publication 19-June-2018 08:39:28

Hi-GAL, the Herschel infrared Galactic Plane Survey: photometric maps and compact source catalogues. First data release for Inner Milky Way: +68° > l >-70°

Publication date: 22 April 2016

Authors: Molinari, S., et al.

Journal: Astronomy & Astrophysics
Year: 2016

Copyright: © ESO 2016

Published online 22 April 2016.

Aims. We present the first public release of high-quality data products (DR1) from Hi-GAL, the Herschel infrared Galactic Plane Survey. Hi-GAL is the keystone of a suite of continuum Galactic plane surveys from the near-IR to the radio and covers five wavebands at 70, 160, 250, 350 and 500μm, encompassing the peak of the spectral energy distribution of cold dust for 8 ≤ T ≤50K. This first Hi-GAL data release covers the inner Milky Way in the longitude range 68°≥ l ≥ -70° in a |b| ≤ 1° latitude strip.
Methods. Photometric maps have been produced with the ROMAGAL pipeline, which optimally capitalizes on the excellent sensitivity and stability of the bolometer arrays of the Herschel PACS and SPIRE photometric cameras. It delivers images of exquisite quality and dynamical range, absolutely calibrated with Planck and IRAS, and recovers extended emission at all wavelengths and all spatial scales, from the point-spread function to the size of an entire 2°×2° "tile" that is the unit observing block of the survey. The compact source catalogues were generated with the CuTEx algorithm, which was specifically developed to optimise source detection and extraction in the extreme conditions of intense and spatially varying background that are found in the Galactic plane in the thermal infrared.
Results. Hi-GAL DR1 images are cirrus noise limited and reach the 1σ-rms predicted by the Herschel Time Estimators for parallel mode observations at 60" s-1 scanning speed in relatively low cirrus emission regions. Hi-GAL DR1 images will be accessible through a dedicated web-based image cutout service.
[Remainder of abstract truncated due to character limitations]

Link to Publication:

Last Update: 22 April 2016

For further information please contact:

See Also