publication 18-November-2018 13:52:30

Submillimetre galaxies reside in dark matter haloes with masses greater than 3×10^11 solar masses

Publication date: 16 February 2011

Authors: Amblard, A., et al.

Journal: Nature
Year: 2011

Copyright: © 2010 Nature Publishing Group

The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 Œm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, Mmin, such that log10[Mmin/Msolar] = 11.5 (+0.7-0.2) at 350 µm, where Msolar is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.

Link to Publication:

Last Update: 16 February 2011

For further information please contact:

See Also