

Galahad

Primitive Asteroid Sample Return for New Frontiers Andy Cheng (PI) & P. Michel (Science Team)

JPL/APL Competition Sensitive

Asteroids and Solar System Origins

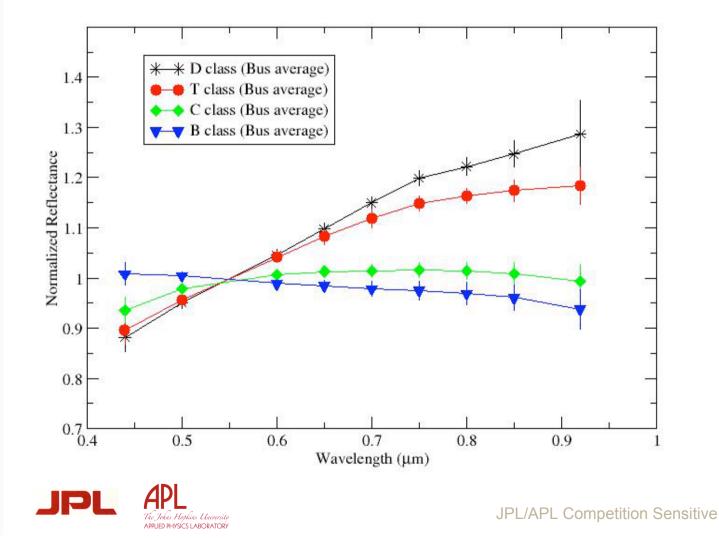
- Asteroids are remnants from the beginnings of solar system formation
 - They preserve materials from the first few million years of solar system history
- Primitive asteroids are the building blocks of terrestrial planets
 - Dust accreted to form asteroid-sized planetesimals, which then accreted to form planetary embryos
 - Some of these planetesimals, or largely unaltered fragments of them, survive to the present epoch
- Primitive asteroids preserve evidence of the processes and conditions of planet formation
- Primitive asteroids delivered organics and volatiles to early Earth – but which ones, and how much?
 - What role did these organics play in the development of life?

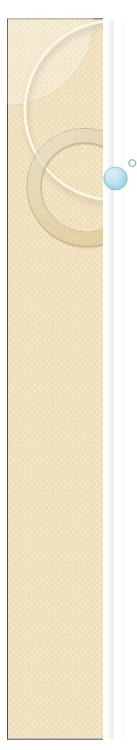
Why asteroid sample return?

- Meteorites have provided invaluable data about origins and evolution of planetary materials, but meteorites provide biased and incomplete samples of asteroids
- Returned samples may provide fragile material which could not survive Earth atmospheric entry intact
- Returned samples are *uncontaminated* by time spent in a terrestrial environment
- Returned samples represent the diversity of material in an asteroid, possibly including material absent from the meteorite collection
- Sample return provides *geologic context* for meteorites in our collection, plus clues to the nature JPand the evolution of the source body petition Sensitive 3

Science Goals

- Understand origins of organic-rich solar system material
- Understand processes and conditions of habitable planet formation
 - Return samples from a body little changed from those that were assembled to form Earth, its oceans and biosphere
- Understand the population of asteroids that may someday impact Earth




Asteroid Spectral Classes

- Spectral classes are based on visible data, though interpretation is informed by IR/radar/albedos
- Three main spectral "complexes": C, X, S
- S complex includes Gaspra, Ida, Eros, Itokawa, Apophis...
 - Dominant type in near-Earth population
- C complex includes Mathilde, Ceres
 - Dominant types in main belt
 - Related to carbonaceous chondrite meteorites?
- X complex includes Nereus, metallic objects?
- Outlying D class looks like comets, Trojans, Deimos…
 - Planetary protection requirements for D-asteroid samples

Asteroid Spectral Classes

Select Target Possibilities Considered

Туре	Н	D (km)	P(hrs)	Considered By
CF	15.99	~4	6.1	Marco Polo
D	20.9	~0.4		Marco Polo
D	20.9	~0.4		Marco Polo
Cg	19.1	1.0	7.6	Marco Polo
C (bin.)	17.8	1.4,0.4	3.6	Marco Polo
В	20.8	0.6	4.3	OSIRIS (Disc.)
Т	19.0	~1.0		
	CF D D Cg C (bin.)	CF15.99D20.9D20.9Cg19.1C (bin.)17.8	CF15.99~4D20.9~0.4D20.9~0.4Cg19.11.0C (bin.)17.81.4,0.4B20.80.6	CF15.99~46.1D20.9~0.4D20.9~0.4Cg19.11.07.6C (bin.)17.81.4,0.43.6B20.80.64.3

Sample Analyses

- Isotopic sample analyses will be able to:
 - Identify pre-solar materials, formed around stars other than Sun.
 - Determine isotope ratios in hydrated minerals and organics and compare them to values for terrestrial, cometary, meteoritic materials.
 - Date formation and evolution events for primitive materials, including nebular condensation, chondrule formation, impact metamorphism and aqueous alteration.
- Organic Sample Analyses
 - Search for biochemically important molecules (e.g., sugars, amino acids)
 - Understand formation and evolution of organic species
- Mineralogic Sample Analyses
 - Study thermal and aqueous alteration history of planetesimals and parent bodies
 - Establish chemical, thermal and aqueous context for interpretation of isotopic and organic analyses.
 - Comparisons of Top-Surface and "Bulk" Samples to elucidate effects of space weathering and improve understanding of asteroid spectra

Remote Sensing

- Mineralogies, colors, albedos for surface features
- Structures, densities and surface regolith distributions
 - Is the object a rubble pile?
- Geologic context of sampling site
- Payload instruments under consideration: multi-spectral visible imaging, infrared spectral mapping, sample acquisition and transfer mechanisms.

