Sampling the comet-asteroid continuum

Matthieu Gounelle

Laboratoire de Minéralogie et de Cosmochimie du Muséum UMR7202, CNRS & MNHN, Paris, France

Meteorites: Some definitions

☆ Micrometeorites: size < cm

★ Antarctic micrometeorites (10-500 μm)

★ Stratospheric Interplanetary Dust Particles (IDPs, 1-40 μm)

★ Meteorites: cm <size < 100 m (?)</p>

Differentiated & primitive meteorites

CHONDRITE (PRIMITIVE)

PALLASITE (DIFFERENTIATED)

Chondrites' components

Comets & asteroids

Comets formed further away and are supposed to be more primitive than asteroids (sampling <u>unprocessed</u> interstellar matter)

Most meteorites come from asteroids

The Orgueil meteorite

Visual observations of Orgueil - may 1864

Cometary origin of Orgueil?

Continuum between asteroids & comets

comparison to CI1 chondrites. In any case, independent of the possible cometary origin of Orgueil and the results yielded by the Stardust mission, a continuum between asteroids and comets is expected in our solar system, smoothing the possibly provocative proposition that five cometary meteorites are already present within terrestrial museums.

Water circulation in some comets

Orgueil and other Cl1 chondrites suffered intensive *hydrothermal* alteration

Expected cometary dust: Structure

Expected cometary dust: Isotopic composition

Nittler 2005

Unprocessed dust similar to presolar grains found in the carbonaceous chondrites matrix

D/H ratio: Link with the ISM

Compilation from Robert (2002)

Stardust: A cometary sample return mission

- Programme Discovery
- 168.4 US \$ (not including launch)
- PI: Don Brownlee (University of Washington)
- First sample return mission from a solar system primitive body

Scientific goals

Objective #1: To bring back cometary dust

Comparison with meteorites
Comparison with asteroids & comets
Cometary matter: Interstellar or solar?
Geological processes on cometary surfaces

Wild 2

Jupiter Family Comet
4.5 km diameter
Discovered 1978 (Mr Wild)
T = 6.39 yr
Dynamical timescale ~ 10000 yr

Take off february 7th 1999 at Cap Kennedy

Delta rocket Total weight : 385 kg

Fuel 85 kg Landing module 45.7 kg

Sample collection (2 janvier 2004)

Aerogel capture

Silicon foam 99.8 % vacuum

130 aerogel parallepipeds 2 x 4 cm
Collection surface: 1000 cm2
A side: interstellar dust

B side: cometary dust

Back on Earth: January 15th 2006

Velocity entry ~ 46 400 km/h

T_{max}: 2700 C

3 days later @ Johnson Space Center

~ 1000 grains with sizes > 5 μm ~ 100 μg of cometary dust

Terminal particle

~ 1 cm

Six Preliminary Examination Teams

Chemical composition

Flynn et al. 2006

Difficult to obtain Roughly solar (CI1)

Basic mineralogy

Olivine, pyroxene, sulfides, metal Melted aerogel Similar to what is found in primitive meteorites

Calcium-Aluminium-rich objects in comets

High T phase - important radial mixing in the Solar System

Chondrules in comets

Nakamura et al. Science 2008

.0kV

X3,300

WD 15.4mm

More similarities with carbonaceous chondrites

Some similarities with Antarctic micrometeorites & IDPs

Dobrică et al. Submitted

Not such a strong link to the ISM

Very few presolar grains

McKeegan et al. 2006

Stardust (partial) summary

Wild 2 dust was processed in the solar system (NOT interstellar)

Wild 2 dust looks alike carbonaceous chondrites & micrometeorites:

Continuum between asteroids & comets

Important radial mixing between the inner & outer solar system

Main belt comets

Embedded comets in the asteroid belt

D asteroids (black dots) are <u>implanted comets</u> (red dots) during the Late Heavy Bombardment

Levison et al. In press

Why sampling another body?

1. To better characterize the comet-asteroid continuum

★Could asteroids look like comets?
★C asteroids are different from D asteroids (and comets)
★Not all comets are the same

- 2. What matters is to study samples of primitive [unprocessed] matter
 - **★ Meteorites are a dynamical biased sample set**
 - **★**Less than a mg of Wild 2 dust : no bulk organics
 - **★Wild 2 dust is fragmented: no petrography**

Final thoughts

The ISM link

Conclusions 4

Gounelle et al. 2008 in The Solar System beyond Neptune (Eds Barrucci et al.)

Little hydrothermal alteration in Wild 2
Some (?) secondary minerals (phyllosilicates, carbonates) in Tempel 1
(Lisse et al. 2006)

Variable amount of aqueous alteration in comets

Comment

Not all comets are the same
The surface of one comet was sampled

Also true for the recently recovered Almahata Sitta anomalous ureilite

Table 1 | Orbital parameters of 2008 TC₃ used to calculate the approach path

Symbol	Parameter	Value
а	Semimajor axis	1.308201 ± 0.000009 AU
q	Perihelion distance	0.899957 ± 0.000002 AU
ω	Argument of perihelion	234.44897 ± 0.00008°
Ω	Longitude of ascending node	194.101138 ± 0.000002°
i	Inclination	$2.54220 \pm 0.00004^{\circ}$
T_{p}	Perihelion time	$2008 \text{November} 20.3989 \pm 0.0001 \text{UT}$

Carbonates in comets

Sample# FC 3,0,2,2,1 Hugues Leroux

Phyllosilicates not found yet

Some similarities with IDPs

Zolensky et al. 2006

Brownlee et al. 2006; Zolensky et al. 2006; McKeegan et al. 2006; Sandford et al. 2006; Flynn et al. 2006; Horz et al. 2006; Keller et al.2006