Asset Publisher

Resonant Cyclotron Scattering in Magnetars' Emission

Resonant Cyclotron Scattering in Magnetars' Emission

Publication date: 21 October 2008

Authors: Rea, N., Zane, S., Turolla, R., Lyutikov, M., Götz, D.

Journal: Astrophysical Journal
Volume: 686
Page: 1245-1260
Year: 2008

Copyright: 2008. The American Astronomical Society

We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of 10 magnetars, including canonical and transient anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs). In this scenario, nonthermal magnetar spectra in the soft X-rays (i.e., below 10 keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the soft X-ray emission of magnetars, while using the same number of free parameters as in the commonly used empirical blackbody plus power-law model. However, while the RCS model can alone reproduce the soft X-ray spectra of AXPs, the much harder spectra of SGRs below 10 keV require the addition of a power-law component (the latter being the same component responsible for their hard X-ray emission). Although this model in its present form does not explain the hard X-ray emission (i.e., above 20 keV) of a few of these sources, we took this further component into account in our modeling not to overlook its contribution in the 4-10 keV band. We find that the entire class of sources is characterized by magnetospheric plasma with a density which, at resonant radius, is about 3 orders of magnitude higher than the Goldreich-Julian electron density. The inferred values of the intervening hydrogen column densities are also in better agreement with more recent estimates. Although the treatment of the magnetospheric scattering used here is only approximated, its successful application to all magnetars shows that the RCS model is capable of catching the main features of the spectra observed below 10 keV.

Last Update: Sep 1, 2019 9:04:00 AM
28-Mar-2024 16:30 UT

ShortUrl Portlet

Shortcut URL

https://sci.esa.int/s/8zPYD9w

Images And Videos

Related Publications

Related Links

Documentation