, 16PSK + SCCC]
 - Can be used in case data volume requirements increase
 - TRL is the same as baseline equipment; same delta-development on the DST required (with a bit more complexity/risk)
- Option 2: [K-Band, GMSK]
 - Can be used in case data volume requirements <u>dramatically</u> increase
 - Overall high TRL, but with the caveats of K-band outlined earlier in the presentation

Technology Readiness

- CCSDS 131.2 (Higher order modulation + SCCC)
 - Transmitter implemented in activity for EOP
 - IP core for SCCC in place
 - Implemented K+X-Band Transmitter, demonstrated up to 2.7 Gbit/s
 - EQM (TRL 6) available, end of activity Q4/2018
 - Analyzed full scope of standard (up to 64APSK), including TWTA nonlinearity and RF output filtering
- Transponder
 - Currently no Deep Space Transponder with CCSDS 131.2 available
 - Requires delta development on TAS-I Deep Space Transponder
 - High confidence of maturity until mission adoption

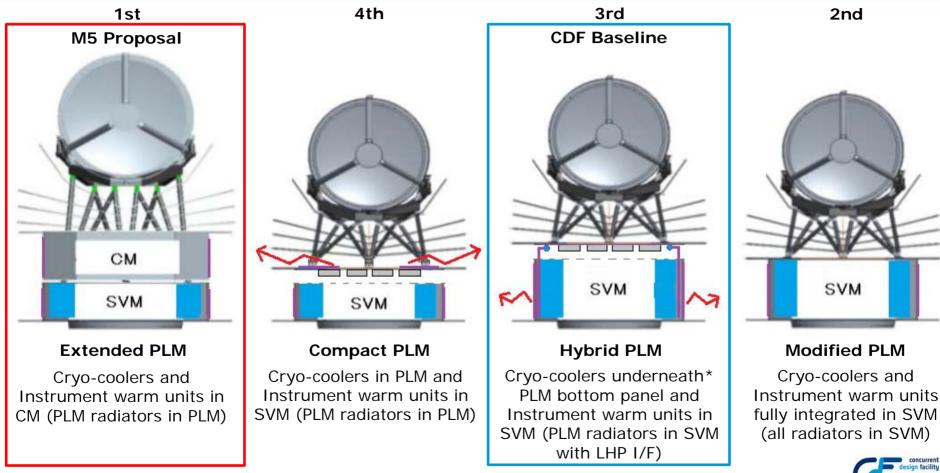
Structures

ESA UNCLASSIFIED - Releasable to the Public

Payload Interface (mechanical)

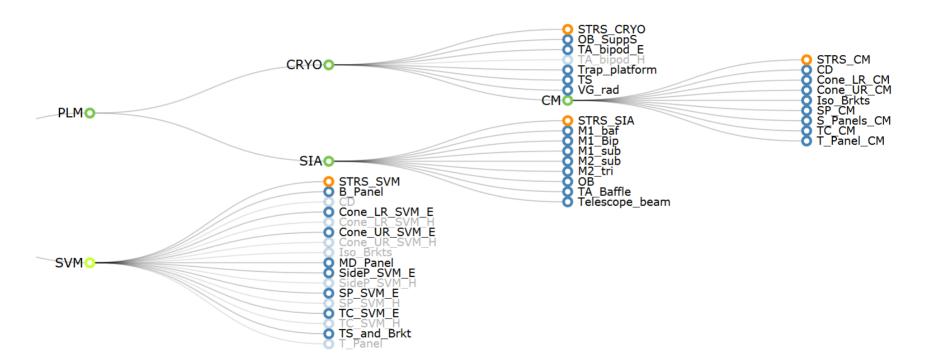
- PAF937C
- PAF1194C
- PAF1666C
 - Interface diameter : 1,666 mm
 - Height : 450 mm
 - Attached system : Clamp bands
 - Separation springs : 4 8 springs

Stiffness Requirement


Fundamental Frequency Stiffness of the primary structure

- Longitudinal : > 30Hz
- Lateral : > 10Hz
- Center of Gravity Location Stiffness, Configuration
 - Horizontal: preferably within 35 mm of the center axis (up to 100 mm acceptable).
 - Height from Separation Plane : depends on PAF type
 - PAF1666C: S/C CoG Height: < 4m for S/C Mass < 4000 kg

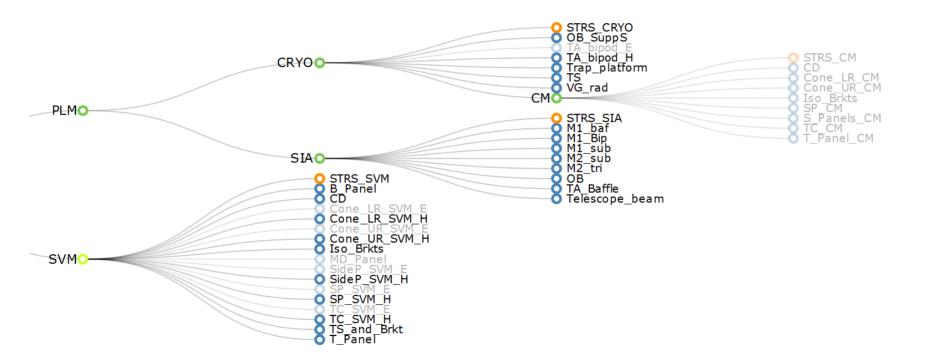
Configuration Concepts



M5 SPICA | Slide 152

ESA UNCLASSIFIED - Releasable to the Public

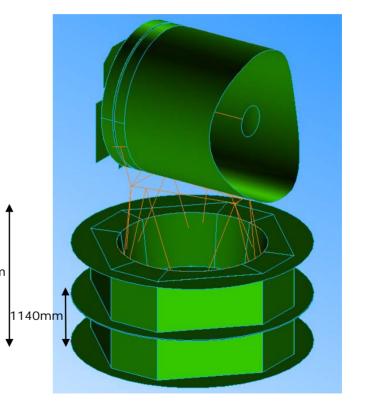
E-PLM Structure in SPICA Sinoptics



M5 SPICA | Slide 153

ESA UNCLASSIFIED – Releasable to the Public

H-PLM Structure in SPICA Sinoptics

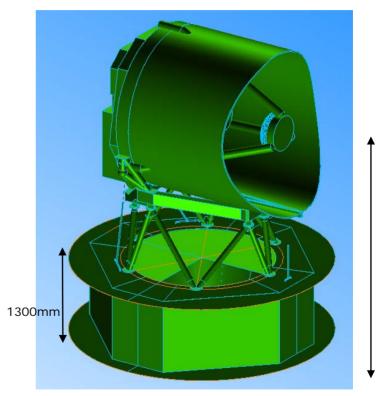

M5 SPICA | Slide 154

Extended PLM - Layout

• Main features:

- 2 trust cones, 16 shear panels, bottommiddle- and top-panels, 16 side panels, composite sandwich (honeycomb: AA 3/16-5056) with CFRP skins
- Cone rings (in SVM and CM): forged AA 7075-T73
- long P/L supporting truss structure, CFRP tubes with AI fittings
- TA baffle: composite sandwich (Al honeycomb AA 3/16-5056, skin AA 2024-T81)
 2180mm
- Mirror's substrates and OB support: SiC (Herschel's heritage)

4910mm



Hybrid PLM - Layout

• Main features:

- 1 trust cones, 8 shear panels, bottom- and top-panels, 8 side panels, composite sandwich (honeycomb: AA 3/16-5056) with CFRP skins
- Cone rings (lower/upper): forged AA 7075-T73
- Shorter P/L supporting truss structure, CFRP tubes with AI fittings

4005mm

Element	Material	Density, kg/m^3, kg/m^2 , kg/m	Volume, Area , Length m^3 , m^2 , m	Mass, kg	Margin, %
Thrust Cone	CFRP, AA1/8-5056	49.7, 6.35	8.6	54.6	20
Shear Panels	CFRP, AA 3/16- 5056	32.036 , 3.66	5.4	19.8	20
Side Panels	CFRP, AA 3/16- 5056	32.036 , 3.66	12.3	45.0	20
Top Panel	CFRP, AA 3/16- 5056	32.036 , 3.66	9.74	35.6	20
Cone Ring - lower	AA 7075-T73	2800.	23.56E-03	64.8	20
Cone Ring - upper	AA 7075-T73	2800.	26.34E-03	72.6	20
Isolator brackets	AA7075-T73	JAXA ref.	14.4	14.4	20
Cryo-dampers		JAXA ref.	-	9.2	20
STRS_CM				316.0	379.20

Element	Material Density, kg/n kg/m^2 , kg/		Volume, Area , Length m^3 , m^2 , m	Mass, kg	Margin, %
Telescope Frame (trapezoid)	CFRP, 150x200	JAXA ref.	-	72	20
TAMain Struts + fitt.	CFRP Tube Φ100x4mm	1.885 kg/m	28.4m	51.5	20
OB Supp. Struts +fitt.	CFRP Tube Φ120x6mm	3.396 kg/m	4.27m	37.2	20
Thermal Shell	CFRP Sandw. (Al core:AA3/16-5056)	2.06 kg.m^2	16.4m^2	36.8	20
V-groove 1 radiators	CFRP Sandw. (Al core:AA3/16-5056)	2.06 kg.m^2	56.4m^2	117.3	20
STRS_CRYO				314.8	377.6

Structural Mass Breakdown – SIA

Element	Material	Density, kg/m^3, kg/m^2 , kg/m	Volume, Area , Length m^3 , m^2 , m	Mass, kg	Margin, %
M1 Substrate	SiC	3140 kg/m^3	Φ2500mm	136.5	20
M2 Tripods +fitt.	Ti	4440 kg/m^3	ref. Herschel	16.3	20
M1 Bi-pods+I/F to substrate	Ti	4440 kg/m^3	Ref. Herschel	10.7	20
M2 substrate	SIC	3140 kg/m^3	Φ595mm	9.2	20
Telescope beam	CFRP		Ref. JAXA	6.9	20
Telescope Baffle	Skin: AA 2024-T81 Core: AA 3/16- 5056	32.036 kg/m^3	18.7m^2	71.1	20
Optical Bench	SiC	3140 kg/m^3	Ref. NG	185	20
M1 Baffle	Skin:AA 2024-T81 Core: AA 3/16- 5056	32.036 kg/m^3		8.8	20
SIA TOTAL:				444.5	533.4

Structural Mass Breakdown – SVM / E-PLM

Element	Material	Density, kg/m^3, kg/m^2 , kg/m	Volume, Area , Length m^3 , m^2 , m	Mass, kg	Margin, %
Thrust Cone	Skin: M55/EX1515 Core: AA1/8-5056	49.7 kg/m^3 / 6.35kg/m^2	7.33 m^2	46.5	20
Bott. Panel	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	15.9 m^2	58.2	20
Shear Panels	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	7.2 m^2	26.4	20
Side Panels	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	11.6 m^2	42.5	20
Mid. Deck	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	11 m^2	40.3	20
Thrust cone - LR	AA 7075-T73	2800 kg/m^3	15.7E-03 m^3	43.2	20
Thrust cone - UR	AA 7075-T73	2800 kg/m^3	23.56E-03 m^3	64.8	20
Tank struts	Ti	4440 kg/m^3	Ref. NG	40	20
SVM TOTAL:				361.9	434.3

Structural Mass Breakdown – SVM / H-PLM

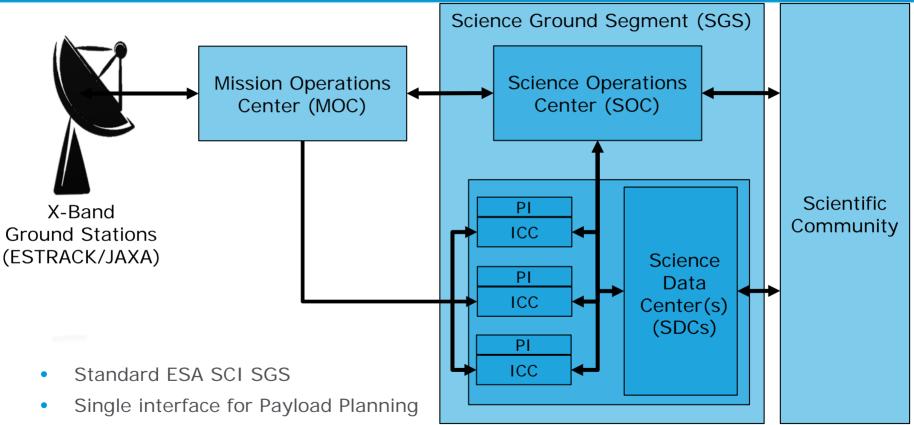
Element	Material	Density, kg/m^3, kg/m^2 , kg/m	Volume, Area , Length m^3 , m^2 , m	Mass, kg	Margin, %
Thrust Cone	Skin: M55/EX1515 Core: AA1/8-5056	49.7 kg/m^3 / 6.35kg/m^2	10.191 m^2	64.7	20
Bott. Panel	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	15.9 m^2	58.2	20
Shear Panels	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	9.7 m^2	35.4	20
Side Panels	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	15.8 m^2	57.8	20
Top Panel	Skin: M55/EX1515 Core: AA3/16-5056	32.036 kg/m^3 / 3.66 kg/m^2	16.2 m^2	59.4	20
Thrust cone - LR	AA 7075-T73	2800 kg/m^3	15,74E-03 m^3	43.3	20
Thrust cone - UR	AA 7075-T73	2800 kg/m^3	23.56E-03 m^3	65.9	20
Tank struts	Ti	4440 kg/m^3	Ref. NG	40	20
Isolator brackets	AA7075-T73	JAXA ref.	14.4	14.4	20
Cryo-dampers		JAXA ref.	-	9.2	20
SVM TOTAL:				448.3	538.0

M5 SPICA | Slide 161

Conclusions / Status

- Hybrid configuration offers significant advantage w.r.t. structural simplicity, efficiency and mass (e.g. E-PLM mass 1320 kg vs. H-PLM mass: 912 kg).
- Spacecraft stiffness (lateral/axial) shall be assessed by means of FEM, on dedicated structural model
- The subsystem (other than structural) mass budgets will be modelled as a rigid, lumped mass and/or NSM distributed over panel structures as practicable
- System CoG lateral excursion shall be assessed against launcher requirement
- Thermo-elastic assessment will be done on adapted structural FEM

Ground Segment and Operations



ESA UNCLASSIFIED - Releasable to the Public

SPICA CDF Ground Segment

• ESA/ESOC infrastructure, requiring no operational interfaces to non European

space agencies

M5 SPICA | Slide 164

ESA UNCLASSIFIED – Releasable to the Public

SPICA MOC assumptions

MOC Assumptions

- **Single** Mission Operations Centre (**MOC**). For the purpose of the CDF, assumed at **ESOC**.
- MOC responsibilities, among others:
 - Spacecraft operations after launch, spacecraft monitoring and control, mission planning for deferred operations, orbit and attitude determination and control – OD accuracy necessary to perform all OCM throughout all the missions phases -.
 - Perform all **communications** with the S/C through the Ground Stations.
 - Mission data distribution, MOC shall provide all telemetry (HKTM and Science) to the SOC.

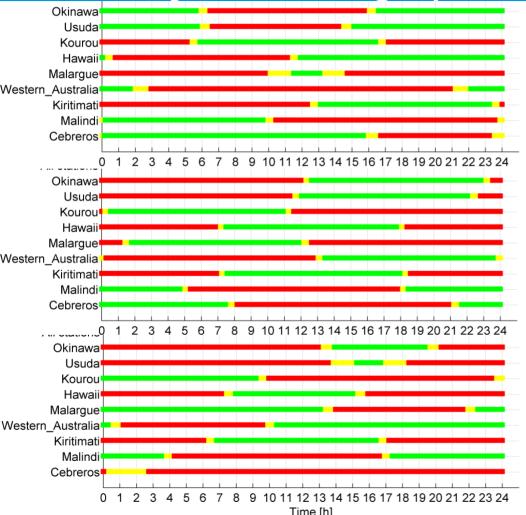
SPICA SOC assumptions

SOC Assumptions

- **Single** Science Operations Centre (**SOC**), standard approach SCI missions. For the purpose of the CDF, assumed at **ESAC**.
- SOC responsibilities (To be Iterated during Phase A):
 - Interface with Science Data Centre, in order to ensure overall coordination of the Spica payload operations as well as support to the Spica scientific community.
 - Interface with the MOC for reception of spacecraft data.
 - Scientific mission planning requests to MOC, 3 months in advance.
 - Analysis of **calibration data** from s/c HK and Science TM.
 - Update, and provide to MOC, calibrations parameters for uplink.
 - Analysis of Instruments health and performance (PI TBC).

Use of the ESTRACK 35 m antennas for LEOP and Routine:

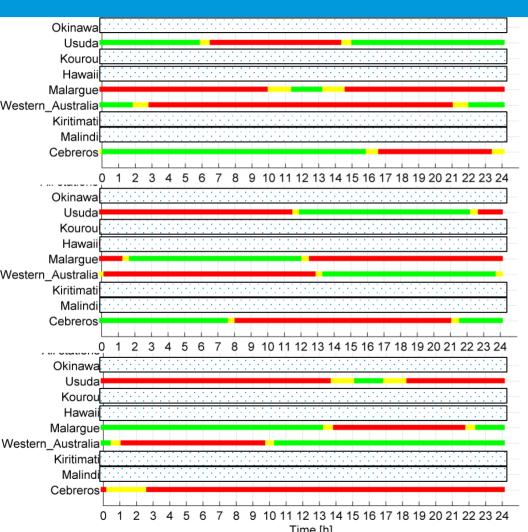
X-Band uplink (7145-7235 MHz range) and downlink capability (8400-8500 MHz) (Upgrade to implement QPSK/8PSK + SCCC)


- Cebreros
- Malargüe
- New Norcia-1

Use of additional antennas to support LEOP and Routine:

- New Norcia-2 (4.5m) (LEOP Only)
- MAL-X (2m) (LEOP Only)
- Kourou (15m) (LEOP Only)
- Jaxa: GREAT (54m), Uchinoura (34m) (Routine) Mod: BPSK & QPSK Cod: RS+CC. Currently not compatible with QPSK/8-16PSK+SCCC.

Ground Station Options (NGCryol RTel – large quasi-Halo orbit)


Max (top), zero (middle) and minimum declination (bottom).

- >=35m Malargue, New-Norcia, Cebreros, Usuda, Uchinoura (not in the figure)
- Okinawa (10/18m), Kourou (15m) Hawaii (15m), Kiritimati, Malindi (10/15m)

Public

Ground Station Routine – Size >=35 m

Max declination (top) -> 1+1 DS GS:

- MLG < 2hrs, NNO1 ~4hrs,
 CEB ~15hrs
- (Usuda ~15hrs) GREAT &
 Uchinoura

Zero (middle) -> 3+1 DS GS:

- MLG,NNO1 & CEB ~ 10 hrs
- (Usuda ~10hrs),GREAT &
 Uchinoura

Minimum declination (bottom) -> 2 DS GS:

- MLG & NNO ~15hrs, CEB
- Usuda, Uchinoura

ESA L2 missions (Apr. 2018)

Mars oppositions will occur Jun 2033, Sep 2035

Lisa (2034) & SSA SWM Lagrange L5 (2026): Overlap, conflict possible at start or end of SPICA pass.

External support

Missions within **lifetime** have **higher** station **scheduling priority** than mission in the extension phase.

2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
						Spica				
WFIRST	(GS sup	port)								
Plato (6	hours/da	ay, Ka-Ba	nd)							
		Ariel (18	5 hours/w	veek, X-B	and)					
					Athena	(4 h/day X-	Band+1x8 I	n/month)		
M5 SPICA S	(design facility								

SPICA Ground Station Assumptions

 All aspects of the mission shall be compatible with the network of ESA and JAXA ground stations.

Note: JAXA is currently incompatible with QPSK, 8(or16)PSK + SCCC.

- Baseline of an AVERAGE 6 hours/day in routine (incl. 5+5 min. ranging).
 Further reduction of ground station contact shall be envisaged.
- X-Band deep space. Baseline: 8PSK+SCCC. Backup: QPSK+SCCC

TRP High Rate Flexible Order SCCC Comms for Science X-band:

- Study start in 2019, the complete system to support Variable Coding and Modulation VCM up to Adaptive Coding and Modulation ACM 17, up to 16APSK for X-band.
- The additional cost for integrating in the **ESTRACK TTCP** depends a lot on who is the company that makes the study, in the order 200-300 K.

Mission Phases Assumptions - LEOP

LEOP – Launch and Early Orbit Phase:

- Operations executed on LGAs
- ~ 2 days -> LPF LEOP-like durations should be avoided.
- No critical LEOP operations foreseen: attitude acquisition, functional **platform** checkouts, start telescope decontamination heating.
- Correction manoeuvre (MA) L+24 hours (or 48hrs).

Ground Response time:

- LEOP critical operations: up to 2 hours,
- LEOP outside critical operations: up to 12 hours

Questions: is there a telescope cover to avoid illumination/contamination during launch? – Answer NO: this should be taken into account in next phase.

Commissioning / Performance Verification Phase

- Completion of telescope decontamination, functional spacecraft checkouts, science data acquisition, first light on instruments and orbit correction manoeuvres.
- HGA deployment.
- Instrument performance determination and calibration
- Platform and Payload performance verification and optimisation.
- Use of routine operations instruments.

Ground Response time transfer and Commissioning up to 48 hours

Routine Phase

- Monthly orbit correction/maintenance manoeuvres.
- **WoL**, frequency TBC. Coinciding with SKMAN when possible.
- Science observation plan loaded on-board 7 days in advance. No ToOs are assumed.
- **Communications** windows scheduled outside **Safari** Science mode. Like Herschel DSA scheduling together with the Science Community and the safari Science mode will be operated accordingly outside communication windows.
- Latency:
 - Instrument Science: 4 days.
 - Instrument HK: 1 day.

Disposal Phase

Details TBD, **one month** operational efforts assumed for **disposal manoeuvre** and spacecraft **passivation**.

concurrent design facility

M5 SPICA| Slide 174

ESA UNCLASSIFIED – Releasable to the Public

GS&Ops Remarks

Operational remarks:

- CCSDS and ECSS PUS-C interfaces space to ground. (MO services to transfer files within the Ground Segment)
- High preference for use of file based operations to enable use of the CFDP protocol to ensure consistency and completeness of data uplink and downlink. The protocol allows for automatic retransmission request for acquiring missed data.

Programmatics

ESA UNCLASSIFIED - Releasable to the Public

Requirements

- Launch in 2032
- Mission Selection Review
- Phase B1 K.O.
- Mission Adoption Review
- Phase B2/C/D K.O.
- SRR Q3 25, PDR Q3 26, CDR Q3 28, QR Q3 30, FAR Q2 31
- Satellite responsibility: ESA
- PLM responsibility: JAXA
- Telescope/SIA responsibility: ESA
- Cryo-chain responsibility: JAXA

- September 2021
 - December 2021
- March 2024 (SPC June '24)
- March 2025

- Shipping scheme ESA/JAPAN is the optimised one, after preliminary meetings and JAXA's SPICA-PP-18002 dated June 25, 2018.
- It is assumed that SIA can be assembled and tested in EU
- STM SVM refurbishment to FM is optional
- Cryo test can be done at CSL F6.5 (with modification) while vibration, ambient EMC and integration will have to be planned in one of the main EU space test facilities (ESTEC NL, IABG D, Intespace – ADS F). Other possibilities depend on the Prime Contractor of choice.

Model Philosophy (study final)

	Structural Thermal Model STM (SM for the SVM)	Development Model DM	Cryogenic Qualification Model CQM	Flight Model
Instrument	Structural dummies Mass, CoG (<i>or CQM, not agreed</i> <i>yet</i>)	BB, Functional and cryo tests	COM units for SIA and PLM level cryogenic test (BB refurbished TBD)	FM Functional and cryo tests
Telescope, SIA	Flight std structure and thermal control, flight std (TBC) Mirrors "CQM" Instruments	No	deleted	full FM, STA optical performance SIA level test
PLM	CQM Cryo-chain, CQM Instruments TBD BB warm units on SVM dummy, Cryo PLM level test, Flight std. PLM structure	Cryo-chain limited performance, warm units	deleted	Full cryo performance, Warm units or dummy SVM Microvibration check, EMC test
SVM	FM quality structure, dummy units	BB, EBB equipment, ATB	None	Flight Structure Flight units
S/C	Sine, acoustic, shock, microvibr.	Avionics test bench ATB	deleted	Functional Cryo test, acoustic, microvibration
ICA Slide 179	ESA UNCLASS	IFIED – Releasable to the	Public	U

concurrent sign facility

HW Matrix and test facilities

- Hardware matrix:
 - Telescope structure: 1 FM, 1 dummy
 - Mirrors: 1 set dummy, 1 set FM (2 sets as option)
 - Instruments: 1 dummy, 1 BB, 1 CQM (option: upgraded from BB), 1 FM
 - PLM Structure: 2 FM (option: 1 FM refurbished from STM)
 - PLM thermal control and cryo-chain: 2 flight std (1 on PLM STM, 1 FM)
 - SVM Structure: 1 dummy, 2 FM (option: 1 FM refurbished from STM)
- Test Facilities
 - Accessibility to Focal 6.5 at CSL to be verified, in theory suitable for cryo testing, EMC suitability to be assessed
 - Feasibility of testing: test attitude, heat pipes and 1-g related features
 - Microvibration environment to be controlled during cryo test, CSL did that before
 - Vibration testing at ESTEC, IABG (D) or ADS Intespace (F)

- The need for active instruments on the STM PLM for JAXA testing has been remarked by JAXA
- The JAXA STM PLM is in ESA terms a CQM equivalent, thermally, structurally and functionally representative
- Testing the Instruments with the STM PLM as JAXA request means that a representative telescope needs to be present as well, in ESA view that is in practical terms a QM telescope
- It is not for granted that Instrument "CQM equivalent" can be made available for JAXA STM PLM test campaign. Assessment needed (next phase)

Telescope

- The proposed "protoflight telescope" is from Herschel heritage
 - On the other hand it is deemed risky
 - An added "enhanced STM" would be desirable to qualify its design
 - "Enhanced" because test of the instruments in a SIA configuration would be possible in cryogenic conditions
 - Reduced technical risk, increased cost, schedule seems OK
- An additional "enhanced STM" SIA is added to the schedule
 - Recalculated based on now available Herschel telescope real schedule
 - Remains compatible with a Mission Adoption Review in mid 2024
 - Mirror procurement is the closest activity to critical, and needs consolidation of the design by the SRR: together with the Telescope, this represents a necessary anticipation of procurement
 - SIA FM: 6 months available for AIT with FM PLM

SIA with STM and FM

•	Task Massa	Durition	2.54	2023 2027 2028 2024 2025 2025 2027 2028 2029 2030 2031 2032 Orr 1 Orr 1	20 107 1 00
**	System				
14	Early design phase and req. definiti		The 21/12/21		
35	Profiminary design		Man 03/03/25		
3.6	Lower level PDR's	340 days	Mon 82/83/26		
87	Lower level COR's	340 days	Thu 24/08/28	· · · · · · · · · · · · · · · · · · ·	
	SVM	3324 days	Mos 04/06/26	· · · · · · · · · · · · · · · · · · ·	
**	Takeson pay/SIA	1362 days		· · · · · · · · · · · · · · · · · · ·	
*	STM Telescope/SM	nex days			10.00
\$7	SIA Day, Daview	0 days	Mon 03/03/25	۹	100
-	Phase 02 SIA Preliminary Design	340 days	Mon 03/03/25	, 240 min	
58	SIA PDR	0 days	Man 15/08/25	¢	
60	SAA CDR	0 days	West 20/08/20	∦ · · · · · · · · · · · · · · · · · · ·	
61	SDA Telescope Structure ofg	230 days	Man 15/09/25	a marana a m	
62	and assembly STM Minutes	ALZ days	Mon 15/09/25		
63	STMTelescope M0 mfg	180 days	Mon 15/09/25		
64	STMTelescope M0. polishing	340 days	Mon 25/05/26	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	
63	STMTelescope ML coating		Mon 07/12/26		
66	STMTe knope M0. Test		The 09/02/27		
67	STATE Escope AQ of g		Mar 19/01/26		
68	polishing, coating and test Site Tolescope All antient		word 34/04/20		
63					
	STAT Telescope vibration test		wed 07/07/20		
70	STM Telescope cryo test prop.		Wed D4/08/22		
71	SIM Telescope crya performance	20 days	Wed 15/09/27	· · · · · · · · · · · · · · · · · · ·	
n	SBM Telescope recordig and chuck	40 days	Wed 13/30/27	· · · · · · · · · · · · · · · · · · ·	
~	COM Instruments available		The 30/10/25		
74	SITM SIA Telescope and Instruments AIT (ambient)	70 days	Wed 08/12/27	· · · · · · · · · · · · · · · · · · ·	
75	SINA SIA Thermal Dalance	20 days	wed 15/03/20	ð >=	
76	STM SIA cryo functional test	30 days	Wed 32/04/28	1 0 mm	
77	STRA SIA final activities	20 days	wed 26/04/28		
78	STM SIA available to STM PLM	ti days	wind 24/05/28	f	
79	The Telescope/SIA	see days	wei sy's yz	· · · · · · · · · · · · · · · · · · ·	
RLD	Red Telescope Structure	3380 clays	Wed 13/30/27	· · · · · · · · · · · · · · · · · · ·	
81	Procurement Fish Telescope Mirrors of gand	420 days	weed 33/30/27		
87	inst Fill Telescope All	170 days	West 11/04/25	∦ · · · · · · · · · · · · · · · · · · ·	
83	PMTelescope All andriest	60 days	Wed 33/04/25	a terra anga	
84	FMTM except vibration test	20 days	Wed 04/07/25		
65	Performance and the prop.		wed m/m/25		
86	PMTelescope cryp		Wed 32/09/25		
87	performance FMTelescope recordig and		wed 10/10/28		
	check RA instruments available		Thu 29/06/28		
1.9			west ps/12/25		
				1	
90	PMASAA Telescope and Instruments AIF (ambient)		Wed 05/12/25		
91	PLASLA Thermal Balance		weed 11/01/10		
97	PMSA cryo functional test		Wed 10/04/30		
93	FMSIA final activities		Wed 24/04/38		
94	PM SIA available to PMPLM	O clays	Wed 22/05/38	ſ*	

M5 SPICA | Slide 183

ESA UNCLASSIFIED - Releasable to the Public

ESA overall schedule (SIA STM + FM)

ID		Task Name	Duration	Start	2021 2	022	2022	2024	2025	2026	2027	2028	2029	20	80	2021	12082	12022
22	0	ESA		Sun 30/06/19	2021 2 Qtr 1 Qtr 3 0	Qtr 1 Qtr 3	Qtr 1 Qtr 3	Qtr 1 Qtr 3	2025 3 Qtr 1 Qtr	3 Qtr 1 Qt	r 3 Qtr 1 Qtr	3 Qtr 1 Qtr	3 Qtr 1	Qtr 3 Qt	r 1 Qtr 3	Qtr 1 Qtr 3	Qtr 1 Qt	r 3 Qtr 1
23		Phase A kick off		Sun 30/06/19														Ļ
24		Phase B1 kick off and PRR																<u> </u>
				Tue 21/12/21		,												L
25		Mission Adoption Review		Sun 31/03/24				•										
26		SPC	0 days		1			٠										
27		SRR -> Phase B2		Sat 01/03/25					٩									
28		PDR -> Phase C		Mon 02/03/26						1							-	
29	1	CDR -> Phase D	23 days	Thu 08/03/29									P ²	3 days				
30		QR	0 days	Wed 22/05/30											٠			
31	1	FAR -> Phase E1	0 days	Fri 19/12/31					-							•	*	<u> </u>
32		Launch	0 days	Fri 24/09/32	2												•	
33		System	1882 days	Tue 21/12/21	. 							-					-	
34		Early design phase and req. definit	285 days	Tue 21/12/21			285 days								······································		-	
35		Preliminary design	260 days	Mon 03/03/25	5				- e ^t	2 60 day	s						-	
36		Lower level PDR's	140 days	Mon 02/03/26	5	,			-		140 days							
37		Lower level CDR's	140 days	Thu 24/08/28					_			-	3 140	0 days			-	
38		SVM	1174 days	Mon 08/06/26					-		-		_				-#	
55		Telescope/SIA	1362 days	Mon 03/03/25					-	_	-		_				-#	
95		s/c	1132 days	Wed 24/05/28	3				-				_				-	
96		STM S/C	98 days	Wed 24/05/28	3				-				,					
97		JAXA activities on STM	32 days	Wed 24/05/28	3				-								-#	
102		STM S/C Telescope Baffle AIT	5 days	Fri 07/07/28					-			X 5	ays				-#	
103		STM S/C SVM to PLM mating	5 days	Fri 14/07/28	3	,			-			3.0	lays					
104		and check STM S/C Mechanical test	26 days	Fri 21/07/28					-								-#	
105		campaign STM S/C Alignment check	5 days	Fri 21/07/28					-				Jays				-#	
106		STM S/C Sine Vibration test	10 days	Fri 28/07/28					-				0 days					
107		STM S/C Acoustic test	2 days	Fri 11/08/28									days					
108		STM S/C Shock test	2 days	Tue 15/08/28					-				days					
109		STM S/C Leakage check	2 days	Thu 17/08/28								38	days					
110		STM S/C Alignment check	3 days	Mon 21/08/28									days					
111		STM S/C PLM health check	2 days	Thu 24/08/28								*	days					
112		STM Disassembly	30 days	Mon 28/08/28									,					
113		STM S/C PLM removal from S	5 days	Mon 28/08/28								-	days					
114		STM S/C SIA Removal from PL	2 days	Mon 04/09/28									t days					
115		STM PLM at ESA health check	23 days	Wed 06/09/28									23 days				-#	
116		AVM S/C	79 days	Mon 09/10/28														
117		AVM SVM to PLM STM Integrati		Mon 09/10/28									23 days					
118		AVM S/C PLM Functional test		Thu 09/11/28									46 da	iys				
119		AVM S/C Conducted EMC	10 days	Fri 12/01/29									10 d	ays				
120		FM S/C	470 days												÷		-	
121	-	Integration and AIT	270 days												-	-	270 days	
122		ESA Contingency	130 days														130	days
123		Launch campaign	70 days															70 days
123	1	caution campaign	70 days	11 18/00/32	1													1.5 0.075

M5 SPICA | Slide 184

ESA – JAXA overview (SIA STM + FM), with JAXA schedule integrally moved to the right

0 Note with some some some some some some some some	
3 4 4 4 4 4 4 10 days 3 ± 10 MUNCAS 10 days 3 ± 10 MUNCAS 4 4 6 ± 10 me 10 days 3 ± 10 MUNCAS 10 10 days 10 ± 10 MUNCAS 10 10 ± 10 MUNCAS 6 3 ± 10 MUNCAS 10 ± 10 MUNCAS	
a b	
2 $ 2$	
0 Share for the they by an extension of the state	
Image and the strength of the strengt of the strength of the strength of the s	
i Shari Field status Set days Field Status Set days i Shari Field status Set days Field Status Set days i Shari Field status Set days Field Status Set days i Shari Field status Set days Field Status Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days Set days i Set days Set days Set days	
0 Sind ACS reflecting and large Size days The XX/XX/X The XX/XX/X 10 I Sind ACS reflecting and large Size days The XX/XX/X 11 I Sind ACS reflecting and large Size days The XX/XX/X 12 I Sind ACS reflecting and large Sind XX/XX Image: Size days 12 I Size days Size days Size days 13 I Size days Size days Size days 14 I Size days Size days Size days 15 I Size days The Size days Size days 16 I Size days The Size days Size days 16 I Size days The Size days Size days 16 I Size days The Size days Size days 17 I Size days The Size days Size days 18 Size days The Size days The Size days Size days 19 Size days Size days The Size days Size days 19 Size days Size days	
11 Such bettermannen der sternen 150 dags The SALADE 13 Fille som and ander sternen Ster dags Ster SALADE 14 Fille som and ander sternen Bis dags Ster SALADE 15 Fille som and ander sternen Bis dags Ster SALADE 16 Fille som and ander sternen Bis dags Ster SALADE 17 Ster SCanton sternen Fille som and ander sternen Fille som and ander sternen 18 Ster SCanton sternen Fille som and ander sternen Fille som and ander sternen 19 Ster SCanton sternen Fille som and ander sternen Fille som ander sternen 19 Ster SCanton sternen Fille som ander sternen Fille som ander sternen 10 Sterne SCanton sternen Fille som ander sternen Fille som ander sternen 10 Sterne SCanton sternen Fille som ander sternen Fille som ander sternen 10 Sterne SCanton sternen Fille som ander sternen Sternen 11 Sternen Sternen Sternen Sternen 12 Sternen Sternen Sternen Sternen 13 Sternen Sternen Sternen Sternen 14 Sternen Sternen Sternen Sternen <t< th=""><th></th></t<>	
11 Image: Part Amb See day See day <th></th>	
1 1	
14 Insure mean latence times of latence time	- Sits days
14 Cell induments 182 days Tex 2/12/24 14 Same Califormin ring in rin	
15 3.546 CGMAD seign and mfg 745 day Tax 23/23/25 16 3.546 CGMAD seign and mfg 715 day 17 3.560 CGMAD seign and mfg 715 day 18 5.560 CGMAD seign and mfg 715 day 19 5.560 CGMAD seign and mfg 715 day 10 5.560 CGMAD seign and mfg 715 day 11 5.560 CGMAD seign and mfg 715 day 12 5.560 CGMAT and Cipu CGM 725 day 13 5.570 CGMAT and Cipu CGM 725 day 14 5.570 CGMAT and Cipu CGM 755 day 15 5.500 CGMAT and Cipu CGM 755 day 16 5.570 CGMAT and Cipu CGM 755 day 16 5.570 CGMAT and Cipu CGMAT and Cipu CGM 555 CGMAT and Cipu	• • • • • • • • • • • • • • • • • • • •
17 A SARA 5 CAN Design, nfg and tast. 7.2 days. 18 SARA 5 CAN Design, nfg and tast. 7.2 days. 19 SARA 5 CQA Design and nfg. 7.6 days. 19 SARA 5 CQA AFT and Cys. 2.2 days. 19 SARA 5 CQA AFT and Cys. 2.2 days. 10 SARA 5 CQA AFT and Cys. 2.2 days. 10 SARA 5 CQA AFT and Cys. 2.2 days. 11 M. Sara 5 CQA AFT and Cys. 2.2 days. 12 Sara 5 CQA AFT and Cys. 2.2 days. 13 M. Sara 5 CQA AFT and Cys. 2.2 days. 14 Sara 5 CQA AFT and Cys. 2.2 days. 15 Sara 5 CQA AFT and Fill. 3.2 days. 16 Sara 5 CQA AFT and Fill. 3.1 days. 17 M. Sara 5 Adaptabin Standard. 3.0 days. 17 Sarc 5 CQA Cut. 3.0 days.	
17 A SARA 5 CAN Design, nfg and tast. 7.2 days. 18 SARA 5 CAN Design, nfg and tast. 7.2 days. 19 SARA 5 CQA Design and nfg. 7.6 days. 19 SARA 5 CQA AFT and Cys. 2.2 days. 19 SARA 5 CQA AFT and Cys. 2.2 days. 10 SARA 5 CQA AFT and Cys. 2.2 days. 10 SARA 5 CQA AFT and Cys. 2.2 days. 11 M. Sara 5 CQA AFT and Cys. 2.2 days. 12 Sara 5 CQA AFT and Cys. 2.2 days. 13 M. Sara 5 CQA AFT and Cys. 2.2 days. 14 Sara 5 CQA AFT and Cys. 2.2 days. 15 Sara 5 CQA AFT and Fill. 3.2 days. 16 Sara 5 CQA AFT and Fill. 3.1 days. 17 M. Sara 5 Adaptabin Standard. 3.0 days. 17 Sarc 5 CQA Cut. 3.0 days.	
111 0 Submits Capitonign and offs 781 days The 22/12/21 132 0 Submits Capitonign and offs 782 days 133 0 Submits Capitonign and offs 782 days 144 0 Submits Capitonign and offs 782 days 155 1 Submits Capitonign and offs 782 days 156 1 Submits Capitonign and offs 782 days 157 1 1 1 1 158 1 1 1 1 159 1 1 1 1 150 1 1 1 1 151 1 1 1 1 152 1 1 1 1 153 1 1 1 1 154 1 1 1 1 155 1 1 1 1 154 1 1 1 1 155 1 1 1 1 156 1 1 1 1 157 1 1 1 1 158 1 1 1 1 158 1 1 1	
10 Search of contrast 220 day min/1/1/2/2 11 Image: Search of contrast 220 day min/1/1/2/2 12 Image: Search of contrast 220 day min/1/1/2/2 12 Image: Search of contrast 220 day min/1/1/2/2 12 Image: Search of contrast 220 day min/1/1/2/2 13 Image: Search of contrast 220 day min/1/1/2/2 14 Image: Search of contrast 220 day min/1/1/2/2 15 Image: Search of contrast 20 day min/1/1/2/2 16 Image: Search of contrast 20 day min/1/1/2/2 17 Image: Search of contrast 20 day min/1/1/2/2 18 Image: Search of contrast 20 day min/1/1/2/2 <t< th=""><th></th></t<>	
201 202 <th></th>	
Image: Section of the sectio	
ZZ SA, SA, Sa, Sa, Sa, Sa, Sa, Sa, Sa, Sa, Sa, Sa	
Z5 A Please A bick off D days Sam NU/NU/N Z4 A Please B bick off and Pleas D days The ZU/SZ/N Z4 A Maxim A bigston Readow D days Sam SU/NU/N Z6 A Sam SU/NU/N Sam SU/NU/N Z6 Sam SU/NU/N Sam SU/NU/N Z6 Sam SU/NU/N Sam SU/NU/N	
24 Phane 83 kdk off and PBB 0 days Tax 23/23/23 27 Molecian Risplant Biology 0 days 3an 33/25/24 28 94C 0 days 5ac 33/25/24	
20 SPC 0 days San 3/05/24 20 SPC 0 days San 3/05/24	
26 Sec 0 days Sac 19/10/24	
2/1 POR -> Phone C II days Mem 12/12/22	
279 CDR → Phase D Z3 days Thu BL/02/25	
10 Cg2 0 diege Weid 22/12/30	•
53 FAI + Phone 63. 0 days Fri 38/32/33	
52 Launch 0 days Pri 24/09/52	Ť
53 System 1802 days Tax 23/12/24	
54 Early design phase and req. definiti 285 days Tue 23/32/21 C 285 days	
X/ Preliminary design 200 days Mon 03/03/22 Mon 03/03/23 Mon 03/03/23	
Si Lawerked POR's 340 days Mon 02/05/26	
37 Lower keel CDR's 340 days Thu 24/00/20	
34 SVMa \$122.4 days data (04/04/24) \$12.4 days data (04/04/24)	
92 ndscrape/SA 1302 days data 03/05/20	
95 5/C 1132 dap wed 24/0/3	
30 STB4 S/C 98 dage West 24/05/24	
97 LASA activities on STM 32 days wind 24/05/70	
302 STMS/C Telesope Balle All 5 days Fri 02/02/28	
303 STANS/C SAMID PLAN mating 5 days Fri 34/02/28	
304 STM S/C Mechanical test 26 days Fii 23/02/20 🕫	
I Comparized State	
116 Annu S/C 79 days Marc 02/10/20	
332 Avia SVia SVia SVia SVia SVia SVia SVia SV	
110 Aven S/C PLANFunctional test 40 days The 02/11/20	
119 A VM S/C Conducted EMC 10 days Fri 32/03/28	
20 Hels C 20 days Fi 00/12/10	
321 Entropution and AF 270 days Fri 02/32/30	
Image: State of the s	
Last Laster To date To integration 125 Laster To date To integration	Total

M5 SPICA | Slide 185

ESA UNCLASSIFIED - Releasable to the Public

Conclusions

- Based on Herschel S/C schedule data, the recalculated schedule shows a feasible insertion of a SIA "enhanced" STM in the planning
- The Telescope schedule is anyway close to critical
- In particular the manufacturing and test of the mirrors is a key element
- A combined test of the SIA including the instruments on the STM is a matter of evaluation, not possible in the frame of this study:
 - Availability of instrument CQM-like models not agreed yet
 - Depth of testing at this level not investigated
- The cost of the STM telescope is an important impact, though such a model is technically recommended
- Overall schedule: with the assumed milestones incl. Mission Adoption Review by mid 2024, launch is possible in late 2032 with a standard ESA contingency.

Revised Conclusions (cont'd)

- Open issues for AIV:
 - Microgravity control specifically the knowledge and control of the environment at cryo temperatures. Readiness of the test facilities.
 Heritage available from Planck at CSL.
 - EMC verification how to test in cryo condition or to what extent. Any analytical escape combined with testing?
 - Modification of the CSL Focal 6.5, envisaged tests are SIA STM and FM,
 PLM STM and FM, with the S/C FM being an option (not recommended)
 - Balancing the test activities between Telescope, SIA and PLM
- Open issues for Programmatic:
 - SIA Contract/Telescope Contract
 - Anticipation of Mission Adoption Review to help the schedule
 - Harmonisation of JAXA, ESA and Instruments planning

Conclusions

ESA UNCLASSIFIED - Releasable to the Public

Study Objectives

In the Beginning, there was The Plan:

Sess.	Date	Activities	Who
1 - KO	June 15	See KO agenda	
2	June 20	Telescope architecture trades Freeze launcher I/F's and performance assumptions Establish prelim. delta-V budget, parameters of L2 transfer orbit injection, solar aspect angle constraints. Freeze Payload Instrument budgets (mass, power, data, volume) PLM design review & establish related inputs for CDF study (thermal: radiator sizing, thermal shielding) Detector characterisation & environmental sensitivity Initial SVM S/S trades (Comms, DHS, Prop. Power, Therm., Struc.), spec. AOCS: wheels vs. cold gas	Optics JAXA Mission Analysis JAXA, SRON JAXA, thermal, other Detectors S/S, AOCS
3	June 22	Instrument Optical Bench definition Freeze Telescope concept (incl. baffle) & size Freeze PLM budgets (mass, power, data, volume) Preliminary System budgets + identification of main issues & drivers L2 transfer and halo orbit sizing, delta-V budget update Cryo mechanisms trades Discuss ATV/T logic & Programmatics Initiate trade FAS vs. Star Tracker	Optics, Detectors Optics Systems with JAXA Systems Mission Analysis Mechanisms AIV & Prog. & JAXA AOCS
4	June 27	S/C configuration trades covering Telescope, PLM, SVM ROM cost estimate & identification of main cost drivers Prelim. Risk overview SVM S/S trades (Comms, DHS, Prop. Power, Therm., Struc.; AOCS not available)	Config. & Struc. Cost Risk Subsystems
5	June 29	(semi-)Finalise AIV/T logic Discuss Operations logic Trade FAS vs. Star Tracker First iteration incl. all S/S -> System budgets update	AIV & Prog. & JAXA GS & Ops. AOCS S/S & Systems
6	July 4	Preliminary configuration of complete S/C on launcher Overview of all subsystem designs iteration incl. all S/S -> System budgets update Cost estimate update Risks updated with TRL evaluation	Config. & Struc. S/S Systems Cost Risk
7	July 6	Finalise all S/S trades iteration incl. all disciplines -> System budgets update	S/S Systems
8 - IFP	July 11	Complete CDF design, final presentations by all disciplines – hand-out acts as CDF output document until issue of Final Report.	All, incl. JAXA

... which we followed (surprisingly) well.

Study Objectives

- 1. Accommodation of the Japanese payload module with its 3 instruments (SAFARI, POL and SMI) and the European provided telescope. ☑
- 2. Review and incorporation of Japanese PLM design \square + definition of alternatives
- 3. Design of the telescope \square + exploration of alternatives
- 4. Preliminary design of the required S/C ☑ and provide the associated mission cost (in prep.)
- 5. AIV approach and work share between JAXA, ESA and the Instrument Consortia \blacksquare
- 6. Requirements consolidation, as input to subsequent industrial phase A study. (in prep.)

– Radiators sizing

Study Critical Areas

- ESA cost needs to fit Cosmic Vision M-class mission budget, ≤ 550 M€[2017]
- Launch Mass may be an issue 3.7 ton to L2

- PLM cryo-coolers: physically in PLM or in SVM? Hybrid solution proposed
- AOCS: FAS in Telescope, or Star Tracker outside Telescope sufficient? TBD, pending ongoing thermo-elastic & AOCS analysis
- AIV/T: logic and sharing between JAXA and ESA workable logic & schedule

- CDF Integrated Design Model most coherent, complete and detailed equipment and mass breakdown for SPICA up to date, in line with latest ESA, JAXA, CEA and SRON parameters.
- Final Presentation Hand-out (to be updated by Friday)
- Technical Report (in two weeks; before or right after your holiday, please!)
- Cost Report (internal only)

