Asset Publisher

INFO 25-1998: Nearby star cluster yields insights into early universe

INFO 25-1998: Nearby star cluster yields insights into early universe

24 July 1998

The NASA/ESA Hubble Space Telescope has taken a 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200 000 light-years away in the Small Magellanic Cloud, a small irregular satellite galaxy of our Milky Way. These are probably the youngest massive stars ever seen in the nearby galaxy.

The nebula offers a unique opportunity for a close-up glimpse of the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place.

"This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2.

Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars.

These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space."

This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds.

He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova.

"If confirmed by future Hubble observations, this finding will have a far-reaching impact on stellar evolutionary models," says Heydari-Malayeri. "That's because the Wolf-Rayet candidate is fainter than other such stars in that galaxy, in contrast with the predictions of these models."

Last Update: 1 September 2019
28-Mar-2024 15:02 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/w05Gk5W

Images And Videos

Related Publications

Related Links

See Also

Documentation